Research article Special Issues

Periodic solutions in reversible systems in second order systems with distributed delays

  • Received: 20 October 2023 Revised: 29 November 2023 Accepted: 20 December 2023 Published: 28 February 2024
  • MSC : 34K13, 58E05

  • In this paper, we study the existence and multiplicity of periodic solutions to a class of second-order nonlinear differential equations with distributed delay. Under assumptions that the nonlinearity is odd, differentiable at zero and satisfies the Nagumo condition, by applying the equivariant degree method, we prove that the delay equation admits multiple periodic solutions. The results are then illustrated by an example.

    Citation: Yameng Duan, Wieslaw Krawcewicz, Huafeng Xiao. Periodic solutions in reversible systems in second order systems with distributed delays[J]. AIMS Mathematics, 2024, 9(4): 8461-8475. doi: 10.3934/math.2024411

    Related Papers:

  • In this paper, we study the existence and multiplicity of periodic solutions to a class of second-order nonlinear differential equations with distributed delay. Under assumptions that the nonlinearity is odd, differentiable at zero and satisfies the Nagumo condition, by applying the equivariant degree method, we prove that the delay equation admits multiple periodic solutions. The results are then illustrated by an example.



    加载中


    [1] G. S. Jones, The existence of periodic solutions of $f'(x) = -\alpha f(x-1)\left \{ 1+f(x) \right \} $, J. Math. Anal. Appl., 5 (1962), 435–450. https://doi.org/10.1016/0022-247X(62)90017-3 doi: 10.1016/0022-247X(62)90017-3
    [2] J. Kaplan, J. Yorke, Ordinary differential equations which yield periodic solutions of differential delay equations, J. Math. Anal. Appl., 48 (1974), 317–324. https://doi.org/10.1016/0022-247X(74)90162-0 doi: 10.1016/0022-247X(74)90162-0
    [3] J. Li, X. He, Proof and generalization of kaplan-yorke's conjecture on periodic solution of differential delay equations, Sci. China Ser. A, 42 (1999), 957–964. https://doi.org/10.1007/BF02880387 doi: 10.1007/BF02880387
    [4] J. Li, Z. Liu, X. He, Periodic solutions of some differential delay equations created by hamiltonian systems, Bull. Austral. Math. Soc., 60 (1999), 377–390. https://doi.org/10.1017/S000497270003656X doi: 10.1017/S000497270003656X
    [5] G. Fei, Multiple periodic solutions of differential delay equations via Hamiltonian systems (Ⅰ), Nonlinear Anal., 65 (2006), 25–39. https://doi.org/10.1016/j.na.2005.06.011 doi: 10.1016/j.na.2005.06.011
    [6] G. Fei, Multiple periodic solutions of differential delay equations via Hamiltonian systems (Ⅱ), Nonlinear Anal., 65 (2006), 40–58. https://doi.org/10.1016/j.na.2005.06.012 doi: 10.1016/j.na.2005.06.012
    [7] Z. Guo, J. Yu, Multiplicity results for periodic solutions to delay differential difference equation via critical point theory, J. Differ. Equations, 218 (2005), 15–35. https://doi.org/10.1016/j.jde.2005.08.007 doi: 10.1016/j.jde.2005.08.007
    [8] Z. Guo, J. Yu, Multiplicity results on period solutions to higher dimensional differential equations with multiple delays, J. Dyn. Diff. Equat., 23 (2011), 1029–1052. https://doi.org/10.1007/s10884-011-9228-z doi: 10.1007/s10884-011-9228-z
    [9] J. Yu, H. Xiao, Multiple periodic solutions with minimal period $4$ of the delay differential equation $\dot{x} = -f(t, x(t-1))$, 254 (2013), 2158–2172. https://doi.org/10.1016/j.jde.2012.11.022
    [10] B. Zheng, Z. Guo, Multiplicity results on periodic solutions to higher-dimensional differential equations with multiple delays, Rocky Mountain J. Math., 44 (2014), 1715–1744. https://doi.org/10.1216/RMJ-2014-44-5-1715 doi: 10.1216/RMJ-2014-44-5-1715
    [11] J. Mawhin, Equivalence theorems for nonlinear operator equations and coincidence degree theory for some mappings in locally convex topological vector spaces, J. Differ. Equations, 12 (1972), 610–636. https://doi.org/10.1016/0022-0396(72)90028-9 doi: 10.1016/0022-0396(72)90028-9
    [12] Z. Balanov, W. Krawcewicz, H. Steinlein, Reduced $SO(3)\times S^1$-equivariant degree with applications to symmetric bifurcation problems, Nonlinear Anal., 47 (2001), 1617–1628. https://doi.org/10.1016/S0362-546X(01)00295-4 doi: 10.1016/S0362-546X(01)00295-4
    [13] Z. Balanov, W. Krawcewicz, H. Ruan, G.E. Hutchinson's delay logistic system with symmetries and spatial diffusion, Nonlinear Anal., 9 (2008), 154–182. https://doi.org/10.1016/j.nonrwa.2006.09.013 doi: 10.1016/j.nonrwa.2006.09.013
    [14] S. Chow, J. Mallet-Paret, Integral averaging and bifurcation, J. Differ. Equations, 26 (1977), 112–159. https://doi.org/10.1016/0022-0396(77)90101-2 doi: 10.1016/0022-0396(77)90101-2
    [15] J. Yu, A note on periodic solutions of the delay differential equation $x'(t) = -f(x(t-1))$, Proc. Amer. Math. Soc., 141 (2013), 1281–1288. https://doi.org/10.1090/S0002-9939-2012-11386-3 doi: 10.1090/S0002-9939-2012-11386-3
    [16] J. Yu, Uniqueness of periodic solutions for delay differential equations, Sci. China Ser A, 47 (2017), 221–226. https://doi.org/10.1360/N012016-00085. doi: 10.1360/N012016-00085
    [17] Z. Balanov, J. Burnett, W. Krawcewicz, H. Xiao, Global bifurcation of periodic solutions in reversible second order delay system, Int. J. Bifur. Chaos, 31 (2021), 2150180. https://doi.org/10.1142/S0218127421501807 doi: 10.1142/S0218127421501807
    [18] Z. Balanov, F. Chen, J. Guo, W. Krawcewicz, Periodic solutions to reversible second order autonomous systems with commensurate delays, Topol. Methods Nonlinear Anal., 59 (2022), 475–498. https://doi.org/10.48550/arXiv.2007.09166 doi: 10.48550/arXiv.2007.09166
    [19] Z. Balanov, W. Krawcewicz, N. Hirano, X. Ye, Existence and spatio-temporal patterns of periodic solutions to second order non-autonomous equivariant delayed systems, J. Nonlinear Convex Anal., 22 (2021), 2377–2404. https://doi.org/10.48550/arXiv.2005.12558 doi: 10.48550/arXiv.2005.12558
    [20] Z. Balanov, N. Hirano, W. Krawcewicz, F. Liao, A. Murza, Periodic solutions to reversible second order autonomous DDEs in prescribed symmetric nonconvex domains, Nonlinear Differ. Equ. Appl., 28 (2021). https://doi.org/10.1007/s00030-021-00695-7 doi: 10.1007/s00030-021-00695-7
    [21] J. W. Forrester, Industrial dynamics, MA: MIT Press, 1961. https://doi.org/10.1057/palgrave.jors.2600946
    [22] T. Manetsch, Time-varying distributed delay and their use in aggregative models of large system, IEEE Trans. Syst. Man Cybern., 8 (1976), 547–553. https://doi.org/10.1109/TSMC.1976.4309549 doi: 10.1109/TSMC.1976.4309549
    [23] K. Azevedo, M. Gadotti, L. Ladeira, Special symmetric periodic solutions of differential systems with distributed delay, Nonlinear Anal., 67 (2007), 1861–1869. https://doi.org/10.1016/j.na.2006.08.012 doi: 10.1016/j.na.2006.08.012
    [24] B. Kennedy, Symmetric periodic solutions for a class of differential delay equations with distributed delay, Electron. J. Qual. Theory Differ. Equ., 4 (2014), 1–18. https://doi.org/10.14232/ejqtde.2014.1.4 doi: 10.14232/ejqtde.2014.1.4
    [25] Y. Nakata, An explicit periodic solution of a delay differential equation, J. Dyn. Diff. Equat., 32 (2020), 163–179. https://doi.org/10.1007/s10884-018-9681-z doi: 10.1007/s10884-018-9681-z
    [26] Y. Nakata, Existence of a period two solution of a delay differential equation, Discrete Contin. Dyn. Syst. Ser S, 14 (2021), 1103–1110. https://doi.org/10.3934/dcdss.2020392 doi: 10.3934/dcdss.2020392
    [27] X. Wu, H. Xiao, The multiplicity of periodic solutions for distributed delay differential systems, Rocky Mountain J. Math., 2021, In Press.
    [28] H. Xiao, Z. Guo, Periodic solutions to a class of distributed delay differential equations via variational methods, Adv. Nonlinear Anal., 12 (2023), 20220305. http://dx.doi.org/10.1515/anona-2022-0305 doi: 10.1515/anona-2022-0305
    [29] H. Xiao, X. Wu, J. Yu, Multiple symmetric periodic solutions of differential systems with distributed delay, J. Differ. Equations, 373 (2023), 626–653. https://doi.org/10.1016/j.jde.2023.07.018 doi: 10.1016/j.jde.2023.07.018
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(644) PDF downloads(88) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog