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Abstract: This paper was concerned with the inhomogeneous optical fiber model, which was
governed by a nonlinear Schrödinger equation with variable coefficients. By spectral analysis for
Lax pair of the equation, a corresponding Riemann-Hilbert problem was formulated. By solving
the Riemann-Hilbert problem with simple poles, the formula of multi-soliton solutions was derived.
Finally, we considered a soliton control system and obtained the one-soliton and two-soliton.
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1. Introduction

Multi-solitons are a type of wave packet with soliton properties in nonlinear systems, which have
self-similarity and stable transmission properties. Different from simple solitons, multi-solitons
exhibit more complex interactions and nonlinear dynamic properties [1, 2]. In 1972, Zakharov and
Shabat [3] obtained multi-soliton solutions of the nonlinear Schrödinger equation by the inverse
scattering method. Subsequently, different types of multi-soliton solutions for nonlinear integrable
systems were extensively studied [4–7].

The soliton control system is a technology that effectively manages and controls the state of
nonlinear physical systems by adjusting and controlling solitons [8]. The optical fiber communication
system controls and regulates the transmission of solitons [9, 10]. Since the first soliton dispersion
management experiment [11], the various soliton management mechanisms have been theoretically
predicted through different methods [12–15].
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The realistic optical fiber is inhomogeneous, which can influence various effects such as the
amplification or absorption, group velocity dispersion, and self-phase modulation [16]. The problem
of soliton control in nonlinear systems is described by the following nonlinear Schrödinger equation
with variable coefficients:

iqz +
1
2

D(z)qtt + R(z)|q|2q = iΓ(z)q, (t, z) ∈ R2, (1.1)

where q(t, z) is the complex envelope of the electrical field in a co-moving frame, D(z) is the group
velocity dispersion, R(z) is the nonlinearity coefficient, Γ(z) is the amplification or absorption
coefficient, z is the propagation distance, and t is the retarded time. Equation (1.1) describes the
amplification or absorption of pulse propagation in a single-mode optical fiber with distributed
dispersion and nonlinearity [17].

Joshi [18] obtained the integrability constraint of (1.1) by the Painlevé test. Serkin and Hasegawa
[19] studied the one-soliton solution of (1.1) from the integrable point of view. Then, Hao et al. [20]
studied soliton solutions of (1.1) by Darboux transformation. Tian and Gao [21] obtained soliton
solutions of (1.1) by symbolic computation. Lü et al. [22, 23] studied soliton solutions of (1.1) by the
Hirota method. Sun et al. [24] obtained rogue-wave solutions of (1.1) by hierarchy reduction.

In this paper, we obtained the new multi-soliton solutions of (1.1) by using the Riemann-Hilbert
method [25–30]. These solutions are useful not only in designing transmission lines for soliton
management, but also in some femtosecond laser experiments [14, 15]. Additionally, the inverse
scattering transform presented in this paper will pave a way for investigating the long-time asymptotic
behavior of the solution to (1.1) by the nonlinear steepest descent method.

This paper is organized as follows: In Section 2, we provide some elementary preliminaries for
constructing a Riemann-Hilbert problem. In Section 3, we solve the Riemann-Hilbert problem with
simple pole and obtain soliton solutions for (1.1). Moreover, we discuss the properties of optical
solitons by numerical simulations. Section 4 gives our conclusions.

2. Preliminaries

We first construct a Riemann-Hilbert problem by spectral analysis of Lax pair. Generally, Eq (1.1)
is not integrable. We consider the following relationship [12]:

Γ(z) =
1
2

R(z)Dz(z) − D(z)Rz(z)
R(z)D(z)

, (2.1)

where the subscript denotes taking the derivative of z. Then, Eq (1.1) admits the Lax pair

ϕt = Xϕ, ϕz = Tϕ, (2.2)

where ϕ = ϕ(t, z, k) is a 2 × 2 matrix function, k ∈ C is a spectral parameter, and

X = − ikσ3 + Q, Q =

√
R
D

(
0 q
−q∗ 0

)
, σ3 =

(
1 0
0 −1

)
,

T = − ik2D(z)σ3 + kD(z)Q +
i
2

(R(z)|q|2σ3 + D(z)σ3Qt).
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Here and in the following content, the asterisk indicates complex conjugate.
Considering the initial condition lim

z→±∞
q(0, z) = 0, the Lax pair (2.2) becomes

ϕt = X0ϕ, ϕz = T0ϕ, (2.3)

where X0 = −ikσ3 and T0 = kD(z)X0. We obtain the Jost solutions ϕ±(t, z, k) of Eq (2.3)

ϕ±(t, z, k) = eiθ(t,z,k)σ3 + o(1), z→ ±∞,

where θ(t, z, k) = −k(t + kzD(z)). By making transformation

ϕ±(t, z, k) = µ±(t, z, k)eiθ(t,z,k)σ3 , (2.4)

it has
µ±(t, z, k)→ I, as z→ ±∞.

Moreover, µ(t, z, k) satisfies the following Lax pair:

µt = − ik[σ3, µ] + Qµ,

µz = − ik2D(z)[σ3, µ] + ∆Tµ,
(2.5)

where [σ3, µ] = σ3µ − µσ3, ∆T = T − T0. The Jost solution µ(t, z, k) can be solved by the following
Volterral integrable equations:

µ±(t, z, k) = I +
∫ t

±∞

e−ik(t−y)σ̂3(Q(y, z)µ±(y, z, k))dy, (2.6)

where eσ̂3 A = eσ3 Ae−σ3 . For convenience, we define D+, D−, and Σ on the C-plane as

D± = {k ∈ C | ± Imk > 0}, Σ = iR ∪ R.

Proposition 2.1. Suppose that u(t, z) ∈ L1(R) and µ±, j(t, z, k) represent the j-th column of µ±(t, z, k),
Then, the Jost solutions µ±(t, z, k) have the following properties:
• µ−,1 and µ+,2 can be analytically extended to D+ and continuously extended to D+ ∪ Σ.
• µ+,1 and µ−,2 can be analytically extended to D− and continuously extended to D− ∪ Σ.

Proof. We define µ± =
(
µ±,11 µ±,12

µ±,21 µ±,22

)
. Then, taking µ− as an example, Eq (2.6) can be rewritten as

(
µ−,11 µ−,12

µ−,21 µ−,22

)
=

(
1 0
0 1

)
+

√
R
D

∫ t

−∞

 qµ−,21 e−2ik(t−y)qµ−,22

−e2ik(t−y)q∗µ−,11 −q∗µ−,12

 dy.

Note that e2ik(t−y) = e2i(t−y)Re(k)e2(y−t)Im(k). Since y − t < 0 and Im(k) > 0, we obtain that µ−,1 is
analytically extended to D+. Moreover, since Im(k) = 0, when k ∈ Σ, it is shown that µ−,1 is
continuously extended to D+ ∪ Σ. In the same way, we also obtain the analyticity and continuity of
µ−,2, µ+,1, and µ+,2. This completes the proof. □
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According to the method in [30], the Jost solution µ±(t, z, k) admits the symmetry

µ±(t, z, k) = σ2µ
∗
±(t, z, k

∗)σ2, (2.7)

where σ2 =

(
0 −i
i 0

)
, and its asymptotic behavior is

µ±(t, z, k)→ I, as k → ∞. (2.8)

Since ϕ±(t, z, k) are two fundamental matrix solutions of Lax pair (2.2), one can define a constant
scattering matrix S (k) = (si j(k))2×2 such that

ϕ+(t, z, k) = ϕ−(t, z, k)S (k), (2.9)

where si j(k) is called scattering coefficients and det S (k) = 1. From Eq (2.7), one has

S (k) = σ2S ∗(k∗)σ2. (2.10)

According to the analyticities of µ±(t, z, k), we obtain that s11(k) analytic in D− and s22(k) analytic
in D+. From Eq (2.8), the scattering matrix S (k) satisfies S (k)→ I, as k → ±∞.

Now, we construct the Riemann-Hilbert problem for Eq (1.1). Define the following sectionally
meromorphic matrices:

M(t, z, k) =


M− =

(
µ+,1

s11
, µ−,2

)
, k ∈ D−,

M+ =
(
µ−,1,

µ+,2

s22

)
, k ∈ D+.

(2.11)

Then, a multiplicative matrix Riemann-Hilbert problem is proposed:
M±(t, z, k) are respectively analytic in D±;
M−(t, z, k) = M+(t, z, k)(I −G(t, z, k));
M(t, z, k) ∼ I, k → ∞,

(2.12)

where

G(t, z, k) =

 ρ(k)ρ̃(k) e2iθ(k)ρ̃(k)

−e−2iθ(k)ρ(k) 0

 ,
ρ(k) =

s21(k)
s11(k)

and ρ̃(k) = −ρ∗(k∗).

3. Multi-soliton solutions

In what follows, we will solve the Riemann-Hilbert problem with simple poles and present the
multi-soliton solutions for Eq (1.1).

We suppose that s22(k) has N simple zeros kn (n = 1, 2, · · · ,N) in D+, which means s22(kn) = 0 and
s′22(kn) , 0. Here and in the following ′ represents taking the derivative of a function variable.
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According to Eq (2.10), one has s22(kn) = s11(k∗n) = 0. Then, the corresponding discrete spectrum
can be collected as

K = {kn, k∗n}
N
n=1. (3.1)

Solving the above Riemann-Hilbert problem requires us to regularize it by subtracting out the
asymptotic behaviors and the pole contributions. Then, one has

M− − I −
N∑

n=1


Res
k=kn

M+

k − kn
+

Res
k=k∗n

M−

k − k∗n

 = M+ − I −
N∑

n=1


Res
k=kn

M+

k − kn
+

Res
k=k∗n

M−

k − k∗n

 − M+G,

where

Res
k=kn

M+ =
(
0 C̃ne2iθ(kn)µ−,1(t, z, kn)

)
, n = 1, 2, · · · ,N,

Res
k=k∗n

M− =
(
Cne−2iθ(k∗n)µ−,2(t, z, k∗n) 0

)
, n = 1, 2, · · · ,N,

Cn = −C̃∗n =
bn

s′11(k∗n)
, and bn is a constant.

With the help of Plemelj’s formula, the solution of Eq (2.12) can be written as

M = I +
N∑

n=1


Res
k=kn

M+

k − kn
+

Res
k=k∗n

M−

k − k∗n

 + 1
2πi

∫
Σ

M+(ξ)G(ξ)
ξ − k

dξ. (3.2)

Taking M = M− and comparing the (1,2) position element of matrices (3.2), we get

q(t, z) = 2i

√
D(z)
R(z)

N∑
n=1

C̃ne2iθ(kn)µ−,11(t, z, kn) −
1
π

√
D(z)
R(z)

∫
Σ

(M+G)12(ξ)dξ,

where C̃n =
bn

s′11(k∗n)
.

Now, we focus on the potentials q(t, z) with the reflection coefficient ρ(k) = 0. By some algebraic
calculations, we obtain the multi-soliton solutions formula

q(t, z) = −2i

√
D(z)
R(z)

det Ĥ
det H

, (3.3)

where

Ĥ =
[

0 P
B H

]
(N+1)×(N+1)

, H =

I +
N∑

j=1

c j(kn)c∗l (k j)


N×N

,

c j(t, z, k) =
C j

k − k∗j
e−2iθ(t,z,k∗j ), B = (1, 1, · · · , 1)T

1×n,

P = (P1, · · · PN) and Pn = C̃ne2iθ(t,z,kn), n = 1, · · · ,N.
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Now, we consider a periodic distributed amplification system with the varying group velocity
dispersion parameter

D(z) =
1
d0

eγzR(z), (3.4)

and the nonlinearity parameter

R(z) = r0 + r1 sin(cz), (3.5)

where r0, r1, and c are the parameters described by the Kerr nonlinearity, and d0 is the parameter related
to initial peak power in the system.

Now, as an application of formula (3.3), we first present the one-soliton solution. Let N = 1,
k1 = α + iβ, and one has

q(t, z) = −2i

√
D(z)
R(z)

4β2C∗1e2iθ(k1)

4β2 + |C1|
2e−2iθ(k∗1)e2iθ(k1)

, (3.6)

where C1 =
b1

s′11(k∗1)
, θ(k1) = −k1(t + k1zD(z)).

Figure 1 exhibits the dynamical structures of the one-soliton solution (3.6). Due to the value of
parameter γ, the soliton group velocity is changed in propagating along the fiber, but the shape of the
soliton remains unchanged. This is an important property of solitons.

By setting N = 2, from (3.3), we obtain the two-soliton solution

q(t, z) = −2i

√
D(z)
R(z)

det


0 P1 P2

1 1 + A11 A12

1 A21 1 + A22


det

 1 + A11 A12

A21 1 + A22


, (3.7)

where

Pn = C̃ne2iθ(t,z,kn), Anl =

2∑
j=1

c j(kn)c∗l (k j), n, l = 1, 2,

θ(t, z, k j) = −k j(t + k jzD(z)), c j(t, z, k) =
C j

k − k∗j
e−2iθ(k∗j ), j = 1, 2.

Figure 2 exhibits the dynamical structures of the two-soliton solution (3.7). From it we observe that
two solitons propagate at the same speed in the fiber and exhibit periodic oscillations.
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Figure 1. The one-soliton solution given by (3.6) for system parameters d0 = r1 = c =
1, r0 = 0. The other parameters adopted are C1 = 1, k1 =

1
2 (1 + i). Left: γ = −0.5;

Middle: γ = 0; Right: γ = 0.5.

Figure 2. The two-soliton solution given by (3.7) for system parameters d0 = r1 = c =
1, r0 = γ = 0.03. The other parameters adopted are C1 = C2 = 1, k1 =

1
2 (1 + i), k2 =

1
2 (1 +

√
2i). Left: Three-dimensional plot; Right: Density plot.

4. Conclusions

This paper is concerned with the multi-solitons in an inhomogeneous optical fiber model. The
formula of multi-soliton solutions and inverse scattering transform are obtained by the Riemann-Hilbert
method. Furthermore, we consider a soliton control system and obtain the one-soliton and two-soliton.
Comparing our results with the solutions in [20,22], we confirm that the obtained soliton solutions are
new. Finally, the inverse scattering transformation presented in this paper will pave a way for the study
of the long-time asymptotic behavior of the solution to Eq (1.1).
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