Research article Special Issues

A constraint handling technique using compound distance for solving constrained multi-objective optimization problems

  • Received: 06 March 2021 Accepted: 07 April 2021 Published: 09 April 2021
  • MSC : 90C29, 58E17, 11Y16

  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and $ \ell_p $-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.

    Citation: Jiawei Yuan. A constraint handling technique using compound distance for solving constrained multi-objective optimization problems[J]. AIMS Mathematics, 2021, 6(6): 6220-6241. doi: 10.3934/math.2021365

    Related Papers:

  • Guiding the working population to evenly explore the valuable areas which are not dominated by feasible solutions is important in the process of dealing with constrained multi-objective optimization problems (CMOPs). To this end, according to the angular distance and $ \ell_p $-norm, this paper introduces a new compound distance to measure individual's search diameter in the objective space. After that, we propose a constraint handling technique using the compound distance and embed it in evolutionary algorithm for solving CMOPs. In the proposed algorithm, the individuals with large search diameters in the valuable areas are given priority to be preserved. This can prevent the working population from getting stuck in the local areas and then find the optimal solutions for CMOPs more effectively. A series of numerical experiments show that the proposed algorithm has better performance and robustness than several existing state-of-the-art constrained multi-objective evolutionary algorithms in dealing with different CMOPs.



