The influence of residents' income on mental health is complex, and there are heterogeneous effects of residents' income on different types of mental health. Based on the annual panel data of 55 countries from 2007 to 2019, this paper divides residents' income into three dimensions: absolute income, relative income and income gap. Mental health is divided into three aspects: subjective well-being, prevalence of depression and prevalence of anxiety. Panel Tobit model is used to study the heterogeneous impact of residents' income on mental health. The results show that, on the one hand, different dimensions of residents' income have a heterogeneous impact on mental health, specifically, absolute income has a positive impact on mental health, while relative income and income gap have no significant impact on mental health. On the other hand, the impact of different dimensions of residents' income on different types of mental health is heterogeneous. Specifically, absolute income and income gap have heterogeneous effects on different types of mental health, while relative income has no significant impact on different types of mental health.
Citation: Zhi Zhang, Min Hong. Research on the heterogeneous effects of residents' income on mental health[J]. Mathematical Biosciences and Engineering, 2023, 20(3): 5043-5065. doi: 10.3934/mbe.2023234
The influence of residents' income on mental health is complex, and there are heterogeneous effects of residents' income on different types of mental health. Based on the annual panel data of 55 countries from 2007 to 2019, this paper divides residents' income into three dimensions: absolute income, relative income and income gap. Mental health is divided into three aspects: subjective well-being, prevalence of depression and prevalence of anxiety. Panel Tobit model is used to study the heterogeneous impact of residents' income on mental health. The results show that, on the one hand, different dimensions of residents' income have a heterogeneous impact on mental health, specifically, absolute income has a positive impact on mental health, while relative income and income gap have no significant impact on mental health. On the other hand, the impact of different dimensions of residents' income on different types of mental health is heterogeneous. Specifically, absolute income and income gap have heterogeneous effects on different types of mental health, while relative income has no significant impact on different types of mental health.
[1] | Q. Hu, X. Wang, M. Xu, Are there heterogeneous impacts of social support on subjective well-being?, Natl. Account. Rev., 3 (2021), 360–376. https://doi.org/10.3934/NAR.2021019 doi: 10.3934/NAR.2021019 |
[2] | T. Li, J. Ma, Does digital finance benefit the income of rural residents? A case study on China, Quant. Financ. Econ., 5 (2021), 664–688. https://doi.org/10.3934/QFE.2021030 doi: 10.3934/QFE.2021030 |
[3] | Y. Huang, Q. Guo, M. Xiao, The unbalanced development and trends of China's regional tourism, Natl. Account. Rev., 3 (2021), 69–85. https://doi.org/10.3934/NAR.2021003 doi: 10.3934/NAR.2021003 |
[4] | A. Kozma, M. J. Stones, The measurement of happiness: development of the Memorial University of Newfoundland Scale of Happiness (MUNSH), J. Gerontol., 35 (1980), 906–912. https://doi.org/10.1093/geronj/35.6.906 doi: 10.1093/geronj/35.6.906 |
[5] | C. Muntaner, W. W. Eaton, R. Miech, P. O'Campo, Socioeconomic position and major mental disorders, Epidemiol. Rev., 26 (2004), 53–62. https://doi.org/10.1093/epirev/mxh001 doi: 10.1093/epirev/mxh001 |
[6] | R. Jenkins, D. Bhugra, P. Bebbington, T. Brugha, M. Farrell, J. Coid, et al., Debt, income and mental disorder in the general population, Psychol. Med., 38 (2008), 1485–1493. https://doi.org/10.1017/S0033291707002516 doi: 10.1017/S0033291707002516 |
[7] | J. E. De Neve, A. J. Oswald, Estimating the influence of life satisfaction and positive affect on later income using sibling fixed effects, Proc. Natl. Acad. Sci. U. S. A., 109 (2012), 19953–19958. https://doi.org/10.1073/pnas.1211437109 doi: 10.1073/pnas.1211437109 |
[8] | R. S. Kahn, P. H. Wise, B. P. Kennedy, I. Kawachi, State income inequality, household income, and maternal mental and physical health: cross sectional national survey, BMJ, 321 (2000), 1311–1315. https://doi.org/10.1136/bmj.321.7272.1311 doi: 10.1136/bmj.321.7272.1311 |
[9] | Z. Huang, T. Li, M. Xu, Are There Heterogeneous Impacts of National Income on Mental Health?, Int. J. Environ. Res. Public Health, 17 (2020), 7530. https://doi.org/10.3390/ijerph17207530 doi: 10.3390/ijerph17207530 |
[10] | J. Knight, L. Song, R. Gunatilaka, Subjective well-being and its determinants in rural China, China Econ. Rev., 20 (2009), 635–649. https://doi.org/10.1016/j.chieco.2008.09.003 doi: 10.1016/j.chieco.2008.09.003 |
[11] | S. Yatham, S. Sivathasan, R. Yoon, T. L. da Silva, A. V. Ravindran, Depression, anxiety, and post-traumatic stress disorder among youth in low and middle income countries: A review of prevalence and treatment interventions, Asian J. Psychiatr., 38 (2018), 78–91. https://doi.org/10.1016/j.ajp.2017.10.029 doi: 10.1016/j.ajp.2017.10.029 |
[12] | R. M. Thomson, E. Igelstrom, A. K. Purba, M. Shimonovich, H. Thomson, G. McCartney, et al., How do income changes impact on mental health and wellbeing for working-age adults? A systematic review and meta-analysis. Lancet Public Health, 7 (2022), e515–e528. https://doi.org/10.1016/S2468-2667(22)00058-5 |
[13] | M. N. Asadullah, S. Xiao, E. Yeoh, Subjective well-being in China, 2005–2010: The role of relative income, gender, and location, China Econ. Rev., 48 (2018), 83–101. https://doi.org/10.1016/j.chieco.2015.12.010 doi: 10.1016/j.chieco.2015.12.010 |
[14] | R. H. Salk, J. S. Hyde, L. Y. Abramson, Gender differences in depression in representative national samples: Meta-analyses of diagnoses and symptoms, Psychol. Bull., 143 (2017), 783–822. https://doi.org/10.1037/bul0000102 doi: 10.1037/bul0000102 |
[15] | T. Richardson, P. Elliott, R. Roberts, M. Jansen, A Longitudinal Study of Financial Difficulties and Mental Health in a National Sample of British Undergraduate Students, Community Ment. Health J., 53 (2017), 344–352. https://doi.org/10.1007/s10597-016-0052-0 doi: 10.1007/s10597-016-0052-0 |
[16] | P. Butterworth, B. Rodgers, T. D. Windsor, Financial hardship, socio-economic position and depression: results from the PATH Through Life Survey, Soc. Sci. Med., 69 (2009), 229–237. https://doi.org/10.1016/j.socscimed.2009.05.008 doi: 10.1016/j.socscimed.2009.05.008 |
[17] | A. Koster, H. Bosma, G. I. Kempen, B. W. Penninx, A. T. Beekman, D. J. Deeg, et al., Socioeconomic differences in incident depression in older adults: the role of psychosocial factors, physical health status, and behavioral factors, J. Psychosom. Res., 61 (2006), 619–627. https://doi.org/10.1016/j.jpsychores.2006.05.009 doi: 10.1016/j.jpsychores.2006.05.009 |
[18] | V. Lorant, D. Deliege, W. Eaton, A. Robert, P. Philippot, M. Ansseau, Socioeconomic inequalities in depression: a meta-analysis, Am. J. Epidemiol., 157 (2003), 98–112. https://doi.org/10.1093/aje/kwf182 doi: 10.1093/aje/kwf182 |
[19] | K. I. Paul, K. Moser, Unemployment impairs mental health: Meta-analyses, J. Vocat. Behav., 74 (2009), 264–282. https://doi.org/10.1016/j.jvb.2009.01.001 doi: 10.1016/j.jvb.2009.01.001 |
[20] | M. Suhrcke, D. Stuckler, Will the recession be bad for our health? It depends, Soc. Sci. Med., 74 (2012), 647–653. https://doi.org/10.1016/j.socscimed.2011.12.011 doi: 10.1016/j.socscimed.2011.12.011 |
[21] | R. Catalano, S. Goldman-Mellor, K. Saxton, C. Margerison-Zilko, M. Subbaraman, K. LeWinn, E. Anderson, The health effects of economic decline, Annu. Rev. Public Health, 32 (2011), 431–450. https://doi.org/10.1146/annurev-publhealth-031210-101146 doi: 10.1146/annurev-publhealth-031210-101146 |
[22] | D. Stuckler, S. Basu, M. Suhrcke, A. Coutts, M. McKee, The public health effect of economic crises and alternative policy responses in Europe: an empirical analysis, Lancet, 374 (2009), 315–323. https://doi.org/10.1016/S0140-6736(09)61124-7 doi: 10.1016/S0140-6736(09)61124-7 |
[23] | M. Gili, M. Roca, S. Basu, M. McKee, D. Stuckler, The mental health risks of economic crisis in Spain: evidence from primary care centres, 2006 and 2010, Eur. J. Public Health, 23 (2013), 103–108. https://doi.org/10.1093/eurpub/cks035 |
[24] | X. Bartoll, L. Palencia, D. Malmusi, M. Suhrcke, C. Borrell, The evolution of mental health in Spain during the economic crisis, Eur. J. Public Health, 24 (2014), 415–418. https://doi.org/10.1093/eurpub/ckt208 doi: 10.1093/eurpub/ckt208 |
[25] | S. V. Katikireddi, C. L. Niedzwiedz, F. Popham, Trends in population mental health before and after the 2008 recession: a repeat cross-sectional analysis of the 1991–2010 Health Surveys of England, BMJ Open, 2 (2012), e001790. https://doi.org/10.1136/bmjopen-2012-001790 doi: 10.1136/bmjopen-2012-001790 |
[26] | S. Y. Rueger, C. K. Malecki, Y. Pyun, C. Aycock, S. Coyle, A meta-analytic review of the association between perceived social support and depression in childhood and adolescence, Psychol. Bull., 142 (2016), 1017–1067. https://doi.org/10.1037/bul0000058 doi: 10.1037/bul0000058 |
[27] | T. Li, J. Zhong, M. Xu, Does the Credit Cycle Have an Impact on Happiness?, Int. J. Environ. Res. Public Health, 17 (2019), 183. https://doi.org/10.3390/ijerph17010183 doi: 10.3390/ijerph17010183 |
[28] | Z. Li, J. Zhong, Impact of economic policy uncertainty shocks on China's financial conditions, Financ. Res. Lett., 35 (2020), 101303. https://doi.org/10.1016/j.frl.2019.101303 doi: 10.1016/j.frl.2019.101303 |
[29] | Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa Istanbul Rev., (2022), in press. https://doi.org/10.1016/j.bir.2022.10.006 |
[30] | Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Financ. Res. Lett., 50 (2020), 103308. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308 |
[31] | Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity?. con. Res-Ekon. ISTRAZ, 35 (2022), 4902–4921, https://doi.org/10.1080/1331677X.2021.2019596 |
[32] | T. M. Awan, M. S. Khan, I. U. Haq, S. Kazmi, Oil and stock markets volatility during pandemic times: a review of G7 countries, Green Finance, 3 (2021), 15–27. https://doi.org/10.3934/GF.2021002 doi: 10.3934/GF.2021002 |
[33] | I. S. Farouq, N. Umar Sambo, A. U. Ahmad, A. H. Jakada, I. i. A. Danmaraya, Does financial globalization uncertainty affect CO2 emissions? Empirical evidence from some selected SSA countries, Quant. Finance Econ., 5 (2021), 247–263. https://doi.org/10.3934/QFE.2021011 doi: 10.3934/QFE.2021011 |
[34] | Q. Hu, Y. Feng, M. Xu, Are There Heterogeneous Impacts of Air Pollution on Mental Health?, Front. Public Health, 9 (2021), 780022. https://doi.org/10.3389/fpubh.2021.780022 doi: 10.3389/fpubh.2021.780022 |
[35] | J. Zhu, Z. Huang, Z. Li, K. Albitar, The Impact of Urbanization on Energy Intensity — An Empirical Study on OECD Countries, Green Finance, 3 (2021), 508–526. https://doi.org/10.3934/GF.2021024 doi: 10.3934/GF.2021024 |
[36] | C. Özdurak, Nexus between crude oil prices, clean energy investments, technology companies and energy democracy, Green Finance, 3 (2021), 337–350. https://doi.org/10.3934/GF.2021017 doi: 10.3934/GF.2021017 |
[37] | L. Katusiime, International monetary spillovers and macroeconomic stability in developing countries, Natl. Account. Rev., 3 (2021), 310–329. https://doi.org/10.3934/NAR.2021016 doi: 10.3934/NAR.2021016 |
[38] | K. Gokmenoglu, B. M. Eren, S. Hesami, Exchange rates and stock markets in emerging economies: new evidence using the Quantile-on-Quantile approach, Quant. Financ. Econ., 5 (2021), 94–110. https://doi.org/10.3934/QFE.2021005 doi: 10.3934/QFE.2021005 |
[39] | Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PLoS ONE, 17 (2022), e0275461. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461 |
[40] | Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energ. Econ., 112 (2022), 106160. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160 |