In this paper, we propose a new accelerated algorithm for solving convex bilevel optimization problems using some fixed point and two-step inertial techniques. Our focus is on analyzing the convergence behavior of the proposed algorithm. We establish a strong convergence theorem for our algorithm under some control conditions. To demonstrate the effectiveness of our algorithm, we utilize it as a machine learning algorithm to solve data classification problems of some noncommunicable diseases, and compare its efficacy with BiG-SAM and iBiG-SAM.
Citation: Puntita Sae-jia, Suthep Suantai. A new two-step inertial algorithm for solving convex bilevel optimization problems with application in data classification problems[J]. AIMS Mathematics, 2024, 9(4): 8476-8496. doi: 10.3934/math.2024412
In this paper, we propose a new accelerated algorithm for solving convex bilevel optimization problems using some fixed point and two-step inertial techniques. Our focus is on analyzing the convergence behavior of the proposed algorithm. We establish a strong convergence theorem for our algorithm under some control conditions. To demonstrate the effectiveness of our algorithm, we utilize it as a machine learning algorithm to solve data classification problems of some noncommunicable diseases, and compare its efficacy with BiG-SAM and iBiG-SAM.
[1] | P. Thongpaen, W. Inthakon, T. Leerapun, S. Suantai, A new accelerated algorithm for convex Bilevel optimization problems and applications in data classification, Symmetry, 14 (2022), 2617. https://doi.org/10.3390/sym14122617 doi: 10.3390/sym14122617 |
[2] | K. Janngam, S. Suantai, Y. J. Cho, A. Kaewkhao, A novel inertial viscosity algorithm for Bilevel optimization problems applied to classification problems, Mathematics, 11 (2023), 2617. https://doi.org/10.3390/math11143241 doi: 10.3390/math11143241 |
[3] | P. Thongsri, B. Panyanak, S. Suantai, A new accelerated algorithm based on fixed point method for convex Bilevel optimization problems with applications, Mathematics, 11 (2023), 702. https://doi.org/10.3390/math11030702 doi: 10.3390/math11030702 |
[4] | P. Sae-jia, S. Suantai, A novel algorithm for convex Bi-level optimization problems in Hilbert spaces with applications, Thai. J. Math., 21 (2023), 625–645. https://doi.org/10.3390/math11143241 doi: 10.3390/math11143241 |
[5] | N. Parikh, S. Boyd, Proximal algorithms, Found. Trend. Optim., 1 (2014), 127–239. http://dx.doi.org/10.1561/2400000003 doi: 10.1561/240000000 |
[6] | W. R. Mann, Mean value methods in iteration, P. Am. Math. Soc., 4 (1953), 506–510. |
[7] | S. Reich, Weak convergence theorems for nonexpansive mappings in Banach spaces, J. Math. Anal. Appl., 67 (1979), 174–276. |
[8] | B. Halpern, Fixed points of nonexpanding maps, Found. Trend. Optim., 73 (1967), 957–961. http://dx.doi.org/10.1561/2400000003 doi: 10.1561/2400000003 |
[9] | S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl., 75 (1980), 287–292. |
[10] | S. Ishikawa, Fixed points by a new iteration method, P. Am. Math. Soc., 44 (1974), 147–150. https://doi.org/10.2307/2039245 doi: 10.2307/2039245 |
[11] | A. Moudafi, Viscosity approximation methods for fixed points problems, J. Math. Anal. Appl., 241 (2000), 46–55. https://doi.org/10.1006/jmaa.1999.6615 doi: 10.1006/jmaa.1999.6615 |
[12] | R. P. Agarwal, D. O. Regan, Iterative construction of fixed points of nearly asymptotically nonexpansive mappings, J. Nonlinear Convex A., 8 (2007), 61. |
[13] | K. Aoyama, Y. Kimura, W. Takahashi, M. Toyoda, Approximation of common fixed points of a countable family of nonexpansive mappings in a Banach space, Nonlinear Anal., 67 (2007), 2350–2360. https://doi.org/10.1155/2010/407651 doi: 10.1155/2010/407651 |
[14] | W. Takahashi, Viscosity approximation methods for countable family of nonexpansive mapping in Banach spaces, Nonlinear Anal., 70 (2009), 719–734. https://doi.org/10.1016/j.na.2008.01.005 doi: 10.1016/j.na.2008.01.005 |
[15] | C. Klin-eam, S. Suantai, Strong convergence of composite iterative schemes for a countable family of nonexpansive mappings in Banach spaces, Nonlinear Anal., 73 (2010), 431–439. https://doi.org/10.1016/j.na.2010.03.034 doi: 10.1016/j.na.2010.03.034 |
[16] | B. T. Polyak, Some methods of speeding up the convergence of iteration methods, USSR Comput. Math. Math. Phys., 4 (1964), 1–17. https://doi.org/10.1016/0041-5553(64)90137-5 doi: 10.1016/0041-5553(64)90137-5 |
[17] | A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems, SIAM J. Imaging Sci., 2 (2009), 183–202. https://doi.org/10.1137/080716542 doi: 10.1137/080716542 |
[18] | J. Puangpee, S. Suantai, A new accelerated viscosity iterative method for an infinite family of nonexpansive mappings with applications to image restoration problems, Mathematics, 8 (2020), 615. https://doi.org/10.3390/math8040615 doi: 10.3390/math8040615 |
[19] | B. T. Polyak, Introduction to optimization. optimization software, New York: Publications Division, 1987. |
[20] | Q. L. Dong, Y. J. Cho, T. M. Rassias, General inertial Mann algorithms and their convergence analysis for nonexpansive mappings, Appl. Nonlinear Anal., 2018,175–191. https://doi.org/10.1007/978-3-319-89815-5_7 doi: 10.1007/978-3-319-89815-5_7 |
[21] | S. Sabach, S. Shtern, A first order method for solving convex bilevel optimization problems, SIAM J. Optim., 27 (2017), 640–660. https://doi.org/10.1137/16M105592 doi: 10.1137/16M105592 |
[22] | Y. Shehu, P. T. Vuong, A. Zemkoho, An inertial extrapolation method for convex simple bilevel optimization, Optim. Method. Softw., 36 (2021), 1–19. https://doi.org/10.48550/arXiv.1809.06250 doi: 10.48550/arXiv.1809.06250 |
[23] | K. Goebel, S. Reich, Uniform convexity, hyperbolic geometry, and nonexpansive mappings, New York: Marcel Dekker, 1984. |
[24] | K. Nakajo, K. Shimoji, W. Takahashi, Strong convergence to common fixed points of families of nonexpansive mappings in Banach spaces, J. Nonlinear Convex A., 8 (2007), 11. |
[25] | W. Takahashi, Introduction to nonlinear and convex analysis, Yokohama Publishers, 2009. |
[26] | L. Bussaban, S. Suantai, A. Kaewkhao, A paralle inertial S-iteration forward-backward algorithm for regression and classification problems, Carpathian J. Math., 36 (2020), 35–44. |
[27] | W. Takahashi, Nonlinear functional analysis, Yokohama Publishers, 2000. |
[28] | K. Goebel, W. A. Kirk, Topic in metric fixed point theory, Cambridge University Press, 1990. |
[29] | K. Aoyam, Y. Yasunori, W. Takahashi, M. Toyoda, On a strongly nonexpansive sequence in a Hilbert space, J. Nonlinear Convex A., 8 (2007), 471–490. |
[30] | H. K. Xu, Another control condition in an iterative method for nonexpansive mappings, B. Aust. Math. Soc., 65 (2002), 109–113. https://doi.org/10.1017/S0004972700020116 doi: 10.1017/S0004972700020116 |
[31] | P. E. Maing, Strong convergence of projected subgradient methods for nonsmooth and nonstrictly convex minimization, Set-Valued Anal., 16 (2008), 899–912. https://doi.org/10.1007/s11228-008-0102-z doi: 10.1007/s11228-008-0102-z |
[32] | G. B. Huang, Q. Y. Zhu, C. K. Siew, Extreme learning machine: Theory and applications, Neurocomputing, 70 (2006), 489–501. https://doi.org/10.1016/j.neucom.2005.12.126 doi: 10.1016/j.neucom.2005.12.126 |
[33] | Little Max, Parkinsons, UCI Machine Learning Repository, 2008. Available from: https://archive.ics.uci.edu/dataset/174/parkinsons. |
[34] | Kaggle, Diabetes dataset, Kaggle, 1990. Available from: https://www.kaggle.com/datasets/mathchi/diabetes-data-set/data. |