    加载中


    [1] M. Baioletti, A. Milani, V. Santucci, MOEA/DEP: An algebraic decomposition-based evolutionary algorithm for the multiobjective permutation flowshop scheduling problem, In: European Conference on evolutionary Computation in Combinatorial Optimization, Springer, Cham, (2018), 132-145.
    [2] M. Zangari, A. Mendiburu, R. Santana, A. Pozo, Multiobjective decomposition-based mallows models estimation of distribution algorithm. A case of study for permutation flowshop scheduling problem, Inf. Sci., 397 (2017), 137-154.
    [3] O. Kabadurmus, M. F. Tasgetiren, H. Oztop, M. S. Erdogan, Solving 0-1 bi-objective multi-dimensional knapsack problems using binary genetic algorithm, Springer, Cham, (2021), 51-67.
    [4] K. Florios, G. Mavrotas, Generation of the exact pareto set in multi-objective traveling salesman and set covering problems, Appl. Math. Comput., 237 (2014), 1-19. doi: 10.1016/j.amc.2014.03.110
    [5] H. K. Singh, T. Ray, R. Sarker, Optimum oil production planning using infeasibility driven evolutionary algorithm, Evol. Comput., 21 (2013), 65-82. doi: 10.1162/EVCO_a_00064
    [6] Y. Yang, J. Liu, S. Tan, A constrained multi-objective evolutionary algorithm based on decomposition and dynamic constraint-handling mechanism, Appl. Soft Comput., 89 (2020), 106104. doi: 10.1016/j.asoc.2020.106104
    [7] J. Yuan, H. L. Liu, C. Peng, Population decomposition-based greedy approach algorithm for the multi-objective knapsack problems, Int. J. Pattern Recognit Artif. Intell., 31 (2017), 1759006. doi: 10.1142/S0218001417590066
    [8] H. Ma, H. Wei, Y. Tian, R. Cheng, X. Zhang, A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints, Inf. Sci., 560 (2021), 68-91. doi: 10.1016/j.ins.2021.01.029
    [9] P. Myszkowski, M. Laszczyk, Diversity based selection for many-objective evolutionary optimisation problems with constraints, Inf. Sci., 546 (2021), 665-700. doi: 10.1016/j.ins.2020.08.118
    [10] M. Ming, A. Trivedi, R. Wang, D. Srinivasan, T. Zhang, A dual-population based evolutionary algorithm for constrained multi-objective optimization, IEEE Trans. Evol. Comput., 2021. DOI: 10.1109/TEVC.2021.3066301.
    [11] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Eng., 186 (2000), 311-338. doi: 10.1016/S0045-7825(99)00389-8
    [12] Z. Fan, W. Li, X. Cai, H. Huang, Y. Fang, Y. You, et al., An improved epsilon constraint-handling method in MOEA/D for CMOPs with large infeasible regions, Soft Comput., 23 (2019), 12491-12510. doi: 10.1007/s00500-019-03794-x
    [13] Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [14] J. P. Li, Y. Wang, S. Yang, Z. Cai, A comparative study of constraint-handling techniques in evolutionary constrained multiobjective optimization, In: 2016 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2016), 4175-4182.
    [15] Y. Yang, J. Liu, S. Tan, H. Wang, A multi-objective differential evolutionary algorithm for constrained multi-objective optimization problems with low feasible ratio, Appl. Soft Comput., 80 (2019), 42-56. doi: 10.1016/j.asoc.2019.02.041
    [16] H. Afshari, W. Hare, S. Tesfamariam, Constrained multi-objective optimization algorithms: Review and comparison with application in reinforced concrete structures, Appl. Soft Comput., 83 (2019), 105631. doi: 10.1016/j.asoc.2019.105631
    [17] M. A. Jan, N. Tairan, R. A. Khanum, Threshold based dynamic and adaptive penalty functions for constrained multiobjective optimization, In: 2013 1st International Conference on Artificial Intelligence, Modelling and Simulation, IEEE, (2013), 49-54.
    [18] A. Panda, S. Pani, A symbiotic organisms search algorithm with adaptive penalty function to solve multi-objective constrained optimization problems, Appl. Soft Comput., 46 (2016), 344-360. doi: 10.1016/j.asoc.2016.04.030
    [19] L. Jiao, J. Luo, R. Shang, F. Liu, A modified objective function method with feasible-guiding strategy to solve constrained multi-objective optimization problems, Appl. Soft Comput., 14 (2014), 363-380. doi: 10.1016/j.asoc.2013.10.008
    [20] H. Jain, K. Deb, An evolutionary many-objective optimization algorithm using reference-point based nondominated sorting approach, part II: Handling constraints and extending to an adaptive approach, IEEE Trans. Evol. Comput., 18 (2013), 602-622.
    [21] R. Cheng, Y. Jin, M. Olhofer, B. Sendhoff, A reference vector guided evolutionary algorithm for many-objective optimization, IEEE Trans. Evol. Comput., 20 (2016), 773-791. doi: 10.1109/TEVC.2016.2519378
    [22] M. A. Jan, R. A. Khanum, A study of two penalty-parameterless constraint handling techniques in the framework of MOEA/D, Appl. Soft Comput., 13 (2013), 128-148. doi: 10.1016/j.asoc.2012.07.027
    [23] Z. Z. Liu, Y. Wang, P. Q. Huang, AnD: A many-objective evolutionary algorithm with angle-based selection and shift-based density estimation, Inf. Sci., 509 (2020), 400-419. doi: 10.1016/j.ins.2018.06.063
    [24] Z. Fan, Y. Fang, W. Li, X. Cai, C. Wei, E. Goodman, MOEA/D with angle-based constrained dominance principle for constrained multi-objective optimization problems, Appl. Soft Comput. J., 74 (2019), 621-633. doi: 10.1016/j.asoc.2018.10.027
    [25] M. Asafuddoula, T. Ray, R. Sarker, A decomposition-based evolutionary algorithm for many objective optimization, IEEE Trans. Evol. Comput., 19 (2014), 445-460.
    [26] S. Z. Martinez, C. A. C. Coello, A multi-objective evolutionary algorithm based on decomposition for constrained multi-objective optimization, In: 2014 IEEE Congress on evolutionary computation (CEC), IEEE, (2014), 429-436.
    [27] F. Qian, B. Xu, R. Qi, H. Tianfield, Self-adaptive differential evolution algorithm with $\alpha$-constrained-domination principle for constrained multi-objective optimization, Soft Comput., 16 (2012), 1353-1372. doi: 10.1007/s00500-012-0816-6
    [28] C. Peng, H. L. Liu, E. D. Goodman, Handling multi-objective optimization problems with unbalanced constraints and their effects on evolutionary algorithm performance, Swarm Evol. Comput., 55 (2020), 100676. doi: 10.1016/j.swevo.2020.100676
    [29] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Push and pull search for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 44 (2019), 665-679. doi: 10.1016/j.swevo.2018.08.017
    [30] Z. Fan, Z. Wang, W. Li, Y. Yuan, Y. You, Z. Yang, et al., Push and pull search embedded in an M2M framework for solving constrained multi-objective optimization problems, Swarm Evol. Comput., 54 (2020), 100651. doi: 10.1016/j.swevo.2020.100651
    [31] K. Li, R. Chen, G. Fu, X. Yao, Two-archive evolutionary algorithm for constrained multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 303-315.
    [32] Y. Tian, T. Zhang, J. Xiao, X. Zhang, Y. Jin, A coevolutionary framework for constrained multi-objective optimization problems, IEEE Trans. Evol. Comput., 25 (2021), 102-116. doi: 10.1109/TEVC.2020.3004012
    [33] J. Yi, J. Bai, H. He, J. Peng, D. Tang, ar-MOEA: A novel preference-based dominance relation for evolutionary multiobjective optimization, IEEE Trans. Evol. Comput., 23 (2018), 788-802.
    [34] Q. Zhang, H. Li, MOEA/D: A multiobjective evolutionary algorithm based on decomposition, IEEE Trans. Evol. Comput., 11 (2007), 712-731. doi: 10.1109/TEVC.2007.892759
    [35] K. Li, K. Deb, Q. Zhang, S. Kwong, An evolutionary many-objective optimization algorithm based on dominance and decomposition, IEEE Trans. Evol. Comput., 19 (2014), 694-716.
    [36] H. L. Liu, F. Gu, Q. Zhang, Decomposition of a multiobjective optimization problem into a number of simple multiobjective subproblems, IEEE Trans. Evol. Comput., 18 (2013), 450-455.
    [37] J. Yuan, H. L. Liu, F. Gu, Q. Zhang, Z. He, Investigating the properties of indicators and an evolutionary many-objective algorithm based on a promising region, IEEE Trans. Evol. Comput., 25 (2021), 75-86. doi: 10.1109/TEVC.2020.2999100
    [38] J. Yuan, H. L. Liu, F. Gu, A cost value based evolutionary many-objective optimization algorithm with neighbor selection strategy, In: 2018 IEEE Congress on Evolutionary Computation (CEC), IEEE, (2018), 1-8.
    [39] X. Chen, Z. Hou, J. Liu, Multi-objective optimization with modified pareto differential evolution, In: 2008 International Conference on Intelligent Computation Technology and Automation (ICICTA), IEEE, (2008), 90-95.
    [40] K. Deb, M. Goyal, A combined genetic adaptive search (GeneAS) for engineering design, Comput. Sci. Inf., 26 (1996), 30-45.
    [41] K. Deb, A. Pratap, T. Meyarivan, Constrained test problems for multi-objective evolutionary optimization, In: International Conference on Evolutionary Multi-Criterion Optimization, Springer, (2001), 284-298.
    [42] Z. Fan, W. Li, X. Cai, H. Li, C. Wei, Q. Zhang, et al., Difficulty adjustable and scalable constrained multi-objective test problem toolkit, Evol. Comput., 28 (2020), 339-378. doi: 10.1162/evco_a_00259
    [43] Z. Ma, Y. Wang, Evolutionary constrained multiobjective optimization: Test suite construction and performance comparisons, IEEE Trans. Evol. Comput., 23 (2019), 972-986. doi: 10.1109/TEVC.2019.2896967
    [44] Z. Z. Liu, Y. Wang, Handling constrained multiobjective optimization problems with constraints in both the decision and objective spaces, IEEE Trans. Evol. Comput., 23 (2019), 870-884. doi: 10.1109/TEVC.2019.2894743
    [45] P. A. Bosman, D. Thierens, The balance between proximity and diversity in multiobjective evolutionary algorithms, IEEE Trans. Evol. Comput., 7 (2003), 174-188. doi: 10.1109/TEVC.2003.810761
    [46] E. Zitzler, L. Thiele, Multiobjective evolutionary algorithms: A comparative case study and the strength Pareto approach, IEEE Trans. Evol. Comput., 3 (1999), 257-271. doi: 10.1109/4235.797969
    [47] I. Das, J. E. Dennis, Normal-boundary intersection: A new method for generating the Pareto surface in nonlinear multicriteria optimization problems, SIAM J. Optim., 8 (1998), 631-657.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2598) PDF downloads(210) Cited by(8)

Article outline

Figures and Tables

Figures(4)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog