In this paper, we consider the efficient numerical scheme for solving time-fractional mobile/immobile transport equation. By utilizing the compact difference operator to approximate the Laplacian, we develop an efficient Crank-Nicolson compact difference scheme based on the modified L1 method. It is proved that the proposed scheme is stable with the accuracy of $ O(\tau^{2-\alpha}+h^4) $, where $ \tau $ and $ h $ are respectively the temporal and spatial stepsizes, and the fractional order $ \alpha\in(0, 1) $. In addition, we improve the computational performance for the non-smooth issue by the fast discrete sine transform technology and the method of adding correction terms. Finally, numerical examples are provided to verify the effectiveness of the proposed scheme.
Citation: Lijuan Nong, An Chen, Qian Yi, Congcong Li. Fast Crank-Nicolson compact difference scheme for the two-dimensional time-fractional mobile/immobile transport equation[J]. AIMS Mathematics, 2021, 6(6): 6242-6254. doi: 10.3934/math.2021366
In this paper, we consider the efficient numerical scheme for solving time-fractional mobile/immobile transport equation. By utilizing the compact difference operator to approximate the Laplacian, we develop an efficient Crank-Nicolson compact difference scheme based on the modified L1 method. It is proved that the proposed scheme is stable with the accuracy of $ O(\tau^{2-\alpha}+h^4) $, where $ \tau $ and $ h $ are respectively the temporal and spatial stepsizes, and the fractional order $ \alpha\in(0, 1) $. In addition, we improve the computational performance for the non-smooth issue by the fast discrete sine transform technology and the method of adding correction terms. Finally, numerical examples are provided to verify the effectiveness of the proposed scheme.
[1] | R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resources Res., 39 (2003), 1296. doi: 10.1029/2003WR002141. |
[2] | L. Nong, A. Chen, Numerical schemes for the time-fractional mobile/immobile transport equation based on convolution quadrature, J. Appl. Math. Comput., 2021. doi: 10.1007/s12190-021-01522-z. |
[3] | Z. Liu, X. Li, X. Zhang, A fast high-order compact difference method for the fractal mobile/immobile transport equation, Int. J. Comput. Math., 97 (2019), 1860-1883. |
[4] | W. Qiu, D. Xu, H. Chen, J. Guo, An alternating direction implicit Galerkin finite element method for the distributed-order time-fractional mobile-immobile equation in two dimensions, Comput. Math. Appl., 80 (2020), 3156-3172. doi: 10.1016/j.camwa.2020.11.003 |
[5] | C. Li, Q. Yi, Finite difference method for two-dimensional nonlinear time-fractional subdiffusion equation, Fract. Cal. Appl. Anal., 21 (2018), 1046-1072. doi: 10.1515/fca-2018-0057 |
[6] | B. Jin, R. Lazarov, Z. Zhou, Numerical methods for time-fractional evolution equations with nonsmooth data: A concise overview, Comput. Methods Appl. Mech. Engrg., 346 (2019), 332-358. doi: 10.1016/j.cma.2018.12.011 |
[7] | B. Ji, H. Liao, Y. Gong, L. Zhang, Adaptive Second-Order Crank-Nicolson Time-Stepping Schemes for Time-Fractional Molecular Beam Epitaxial Growth Models, SIAM J. Sci. Comput., 42 (2020), B738-B760. doi: 10.1137/19M1259675 |
[8] | K. Mustapha, An $L1$ Approximation for a Fractional Reaction-Diffusion Equation, a Second-Order Error Analysis over Time-Graded Meshes, SIAM J. Numer. Anal. 58 (2020), 1319-1338. |
[9] | C. Lubich, Discretized fractional calculus, SIAM J. Math. Anal., 17 (1986), 704-719. doi: 10.1137/0517050 |
[10] | F. Zeng, Z. Zhang, G. E. Karniadakis, Second-order numerical methods for multi-term fractional differential equations: Smooth and non-smooth solutions, Comput. Methods Appl. Mech. Engrg., 327 (2017), 478-502. doi: 10.1016/j.cma.2017.08.029 |
[11] | B. Yin, Y. Liu, H. Li, A class of shifted high-order numerical methods for the fractional mobile/immobile transport equations, Appl. Math. Comput., 368 (2020), 124799. doi: 10.1016/j.amc.2019.124799 |
[12] | F. Zeng, C. Li, A new Crank-Nicolson finite element method for the time-fractional subdiffusion equation, Appl. Numer. Math., 121 (2017), 82-95. doi: 10.1016/j.apnum.2017.06.011 |
[13] | O. Nikan, J. A. T. Machado, A. Golbabai, J. Rashidinia, Numerical evaluation of the fractional Klein-Kramers model arising in molecular dynamics, J. Comput. Phys., 428 (2021), 109983. doi: 10.1016/j.jcp.2020.109983 |
[14] | H. Wang, Y. Zhang, X. Ma, J. Qiu, Y. Liang, An efficient implementation of fourth-order compact finite difference scheme for Poisson equation with Dirichlet boundary conditions, Comput. Math. Appl., 71 (2016), 1843-1860. doi: 10.1016/j.camwa.2016.02.022 |
[15] | X. Li, H. Liao, L. Zhang, A second-order fast compact scheme with unequal time-steps for subdiffusion problems, Numer. Algorithms, (2020), doi: 10.1007/s11075-020-00920-x. |
[16] | X. Tian, Q. Du, Asymptotically compatible schemes and applications to robust discretization of nonlocal models, SIAM J. Numer. Anal., 52 (2014), 1641-1665. doi: 10.1137/130942644 |
[17] | A. Chen, C. Li, A novel compact ADI scheme for the time-fractional subdiffusion equation in two space dimensions, Int. J. Comput. Math., 93 (2015), 889-914. |
[18] | X. Yang, X. Jiang, Numerical algorithm for two dimensional fractional Stokes' first problem for a heated generalized second grade fluid with smooth and non-smooth solution, Comput. Math. Appl., 78 (2019), 1562-1571. doi: 10.1016/j.camwa.2019.03.029 |
[19] | F. Zeng, I. Turner, K. Burrage, A Stable Fast Time-Stepping Method for Fractional Integral and Derivative Operators, J. Sci. Comput., 77 (2018), 283-307. doi: 10.1007/s10915-018-0707-9 |
[20] | S. Jiang, J. Zhang, Q. Zhang, Z. Zhang, Fast Evaluation of the Caputo Fractional Derivative and its Applications to Fractional Diffusion Equations, Comm. Comput. Phys., 21 (2017), 650-678. doi: 10.4208/cicp.OA-2016-0136 |