Research article Special Issues

An inertially constructed projection based hybrid algorithm for fixed point and split null point problems

  • Received: 29 July 2022 Revised: 29 November 2022 Accepted: 12 December 2022 Published: 05 January 2023
  • MSC : 47H05, 47H10, 47J25, 49M30, 54H25

  • In this paper, we posit a framework for the investigation of the fixed point problems (FPP) involving an infinite family of $ \Bbbk $-demicontractive operators and the split common null point problems (SCNPP) in Hilbert spaces. We employ an accelerated variant of the hybrid shrinking projection algorithm for the construction of a common solution associated with the FPP and SCNPP. Theoretical results comprise strong convergence characteristics under suitable sets of constraints as well as numerical results are established for the underlying algorithm. Applications to signal processing as well as various abstract problems are also incorporated.

    Citation: Yasir Arfat, Poom Kumam, Supak Phiangsungnoen, Muhammad Aqeel Ahmad Khan, Hafiz Fukhar-ud-din. An inertially constructed projection based hybrid algorithm for fixed point and split null point problems[J]. AIMS Mathematics, 2023, 8(3): 6590-6608. doi: 10.3934/math.2023333

    Related Papers:

  • In this paper, we posit a framework for the investigation of the fixed point problems (FPP) involving an infinite family of $ \Bbbk $-demicontractive operators and the split common null point problems (SCNPP) in Hilbert spaces. We employ an accelerated variant of the hybrid shrinking projection algorithm for the construction of a common solution associated with the FPP and SCNPP. Theoretical results comprise strong convergence characteristics under suitable sets of constraints as well as numerical results are established for the underlying algorithm. Applications to signal processing as well as various abstract problems are also incorporated.



    加载中


    [1] F. Alvarez, H. Attouch, An inertial proximal method for maximal monotone operators via discretization of a nonlinear oscillator with damping, Set-valued Anal., 9 (2001), 3–11. http://doi.org/10.1023/A:1011253113155 doi: 10.1023/A:1011253113155
    [2] Y. Arfat, O. S. Iyiola, M. A. A. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Convergence analysis of the shrinking approximants for fixed point problem and generalized split common null point problem, J. Inequal. Appl., 2022 (2022), 67.
    [3] Y. Arfat, P. Kumam, M. A. A. Khan, Y. J. Cho, A hybrid steepest-descent algorithm for convex minimization over the fixed point set of multivalued mappings, Carpathian J. Math., 39 (2023), 303–314. https://doi.org/10.37193/CJM.2023.01.21 doi: 10.37193/CJM.2023.01.21
    [4] Y. Arfat, P. Kumam, M. A. A. Khan, O. S. Iyiola, Multi-inertial parallel hybrid projection algorithm for generalized split null point problems, J. Appl. Math. Comput., 68 (2022), 3179–3198. http://doi.org/10.1007/s12190-021-01660-4 doi: 10.1007/s12190-021-01660-4
    [5] Y. Arfat, M. A. A. Khan, P. Kumam, W. Kumam, K. Sitthithakerngkiet, Iterative solutions via some variants of extragradient approximants in Hilbert spaces, AIMS Mathematics, 7 (2022), 13910–13926. https://doi.org/10.3934/math.2022768 doi: 10.3934/math.2022768
    [6] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, An accelerated variant of the projection based parallel hybrid algorithm for split null point problems, Topol. Methods Nonlinear Anal., 1 (2022), 1–18. https://doi.org/10.12775/TMNA.2022.015 doi: 10.12775/TMNA.2022.015
    [7] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, An accelerated Visco-Cesaro means Tseng type splitting method for fixed point and monotone inclusion problems, Carpathian J. Math., 38 (2022), 281–297.
    [8] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, An inertial extragradient algorithm for equilibrium and generalized split null point problems, Adv. Comput. Math., 48 (2022), 53.
    [9] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, Parallel shrinking inertial extragradient approximants for pseudomonotone equilibrium, fixed point and generalized split null point problem, Ric. Mat., 2021. https://doi.org/10.1007/s11587-021-00647-4
    [10] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, Shrinking approximants for fixed point problem and generalized split null point problem in Hilbert spaces, Optim. Lett., 16 (2022), 1895–1913. https://doi.org/10.1007/s11590-021-01810-4 doi: 10.1007/s11590-021-01810-4
    [11] Y. Arfat, P. Kumam, M. A. A. Khan, P. S. Ngiamsunthorn, A. Kaewkhao, A parallel hybrid accelerated extragradient algorithm for pseudomonotone equilibrium, fixed point, and split null point problems, Adv. Differ. Equ., 364 (2021), 364. http://doi.org/10.1186/s13662-021-03518-2 doi: 10.1186/s13662-021-03518-2
    [12] H. H. Bauschke, P. L. Combettes, Convex analysis and monotone operator theory in Hilbert spaces, In: CMS Books in Mathematics, New York: Springer, 2011.
    [13] E. Blum, W. Oettli, From optimization and variational inequalities to equilibrium problems, Math. Stud., 63 (1994), 123–145.
    [14] F. E. Browder, Nonexpansive nonlinear operators in a Banach space, Proc. Natl. Acad. Sci., 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041 doi: 10.1073/pnas.54.4.1041
    [15] C. Byrne, A unified treatment of some iterative algorithms in signal processing and image reconstruction, Inverse Problems, 20 (2004), 103–120. https://doi.org/10.1088/0266-5611/20/1/006 doi: 10.1088/0266-5611/20/1/006
    [16] C. Byrne, Y. Censor, A. Gibali, S. Reich, The split common null point problem, J. Nonlinear Convex Anal., 13 (2012), 759–775. https://doi.org/10.48550/arXiv.1108.5953 doi: 10.48550/arXiv.1108.5953
    [17] Y. Censor, T. Bortfeld, B. Martin, A. Trofimov, A unified approach for inversion problems in intensity-modulated radiation therapy, Phys. Med. Biol., 51 (2006), 2353–2365. https://doi.org/10.1088/0031-9155/51/10/001 doi: 10.1088/0031-9155/51/10/001
    [18] Y. Censor, T. Elfving, A multiprojection algorithm using Bregman projections in a product space, Numer. Algorithms, 8 (1994), 221–239.
    [19] Y. Censor, A. Gibali, S. Reich, Algorithms for the split variational inequality problem, Numer. Algorithms, 59 (2012), 301–323.
    [20] Y. Censor, A. Segal, The split common fixed point problem for directed operators, J. Convex Anal., 26 (2010), 55007. https://doi.org/10.1088/0266-5611/26/5/055007 doi: 10.1088/0266-5611/26/5/055007
    [21] P. L. Combettes, The convex feasibility problem in image recovery, Adv. Imaging Electron Phys., 95 (1996), 155–270. https://doi.org/10.1016/S1076-5670(08)70157-5 doi: 10.1016/S1076-5670(08)70157-5
    [22] P. L. Combettes, J. C. Pesquet, Proximal splitting methods in signal processing, In: Springer optimization and its applications, 49 (2011), 185–212.
    [23] J. Duchi, S. Shalev-Shwartz, Y. Singer, T. Chandra, Efficient projections onto the $l_{1}$-ball for learning in high dimensions, In: Proceedings of the 25th international conference on machine learning, Helsinki, 2008.
    [24] T. L. Hicks, J. D. Kubicek, On the Mann iteration process in a Hilbert space, J. Math. Anal. Appl., 59 (1977), 498–504. https://doi.org/10.1016/0022-247X(77)90076-2 doi: 10.1016/0022-247X(77)90076-2
    [25] Z. Ma, L. Wang, S-S. Chang, W. Duan, Convergence theorems for split equality mixed equilibrium problems with applications, Fixed Point Theory Appl., 2015 (2015), 31. http://doi.org/10.1186/s13663-015-0281-x doi: 10.1186/s13663-015-0281-x
    [26] C. Martinez-Yanes, H. K. Xu, Strong convergence of CQ method for fixed point iteration processes, Nonlinear Anal., 64 (2006), 2400–2411. https://doi.org/10.1016/j.na.2005.08.018 doi: 10.1016/j.na.2005.08.018
    [27] B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5
    [28] W. Takahashi, K. Shimoji, Convergence theorems for nonexpansive mappings and feasibility problems, Math. Comput. Model., 32 (2000), 1463–1471. https://doi.org/10.1016/S0895-7177(00)00218-1 doi: 10.1016/S0895-7177(00)00218-1
    [29] S. Takahashi, W. Takahashi, The split common null point problem and the shrinking projection method in Banach spaces, Optimization, 65 (2016), 281–287. https://doi.org/10.1080/02331934.2015.1020943 doi: 10.1080/02331934.2015.1020943
    [30] S. Takahashi, W. Takahashi, M. Toyoda, Strong convergence theorem for maximal monotone operators with nonlinear mappings in Hilbert spaces, J. Optim. Theory Appl., 147 (2010), 27–41. http://doi.org/10.1007/s10957-010-9713-2 doi: 10.1007/s10957-010-9713-2
    [31] W. Takahashi, H. K. Xu, J. C. Yao, Iterative methods for generalized split feasibility problems in Hilbert spaces, Set Valued Var. Anal., 23 (2015), 205–221. http://doi.org/10.1007/s11228-014-0285-4 doi: 10.1007/s11228-014-0285-4
    [32] B. Tan, Z. Zhou, S. X. Li, Viscosity-type inertial extragradient algorithms for solving variational inequality problems and fixed point problems, J. Appl. Math. Comput., 68 (2022), 1387-1411. https://doi.org/10.1007/S12190-021-01576-Z doi: 10.1007/S12190-021-01576-Z
    [33] R. Tibshirani, Regression shrinkage and selection via lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x doi: 10.1111/j.2517-6161.1996.tb02080.x
    [34] S. Wang, A general iterative method for obtaining an infinite family of strictly pseudo-contractive mappings in Hilbert spaces, Appl. Math. Lett., 24 (2011), 901–907. https://doi.org/10.1016/j.aml.2010.12.048 doi: 10.1016/j.aml.2010.12.048
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1484) PDF downloads(64) Cited by(2)

Article outline

Figures and Tables

Figures(3)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog