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1. Introduction

Metric fixed-point theory is a prominent and essential topic of functional analysis. As expected, this
field has had a flood of scientific activity. Because of its elegance, simplicity, and ease of application
in various mathematics disciplines, the Banach fixed-point theorem [1], also known as the Banach
contraction principle, is unquestionably crucial for the metric fixed-point theory. The existence and
uniqueness of a fixed-point of contraction mappings on a complete metric space are guaranteed by this
theorem, which also gives a constructive approach to finding the fixed-point.

One beneficial aspect of studying the metric fixed-point theory is generalizing the metric space
structure under consideration. Furthermore, generalizing the metric function has emerged as one of the
most intriguing and profitable research topics. New structures have arisen through the modification
of certain aspects of the distance function or the addition of some new features to this function,
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and many new topological structures have been added to the literature. Additionally, researchers
successfully apply these novel metric functions by studying summability theory, sequence spaces,
Banach space geometry, fuzzy theory, and so on. The ♭-metric function, which has a constant in the
triangle inequality, has been the most visible extension of the metric function in the previous 40 years.
Bakhtin [2] and Czerwik [3] expressed the ♭-metric function as an expanded form of metric functions.
The triangle inequality of the known metric function has been replaced by a more general inequality
by using a constant ς ≥ 1. It corresponds to the standard metric function with ς = 1. Some researchers
have studied fixed-point theorems in ♭-metric spaces, as detailed in [4–13].

In 1992, Matthews [14] proposed a partial metric function, which is an intriguing expansion of the
metric function. Partial metric spaces are metric space extensions in which any of the points has a non-
zero self-distance. This topic has a wide range of applications in various branches of mathematics,
computer science and semantics and has also become a thriving area in metric fixed-point theory.
Currently, a number of researchers depend on the partial metric as a crucial idea for investigating the
presence and uniqueness of a fixed-point for mappings that satisfy various contractive conditions; for
details, please see [15–23].

Many new metric functions have appeared in the literature as a result of combining various distance
functions. These structures have significance in the study of metric fixed-point theory, summability
theory, fuzzy theory and other related topics. The study conducted by Brzdek et al. [24] in 2018
is recognized as an example of one of the most significant studies in which metric frameworks are
employed simultaneously.

The partial ♭-metric, which is a new concept combining the above-mentioned partial metric and
♭-metric structures, was developed in 2013 by Mustafa et al. [25], and its modification was introduced
by Shukla [26] in 2014. The properties of this newly defined space were examined, and generalizations
of the metric fixed-point theory were obtained, see [27, 28].

On the other hand, many authors have attempted to generalize the Banach contraction principle by
applying auxiliary functions in various abstract spaces to gain more constructive results in fixed-point
theory. This research is still garnering attention today.

The Geraghty-type contraction, one of the most significant variations of the Banach contraction, was
highlighted in 1973 by Geraghty [29]. Like the Banach contraction principle, the Geraghty contraction
principle appealed to the researchers. It has found a place in the literature in several investigations,
notably, the ones mentioned in [30–32].

Samet et al. [33] proposed the ideas of α-admissibility and α-ψ-contraction mappings and some
fixed-point insights for these contractions were put forward. Soon after, various researchers’
evaluations appeared in the literature [34–36]. Cho et al. founded diverse fixed-point theorems by
combining α-admissibility and Geraghty contractions in [37]. Afshari et al. [38] focused on these
results by implementing the idea of generalized α-ψ-Geraghty contraction mappings and investigating
the existence and uniqueness of a fixed-point for such mappings in the context of ♭-metric spaces.

Meanwhile, Fulga and Proca [39] proposed the premise of an E-contraction in 2017. In the
following year, Fulga and Proca [40] setup a fixed-point theorem for the PE-Geraghty contraction,
and some findings were brought about by implementing this concept; see [41–43]. In 2018,
Alqahtani et al. [44] confirmed a common fixed-point theorem on complete metric spaces by applying
the Geraghty contraction of type ES,O. The following year, Aydi et al. [45] presented the α-PE-
Geraghty contraction on a ♭-metric space, and some fixed-point findings were achieved. Lang and
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Guan [46] recently introduced α j
i -PES,O-Geraghty contraction mappings and established common fixed-

point findings for generalized α j
i -PES,O-Geraghty contraction mappings in ♭-metric spaces.

Liu et al. [47] identified the DC -class, which encompasses the F-contractions given by
Wardowski [48]. See [49, 50] for additional knowledge on DC -contractions.

This study aims to expound upon the generalized α
j
i -
(
DC

(
PÊ

))
-contraction by using the

aforementioned concepts and to prove some fixed-point and common fixed-point theorems for such
a contraction in partial ♭-metric spaces. It is seen that the obtained results generalize and improve
many of the already existing results in the literature. At the same time, the presented examples support
the accuracy of the results obtained. Finally, the application of the homotopy theory also illustrates the
conclusion that the proposed study is multifaceted.

2. Preliminaries

The fundamental principles that are essential to this study are set forth below.

Definition 2.0.1. ( [14]) A function ℘ : U ×U → R+, where U is a nonempty set, is called a partial
metric if the following assertions are provided:

℘1. ℘ ( ȷ, ȷ) = ℘ ( ȷ, ρ) = ℘ (ρ, ρ)⇔ ȷ = ρ;
℘2. ℘ ( ȷ, ȷ) ≤ ℘ ( ȷ, ρ);
℘3. ℘ ( ȷ, ρ) = ℘ (ρ, ȷ);
℘4. ℘ ( ȷ, ρ) ≤ ℘ ( ȷ, r) + ℘ (r, ρ) − ℘ (r, r)

for all ȷ, ρ, r ∈ U . The pair (U , ℘) denotes a partial metric space.
It is evident from (℘1) and (℘2) that ȷ = ρ provided that ℘ ( ȷ, ρ) = 0. However, ℘ ( ȷ, ρ) = 0 might not
hold for each ȷ ∈ U . This means that every metric space is a partial metric space, but the converse is
not necessarily accurate.

Remark 2.0.2. ( [17]) In (U , ℘), for all ȷ ∈ U and ε > 0, the ensuing sets

B℘ ( ȷ, ε) = {ρ ∈ U : ℘ ( ȷ, ρ) < ℘ ( ȷ, ȷ) + ε}

and
B℘

[
ȷ, ε

]
= {ρ ∈ U : ℘ ( ȷ, ρ) ≤ ℘ ( ȷ, ȷ) + ε}

denote ℘-open balls and ℘-closed balls, respectively. A T0 topology arises over (U , ℘) via a base
family of ℘-open balls {

B℘ ( ȷ, ε) : ȷ ∈ U , ε > 0
}
.

Example 2.0.3. ( [20]) Let U = [0, 1] and ℘ ( ȷ, ρ) = max { ȷ, ρ} for all ȷ, ρ ∈ U . Then, (U , ℘) denotes
a partial metric space. However, this is not a metric space.

Example 2.0.4. ( [14]) Let U = [0, 1] ∪ [2, 3] and define ℘ : U ×U → [0,∞) by

℘ ( ȷ, ρ) =
{

max { ȷ, ρ} , { ȷ, ρ} ∩ [2, 3] ,
| ȷ − ρ| , { ȷ, ρ} ⊂ [0, 1] .

Then, ℘ fulfills all partial metric conditions. As a result, (U , ℘) is a partial metric space.
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Definition 2.0.5. ( [3]) Assume that U is a nonempty set. A ♭-metric has been identified as the function
♭ : U ×U → [0,∞), which possesses the subsequent attributes for any ȷ, ρ, r ∈ U :

♭1. ♭ ( ȷ, ρ) = 0⇔ ȷ = ρ;
♭2. ♭ ( ȷ, ρ) = ♭ (ρ, ȷ);
♭3. there is a real constant ς ≥ 1 that implements ♭ ( ȷ, ρ) ≤ ς

[
♭ ( ȷ, r) + ♭ (r, ρ)

]
.

(U , ♭) stands for a ♭-metric space with the coefficient ς.

If ς = 1, the function ♭ is an ordinary metric. In this circumstance, each metric is a ♭-metric.
Nevertheless, the reverse is not generally accurate.

Example 2.0.6. ( [10]) Let (U , d) be a metric space. The function ♭ : U × U → [0,∞), which is
defined as ♭ ( ȷ, ρ) =

[
d ( ȷ, ρ)

]µ, is a ♭-metric for all ȷ, ρ, r ∈ U and µ > 1. So, (U , ♭) is a ♭-metric space
with ς = 2µ−1.

In 2013, Mustafa et al. [25] introduced the idea of a partial ♭-metric, which is considered an
improvement of the partial metric and ♭-metric, which was subsequently refined by Shukla [26] in
2014.

Definition 2.0.7. ( [25]) Assume that U is a nonempty set. If the succeeding characteristics are met
for all ȷ, ρ, r ∈ U , ℘♭ : U ×U → R+ is referred to as a partial ♭-metric:

(℘♭1) ℘♭ ( ȷ, ρ) = ℘♭ ( ȷ, ȷ) = ℘♭ (ρ, ρ)⇔ ȷ = ρ;
(℘♭2) ℘♭ ( ȷ, ȷ) ≤ ℘♭ ( ȷ, ρ);
(℘♭3) ℘♭ ( ȷ, ρ) = ℘♭ (ρ, ȷ);
(℘♭4) a real number ς ≥ 1 exists such that

℘♭ ( ȷ, ρ) ≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ) − ℘♭ (r, r)

]
+

1 − ς
2

(℘♭ ( ȷ, ȷ) + ℘♭ (ρ, ρ)) . (2.1)

Thus, the pair (U , ℘♭) specifies a partial ♭-metric space via the coefficient ς.
Shukla [26] revised the partial ♭-metric approach by using the property

(
℘♭4

′
)

instead of (℘♭4),
which is given below:(
℘♭4

′
)

for all ȷ, ρ, r ∈ U
℘♭ ( ȷ, ρ) ≤ ς

[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) . (2.2)

Throughout the paper, we use the definition of a partial ♭-metric in the sense of Shukla [26]. The
notations P♭M and P♭MS, will be used throughout this work to designate the ideas of the partial
♭-metric and partial ♭-metric space, respectively.

Remark 2.0.8. ( [25–28]) With the same coefficient ς ≥ 1, every ♭-metric space is a P♭MS; taking the
coefficient ς = 1, every partial metric space is a P♭MS. Moreover, a P♭M on U is not a partial metric,
nor a ♭-metric, in general. As far as we comprehend, a P♭MS includes the set of a ♭-metric space and
partial metric space.

Example 2.0.9. ( [26])

i. Let U = [0,∞) and ω > 1 be a fixed element and define ℘♭ : U × U → R+ by
℘♭ ( ȷ, ρ) = {max { ȷ, ρ}}ω + | ȷ − ρ|ω for all ȷ, ρ ∈ U . Then, (U , ℘♭) is a P♭MS with the
coefficient ς = 2ω > 1. It is not a ♭-metric or a partial metric space.

AIMS Mathematics Volume 8, Issue 10, 23674–23706.



23678

ii. Assume that a > 0 is a fixed element and U = [0,∞). Define ℘♭ : U × U → R+ in order to
become ℘♭ ( ȷ, ρ) = max { ȷ, ρ} + a for all ȷ, ρ ∈ U . Then, (U , ℘♭) is a P♭MS with the coefficient
ς ≥ 1.

iii. Let q ≥ 1 and (U , ℘) be a partial metric space. ℘♭ : U ×U → R+ is a P♭M with the coefficient
ς = 2q−1 if this mapping is defined by ℘♭ ( ȷ, ρ) =

[
℘ ( ȷ, ρ)

]q.

iv. Let U = {1, 2, 3, 4} and ℘♭ : U × U → R+ be a P♭M with the coefficient ς = 4, where P♭M is
given by

℘♭ ( ȷ, ρ) =


| ȷ − ρ|2 +max { ȷ, ρ} , ȷ , ρ;
ȷ, ȷ = ρ , 1;
0, ȷ = ρ = 1.

It is clear that ℘♭ (2, 2) = 2 , 0, so it is not a ♭-metric. Also,

℘♭ (3, 1) = 7 > 5 = ℘♭ (3, 2) + ℘♭ (2, 1) − ℘♭ (2, 2)

is obtained. As seen here, ℘♭ is not a partial metric.

v. With ς ≥ 1, assume that ℘ is a partial metric and ♭ is a ♭-metric on a nonempty set U . ℘♭ is a
P♭M with the coefficient ς ≥ 1 on U , where ℘♭ is characterized with ℘♭ ( ȷ, ρ) = ℘ ( ȷ, ρ) + ♭ ( ȷ, ρ).

We confer two novel instances to diversify the partial ♭-metric idea.

Example 2.0.10. i. Let U = (0, 1]
⋃
{2, 3, 4, . . .}, and for q ≥ 1, ℘♭ : U ×U → R+is a P♭M with

the coefficient ς = 2q−1, where ℘♭ is specified by the subsequent expression:

℘♭ ( ȷ, ρ) =


∣∣∣∣1
ȷ
− 1

ρ

∣∣∣∣q + 1, ȷ, ρ ∈ (0, 1] , ȷ , ρ;
emax{ ȷ,ρ}−min{ ȷ,ρ}, ȷ, ρ ∈ {2, 3, 4, . . .} , ȷ , ρ;
1, ȷ = ρ.

(2.3)

ii. Let U = N and ℘♭ : U × U → R+ be a P♭M with the coefficient ς = 4, where ℘♭ is defined as
follows:

℘♭ ( ȷ, ρ) =

 emax{| ȷ−ρ|,
ȷ+ρ
2 }, ȷ ≤ ρ;

e
| ȷ−ρ|2+ ȷ+ρ

2 , ȷ > ρ.
(2.4)

Proof. i. The axioms (℘♭1)–(℘♭3) are apparent. In order to show the validity of (℘♭4), the following six
cases will be examined.
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Case 1: For ȷ, ρ, r ∈ (0, 1] and ȷ , ρ , r, since q ≥ 1, 2q − 1 ≥ 1; we have

℘♭ ( ȷ, ρ) = 1 +
∣∣∣∣1
ȷ
− 1

ρ

∣∣∣∣q = 1 +
∣∣∣∣1
ȷ
− 1

r +
1
r −

1
ρ

∣∣∣∣q
≤ (2q − 1) + 2q−1

[∣∣∣∣1
ȷ
− 1

r

∣∣∣∣q + ∣∣∣∣ 1
r −

1
ρ

∣∣∣∣q]
≤ 2q−1

[∣∣∣∣1
ȷ
− 1

r

∣∣∣∣q + ∣∣∣∣1
r −

1
ρ

∣∣∣∣q + 2
]
− 1

≤ 2q−1
[∣∣∣∣1
ȷ
− 1

r

∣∣∣∣q + 1 +
∣∣∣∣1

r −
1
ρ

∣∣∣∣q + 1
]
− 1 −

∣∣∣1
r −

1
r

∣∣∣q
= 2q−1 [

℘♭ ( ȷ, r) + ℘♭ (r, ρ)
]
− ℘♭ (r, r)

= ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 2: For ȷ, ρ ∈ (0, 1], ȷ , ρ and ȷ = r, we conclude that

℘♭ ( ȷ, ρ) = 1 +
∣∣∣∣1
ȷ
− 1

ρ

∣∣∣∣q = 1 +
∣∣∣∣1

r −
1
ρ

∣∣∣∣q + 1 − 1 −
∣∣∣1

r −
1
r

∣∣∣q
≤ 2q−1

[
1 +

∣∣∣∣1
r −

1
ρ

∣∣∣∣q + 1
]
−

[
1 +

∣∣∣1
r −

1
r

∣∣∣q]
= 2q−1 [

℘♭ ( ȷ, r) + ℘♭ (r, ρ)
]
− ℘♭ (r, r)

= ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 3: A similar consequence is true for ȷ, r ∈ (0, 1], ȷ , r and ȷ = ρ.

Case 4: For ȷ, ρ, r ∈ {2, 3, 4, ...} and ȷ , ρ , r, owing to fact that

max { ȷ, ρ} −min { ȷ, ρ} = max { ȷ + r − r, ρ + r − r} −min { ȷ + r − r, ρ + r − r}

≤ max { ȷ, r} +max {r, ρ} −max {r, r} −min { ȷ, r} −min {r, ρ} +min {r, r}

= max { ȷ, r} −min { ȷ, r} +max {r, ρ} −min {r, ρ} − [max {r, r} −min {r, r}] ,

we derive
emax{ ȷ,ρ}−min{ ȷ,ρ} ≤ emax{ ȷ,r}−min{r,ρ} + emax{r,ρ}−min{r,ρ} − emax{r,r}−min{r,r},

which is the desired inequality.
Case 5: For ȷ, ρ ∈ {2, 3, 4, ...}, ȷ , ρ and ȷ = r, since

max { ȷ, ρ} −min { ȷ, ρ} = max {r, ρ} −min {r, ρ}

= 0 +max {r, ρ} −min {r, ρ} − 0,
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we have
emax{ ȷ,ρ}−min{ ȷ,ρ} = e0 + emax{r,ρ}−min{r,ρ} − e0

℘♭ ( ȷ, ρ) = 1 + ℘♭ (r, ρ) − 1

≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 6: This case is provided for ȷ, r ∈ {2, 3, 4, ...}, ȷ , r and ȷ = ρ, as in Case 5.
Consequently, since (℘♭1)–(℘♭4) are provided, the mapping indicated in (2.3) is a P♭M with ς =

2q−1.
However, for ȷ = ρ, by definition, since ℘♭ ( ȷ, ρ) = 1, ℘♭ ( ȷ, ρ) = 0 does not occur. The first axiom

of the ♭-metric does not hold. So, a partial ♭-metric need not be a ♭-metric.
ii. The axioms of (℘♭1)–(℘♭3) are evident. To demonstrate (℘♭4), we need to examine the six cases

mentioned below.
Case 1: Let ȷ ≤ r ≤ ρ. Then,

max
{
| ȷ − ρ| , ȷ+ρ2

}
= max

{
| ȷ − r + r − ρ| , ȷ+r+r+ρ

2 − r
}

≤ max
{
| ȷ − r| + |r − ρ| , ȷ+r

2 +
r+ρ

2 − r
}

= max
{
| ȷ − r| , ȷ+r

2

}
+max

{
|r − ρ| , r+ρ

2

}
−max

{
|r − r| , r+r

2

}
;

we have
emax{| ȷ−ρ|,

ȷ+ρ
2 } ≤ emax{| ȷ−r|, ȷ+r

2 } + emax{|r−ρ|,
r+ρ

2 } − emax{|r−r|, r+r
2 }.

Thereby, the following expression is ensured for all ς ≥ 1:

℘♭ ( ȷ, ρ) ≤ ℘♭ ( ȷ, r) + ℘♭ (r, ρ) − ℘♭ (r, r)

≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 2: Let ȷ ≤ ρ ≤ r. Because

max
{
| ȷ − ρ| , ȷ+ρ2

}
= max

{
| ȷ − r + r − ρ| , ȷ+r+r+ρ

2 − r
}

≤ max
{
| ȷ − r| + |r − ρ| , ȷ+r

2 +
r+ρ

2 − r
}

= max
{
| ȷ − r| , ȷ+r

2

}
+max

{
|r − ρ| , r+ρ

2

}
−max

{
|r − r| , r+r

2

}
≤ max

{
| ȷ − r| , ȷ+r

2

}
+
|r−ρ|2+r+ρ

2 −max
{
|r − r| , r+r

2

}
,

we have
emax{| ȷ−ρ|,

ȷ+ρ
2 } ≤ emax{| ȷ−r|, ȷ+r

2 } + e
|r−ρ|2+r+ρ

2 − emax{|r−r|, r+r
2 }.
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Then, for all ς ≥ 1, we procure

℘♭ ( ȷ, ρ) ≤ ℘♭ ( ȷ, r) + ℘♭ (r, ρ) − ℘♭ (r, r)

≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 3: Let r ≤ ȷ ≤ ρ. Then, for all ς ≥ 1, we achieve

max
{
| ȷ − ρ| , ȷ+ρ2

}
= max

{
| ȷ − r + r − ρ| , ȷ+r+r+ρ

2 − r
}

≤ max
{
| ȷ − r| + |r − ρ| , ȷ+r

2 +
r+ρ

2 − r
}

= max
{
| ȷ − r| , ȷ+r

2

}
+max

{
|r − ρ| , r+ρ

2

}
−max

{
|r − r| , r+r

2

}
≤
| ȷ−r|2+ ȷ+r

2 +max
{
|r − ρ| , r+ρ

2

}
−max

{
|r − r| , r+r

2

}
,

and
emax{| ȷ−ρ|,

ȷ+ρ
2 } ≤ e

| ȷ−r|2+ ȷ+r
2 + emax{|r−ρ|,

r+ρ
2 } − emax{|r−r|, r+r

2 }.

Case 4: Let ȷ > r > ρ. Because
| ȷ−ρ|2+ ȷ+ρ

2 =
| ȷ−r+r−ρ|2+ ȷ+r−r+ρ

2 − r

≤ 22
[
| ȷ−r|2

2 +
|r−ρ|2

2

]
+

ȷ+r
2 +

r+ρ
2 − r

≤ 22
[
| ȷ−r|2+ ȷ+r

2 +
|r−ρ|2+r+ρ

2

]
−max

{
|r − r| , r+r

2

}
,

for ς = 4, we gain

e
| ȷ−ρ|2+ ȷ+ρ

2 ≤ 22
[
e
| ȷ−r|2+ ȷ+r

2 + e
|r−ρ|2+r+ρ

2

]
− emax{|r−r|, r+r

2 },

℘♭ ( ȷ, ρ) ≤ 4
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Case 5: Let ȷ > ρ > r. Then, for all ς ≥ 1, we attain
| ȷ−ρ|2+ ȷ+ ȷ

2 =
| ȷ−r|2+ ȷ+r−r+ ȷ

2 − r

=
| ȷ−r|2+ ȷ+r

2 +
r+ ȷ
2 − r

≤
| ȷ−r|2+ ȷ+r

2 +max
{
|r − ȷ| , r+ ȷ

2

}
−max

{
|r − r| , r+r

2

}
,

and
e
| ȷ−ρ|2+ ȷ+ρ

2 ≤ e
| ȷ−r|2+ ȷ+r

2 + emax{|r−ρ|,
r+ρ

2 } − emax{|r−r|, r+r
2 }

℘♭ ( ȷ, ρ) ≤ ℘♭ ( ȷ, r) + ℘♭ (r, ρ) − ℘♭ (r, r)

≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .
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Case 6: Let r > ȷ > ρ. Since

| ȷ−ρ|2+ ȷ+ρ

2 ≤
|r−ρ|2+r+ρ

2 + 2 max
{
| ȷ − r| , ȷ+r

2

}
−max

{
|r − r| , r+r

2

}
≤ 2

[
max

{
| ȷ − r| , ȷ+r

2

}
+
|r−ρ|2+r+ρ

2

]
−max

{
|r − r| , r+r

2

}
,

and
e
| ȷ−ρ|2+ ȷ+ρ

2 ≤ 2
[
emax{| ȷ−r|, ȷ+r

2 } + e
|r−ρ|2+r+ρ

2

]
− emax{|r−r|, r+r

2 },

for ς = 2, we derive
℘♭ ( ȷ, ρ) ≤ 2

[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r)

≤ ς
[
℘♭ ( ȷ, r) + ℘♭ (r, ρ)

]
− ℘♭ (r, r) .

Contemplating the above six cases, we conclude that the mapping given in (2.4) is a P♭M with
ς = 4. □

Proposition 2.0.11. ( [25]) Every partial ♭-metric ℘♭ defines a ♭-metric d℘♭ , where

d℘♭ ( ȷ, ρ) = 2℘♭ ( ȷ, ρ) − ℘♭ ( ȷ, ȷ) − ℘♭ (ρ, ρ)

for all ȷ, ρ ∈ U .

Remark 2.0.12. Let ε > 0
{
B℘♭ ( ȷ, ε) : ȷ ∈ U , ε > 0

}
be the family of ℘♭-open balls, where B℘♭ ( ȷ, ε) =

{ρ ∈ U : ℘♭ ( ȷ, ρ) < ℘♭ ( ȷ, ȷ) + ε} for all ȷ ∈ U . Each P♭M brings on a T0 topology T℘♭ on U ; however,
it need not be T1. To explain this, in Example 2.0.10 (i), for 1 = ȷ , ρ = 3 and q = 2, we currently
possess

B℘♭

(
1
2 , 1

)
=

{
ρ ∈ U : ℘♭

(
1
2 , ρ

)
< ℘♭

(
1
2 ,

1
2

)
+ 1

}
=

{
ρ ∈ U :

∣∣∣∣2 − 1
ρ

∣∣∣∣2 + 1 < 1 + 1
}

=

{
ρ ∈ U :

∣∣∣∣2 − 1
ρ

∣∣∣∣2 < 1
}

=
{
ρ ∈ U : 1

2 ≤ ρ < 1
}
=

[
1
2 , 1

)
and

B℘♭

(
1
4 , 4

)
=

{
ρ ∈ U : ℘♭

(
1
4 , ρ

)
< ℘♭

(
1
4 ,

1
4

)
+ 4

}
=

{
ρ ∈ U :

∣∣∣∣4 − 1
ρ

∣∣∣∣2 + 1 < 1 + 4
}

=

{
ρ ∈ U :

∣∣∣∣4 − 1
ρ

∣∣∣∣2 < 4
}

=
{
ρ ∈ U : 0 ≤ 4 − 1

ρ
< 2

}
=

[
1
4 ,

1
2

)
.

1
2 ∈ B℘♭

(
1
2 , 1

)
, but 1

4 < B℘♭

(
1
2 , 1

)
, and 1

4 ∈ B℘♭

(
1
4 , 4

)
, but 1

2 < B℘♭

(
1
4 , 4

)
. Thus, it is deduced that a P♭M

on a set U need not to be T1.

Definition 2.0.13. ( [25]) Let (U , ℘♭) be a P♭MS with a coefficient ς and { ȷn}n∈N be a sequence in
(U , ℘♭).
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i. Provided that the equality lim
n→∞

℘♭ ( ȷn, ȷ) = ℘♭ ( ȷ, ȷ) holds, { ȷn}n∈N is called a ℘♭-convergent
sequence in U and ȷ is termed the ℘♭-limit of { ȷn}n∈N.

ii. { ȷn}n∈N is a ℘♭-Cauchy sequence if lim
n,m→∞

℘♭ ( ȷn, ȷm) exists and is finite.

iii. If, for each ℘♭-Cauchy sequence { ȷn}n∈N, a point ȷ exists in ∈ U such that

lim
n,m→∞

℘♭ ( ȷn, ȷm) = lim℘♭
n→∞

( ȷn, ȷ) = ℘♭ ( ȷ, ȷ) ,

then (U , ℘♭) is called a ℘♭-complete space.

Remark 2.0.14. In a P♭MS, a convergent sequence does not require a unique limit. In Example 2.0.10
(ii), consider

( ȷn)n∈N =

(
1

n2 + 1

)
n∈N
∈ U .

Then,

lim
n→∞

℘♭
(

1
n2+1 , 0

)
= lim

n→∞
e

∣∣∣∣∣ 1
n2+1

−0
∣∣∣∣∣2+ 1

n2+1
+0

2 = 1 = ℘♭ (0, 0) = emax{|0−0|, 0+0
2 },

lim
n→∞

℘♭
(

1
n2+1 , 1

)
= lim

n→∞
e

max

∣∣∣∣ 1
n2+1
−1

∣∣∣∣, 1
n2+1

+1

2


= e1 = ℘♭ (1, 1) = emax{|1−1|, 1+1

2 }.

As can be seen, the sequence 1
n2+1 has more than one limit.

Example 2.0.15. ( [20]) Let U = R+ and ℘♭ : U × U → R+ denote a mapping determined by
℘♭ ( ȷ, ρ) = max { ȷ, ρ} for all ȷ, ρ ∈ U . In such a case, (U , ℘♭) has become a P♭MS with the coefficient
ς ≥ 1. We obtain the following for the sequence

{
1

n+1

}
n∈N

in (U , ℘♭) :

lim
n→∞

℘♭
(
1, 1

1+n

)
= 1 = ℘♭ (1, 1) ,

lim℘♭
n→∞

(
2, 1

1+n

)
= 2 = ℘♭ (2, 2) .

The sequence
{

1
n+1

}
n∈N

owns two limits in U .

Lemma 2.0.16. ( [25]) Presume that (U , ℘♭) and
(
U , d℘♭

)
are a P♭MS and ♭-metric space,

respectively.

1) { ȷn}n∈N is a ℘♭-Cauchy sequence in (U , ℘♭) if and only if it is also a ♭-Cauchy sequence in
(
U , d℘♭

)
.

2) (U , ℘♭) is ℘♭-complete if and only if
(
U , d℘♭

)
is ♭-complete. As well, lim

n→∞
d℘♭ ( ȷ, ȷn) = 0 if and

only if
lim

m→∞
℘♭ ( ȷ, ȷm) = lim

n→∞
℘♭ ( ȷ, ȷn) = ℘♭ ( ȷ, ȷ) .

Remark 2.0.17. ( [27]) The mapping ℘♭ is not continuous in general.
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Presume that U = N ∪ {∞} and ℘♭ : U ×U → R+ is a mapping defined as follows:

℘♭ ( ȷ, ρ) =


0, ȷ = ρ;∣∣∣∣1
ȷ
− 1

ρ

∣∣∣∣ , if one of ȷ and ρ odd and the other is odd or ȷρ = ∞;
5, if one of ȷ and ρ even and the other is even ȷ , ρ or ∞;
2, otherwise.

(U , ℘♭) is a P♭MS with ς = 3. For each n ∈ N, consider that ȷn = 2n + 3. Then,

℘♭ (2n + 3,∞) =
1

2n + 3
→ 0

as n → ∞; so, ȷn → ∞; however, lim
n→∞

℘♭ ( ȷn, 4) = 2 , 5 = ℘♭ (∞, 4), which means that ℘♭ does not
have the continuity property.

The subsequent lemma is essential in regarding the ℘♭-convergent sequences as the confirmation of
our findings because a P♭M is not continuous in general.

Lemma 2.0.18. ( [27]) Ensure that (U , ℘♭) is a P♭MS with the coefficient ς > 1 and the sequences
{ ȷn}n∈N and {ρn}n∈N are ℘♭-convergent to ȷ and ρ, respectively. Afterward, we obtain

1
ς2℘♭ ( ȷ, ρ) − 1

ς
℘♭ ( ȷ, ȷ) − ℘♭ (ρ, ρ) ≤ lim

n→∞
inf ℘♭ ( ȷn, ρn)

≤ lim
n→∞

sup℘♭ ( ȷn, ρn)

≤ ς℘♭ ( ȷ, ȷ) + ς2℘♭ (ρ, ρ) + ς2℘♭ ( ȷ, ρ) .

Wardowski [48] proposed a novel notion associated with the F -contraction in 2012. As a result,
several investigations have been conducted to obtain more extended contractive mappings on metric
spaces and other generalized metric spaces.

Definition 2.0.19. ( [48]) Let (U , d) be a metric space. The mappingO : U → U is an F -contraction
provided that F ∈ F and κ > 0 exist such that, for all ȷ, ρ ∈ U ,

d (O ȷ,Oρ) > 0⇒ κ + F (d (O ȷ,Oρ)) ≤ F (d ( ȷ, ρ)) ,

where F is the set of functions F : (0,∞)→ R fulfilling the subsequent statements:

(F1) F is strictly increasing, i.e., for all a, b ∈ (0,∞), such that a < b, F (a) < F (b);
(F2) for each {an}n∈N of positive numbers, lim

n→∞
an = 0⇔ lim

n→∞
F (an) = −∞;

(F3) a constant c ∈ (0, 1) exists such that lim
a→0+
acF (a) = 0.

Subsequently, Wardowski attested that in [48], any F -contraction enjoys a unique fixed-point in a
complete metric space (U , d).

As an extension of the family F, Piri and Kumam [51] put forth a new set of functions F ∈ F∗ by
substituting the term (F3) with

(
F3
′) in Definition 2.0.19, as noted below:(

F3
′)
F is continuous.

Briefly, set F∗ =
{
F : (0,∞)→ (−∞,+∞) : F holds (F1) , (F2) and

(
F3
′)}.

In 2014, Jleli and Samet [52] introduced the concept of a θ-contraction, and the class Θ = {θ :
(0,∞)→ (1,∞)} represents all such functions provided to fulfill the below circumstances:
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(θ1) θ is non-decreasing;
(θ2) for each

{
az
}
⊂ (0,∞), lim

z→∞
θ
(
az
)
= 1⇔ lim

z→∞
az = 0+;

(θ3) a constant r ∈ (0, 1) and s ∈ (0,∞] exist such that lim
a→0+

θ(a)
ar
= s.

Theorem 2.0.20. Let O : U → U be a mapping on a complete metric space (U , d). Provided that a
function θ ∈ Θ and a constant τ ∈ (0, 1) exist such that

d (O ȷ,Oρ) , 0 ⇒ θ (d (O ȷ,Oρ)) ≤
[
θ (d ( ȷ, ρ))

]τ
for all ȷ, ρ ∈ U , then O owns a unique fixed-point.

Furthermore, Liu et al. [47] identified the set Θ̃ = {θ : (0,∞)→ (1,∞) : θ holds (θ1
′) and (θ2

′)},
where

(θ1
′) θ is non-decreasing and continuous;

(θ2
′) infa∈(0,∞)θ (a) = 1.

Theorem 2.0.21. [47] Let O : U → U be a self-mapping on a complete metric space (U , d).
Thereby, the following statements are equivalent:

i. the mapping O is a θ−contraction with θ ∈ Θ̃;
ii. the mapping O is an F−contraction with F ∈ F∗.

The concept of a DC -contraction was proposed by Liu et al. [47] as follows.
Presume that D : (0,∞)→ (0,∞) is a function and fulfills the terms (D1) − (D3).

(D1) D is non-decreasing;
(D2) lim

n→∞
D (an) = 0⇔ lim

n→∞
an = 0;

(D3) D is continuous.

Set ∆ = {D : (0,∞)→ (0,∞) : D satis f ies (D1) − (D3)}.
C : (0,∞)→ (0,∞) is a comparison function that has the features (C 1) and (C 2).

(C 1) C is monotonically increasing, that is, a < b⇒ C (a) < C (b) .
(C 2) lim

n→∞
C n (a) = 0 for all a > 0, where C n denotes the nth-iteration of C .

If C is a comparison function, then C (a) < a for all a > 0. The mappings

• C x (a) = χa, 0 < χ < 1, a > 0,
• C y (a) = a

1+a

can be given as examples of comparison functions.

Definition 2.0.22. ( [47]) Let (U , d) be a metric space and O be a self-mapping on this space. Let
ℑ =

{
( ȷ, ρ) ∈ U 2 : d (O ȷ,Oρ) > 0

}
.O is named a DC -contraction if it ensures the following expression:

D (d (O ȷ,Oρ)) ≤ C (D (d ( ȷ, ρ))) (2.5)

for all ȷ, ρ ∈ ℑ.
In 2021, Nazam et al. [50] presented a new definition of the DC -contraction, including two self-

mappings with a binary relation in a P♭MS, referring to Liu’s definition of a DC -contraction.
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Definition 2.0.23. ( [50]) Let O andS be two self-mappings on a P♭MS andℜ be a binary relation on
U . Define the set ℑ =

{
( ȷ, ρ) ∈ ℜ : ℘♭ (O ȷ,Sρ) > 0

}
. The mappings O and S form a DC -contraction

if there exist D ∈ ∆ and a continuous comparison function C such that

D
(
ς2℘♭ (O ( ȷ) ,S (ρ))

)
≤ C (D (℘♭ ( ȷ, ρ))) (2.6)

for all ȷ, ρ ∈ ℑ.

Definition 2.0.24. ( [46]) Let U be a nonempty set and O : U → U and α : U 2 → R be given
mappings. O is α-orbital-admissible provided that the expression given below is true:

α ( ȷ,O ȷ) ≥ 1⇒ α
(
O ȷ,O2 ȷ

)
≥ 1

for all ȷ ∈ U .

Definition 2.0.25. ( [35]) Let U be a nonempty set and α : U 2 → R be a given function.

i. O is an α-orbital-admissible mapping;
ii. α ( ȷ, ρ) ≥ 1 and α (ρ,Oρ) ≥ 1⇒ α ( ȷ,Oρ) ≥ 1, ȷ, ρ ∈ U .

A mapping O : U → U that satisfies the above features is named a triangular α-orbital-admissible
mapping.

Definition 2.0.26. ( [46]) Let (U , d) be a complete metric space. The mapping O : U → U is a
Geraghty-type contraction if a function P : [0,∞)→ [0, 1) exists, which ensures the following term:

lim
n→∞
P (tn) = 1⇒ lim

n→∞
tn = 0 (2.7)

such that
d (O ȷ,Oρ) ≤ P (d ( ȷ, ρ)) d ( ȷ, ρ)

for all ȷ, ρ ∈ U . The family of P : [0,∞)→ [0, 1) satisfying (2.7) is represented as B.

Definition 2.0.27. ( [46]) In a metric space (U , d), if the mappings O,S : U → U satisfy the below
statements for all ȷ, ρ ∈ U :

d (O ȷ,Sρ) ≤ P
(
ES,O ( ȷ, ρ)

)
ES,O ( ȷ, ρ) ,

where
ES,O ( ȷ, ρ) = d ( ȷ, ρ) + |d ( ȷ,O ȷ) − d (ρ,Sρ)|

whenever a function P ∈ B exists, then O,S are called Geraghty contractions of type ES,O.

Definition 2.0.28. ( [46]) The set of P : [0,∞)→
[
0, 1

ς

)
functions fulfilling the constraint lim

n→∞
P (tn) =

1
ς

for ς ≥ 1 implies that lim
n→∞

tn = 0 and it is stated as Bς.

Definition 2.0.29. ( [46]) Let α : U 2 → R be a function in (U , d). Provided that the subsequent
statement
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α ( ȷ, ρ) ≥ 1⇒ d (O ȷ,Oρ) ≤ P (EO ( ȷ, ρ)) EO ( ȷ, ρ) ,

where
EO ( ȷ, ρ) = d ( ȷ, ρ) + |d ( ȷ,O ȷ) − d (ρ,Oρ)|

is satisfied for all ȷ, ρ ∈ U whenever P ∈ Bς, then O : U → U is called an α-PE-Geraghty
contraction.

Unless otherwise stated, i and j will be treated as arbitrary positive integers throughout this study.

Definition 2.0.30. ( [46]) Let α j
i : U 2 → R be a function in a ♭-metric space (U , ♭) with the coefficient

ς ≥ 1. O,S : U → U are two self-mappings which are called α j
i -PÊS,O-Geraghty contractions if a

function P ∈ Bς exists, which ensures the following expressions:

α
j
i ( ȷ, ρ) ≥ ς f ⇒ α

j
i ( ȷ, ρ) ♭

(
Oi ȷ,S jρ

)
≤ P

(
ES,O ( ȷ, ρ)

)
ES,O ( ȷ, ρ) ,

where
ÊS,O ( ȷ, ρ) = ♭ ( ȷ, ρ) +

∣∣∣∣♭ ( ȷ,Oi ȷ
)
− ♭

(
ρ,S jρ

)∣∣∣∣
for all ȷ, ρ ∈ U , and f ≥ 2 is a constant.

Remark 2.0.31. ( [46])

i. If ς = 1, α j
i ( ȷ, ρ) = 1 and i = j = 1, we obtain the Geraghty contraction of type ES,O.

ii. If S = O and i = j = 1, we obtain the α-PE-Geraghty contraction.

Definition 2.0.32. ( [46]) Let α j
i : U 2 → [0,∞) be a function in a ♭-metric space (U , ♭) with the

coefficient ς ≥ 1. The mappings O,S : U → U are called α
j
i -orbital-admissible if the following

circumstances hold:

α
j
i

(
ȷ,Oi ȷ

)
≥ ς f ⇒ α

j
i

(
Oi ȷ,S jOi ȷ

)
≥ ς f ,

α
j
i

(
ȷ,S j ȷ

)
≥ ς f ⇒ α

j
i

(
S j ȷ,OiS j ȷ

)
≥ ς f

for all ȷ ∈ U , where f ≥ 2 is a constant.

Definition 2.0.33. ( [46]) Let α j
i : U 2 → [0,∞) be a function in a complete ♭-metric space (U , ♭)

with the coefficient ς ≥ 1. When O,S : U → U are two self-mappings, the pair (O,S) is a triangular
α

j
i -orbital-admissible pair if

i. O,S are α j
i -orbital-admissible,

ii. α j
i ( ȷ, ρ) ≥ ς f , α

j
i

(
ρ,Oiρ

)
≥ ς f and α j

i

(
ρ,S jρ

)
≥ ς f imply that α j

i

(
ȷ,Oiρ

)
≥ ς f and α j

i

(
ȷ,S jρ

)
≥

ς f , where f ≥ 2 is a constant.

Lemma 2.0.34. ( [46]) Consider that O,S : U → U are two mappings in a complete ♭-metric space
(U , ♭) with the coefficient ς ≥ 1. Assume that (O,S) is a triangular α j

i -orbital-admissible pair and
an element ȷ0 in U exists with the property α j

i

(
ȷ0,O

i ȷ0
)
≥ ς f . Setup a sequence { ȷn}n∈N in (U , b) as

follows:
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ȷ2n = S
j ȷ2n−1,

ȷ2n+1 = O
i ȷ2n,

where n = 0, 1, 2, ...; afterward, for n,m ∈ N ∪ {0} with m > n, α j
i ( ȷn, ȷm) ≥ ς f exists.

3. Main results

This is the leading part of the study, and it contains a novel definition and a common fixed-point
theorem. Furthermore, some relevant results will be presented. Illustrative examples are provided to
indicate the accuracy and validity of the findings.

In the course of the study, the set of fixed-points of O and the set of common fixed-points of O and
S will be denoted with the notations Fix(O) and CFix(O,S), respectively.

Definition 3.0.1. Let (U , ℘♭) be a P♭MS with the coefficient ς ≥ 1 and α
j
i : U 2 → [0,∞) be a

function. The mappings O,S : U → U are called generalized α j
i -
(
DC

(
PÊ

))
-contractions if D ∈ ∆

and a continuous comparison function C and P ∈ Bς exist such that, for all ȷ, ρ ∈ U , α j
i ( ȷ, ρ) ≥ ς f

and ℘♭
(
Oi ȷ,S jρ

)
> 0,

D
(
α

j
i ( ȷ, ρ)℘♭

(
Oi ȷ,S jρ

))
≤ C

(
D

(
P

(
ÊO,S ( ȷ, ρ)

)
ÊO,S ( ȷ, ρ)

))
, (3.1)

where
ÊS,O ( ȷ, ρ) = ℘♭ ( ȷ, ρ) +

∣∣∣∣℘♭ ( ȷ,Oi ȷ
)
− ℘♭

(
ρ,S jρ

)∣∣∣∣
and f ≥ 2 is a constant.

Theorem 3.0.2. Ensure that (U , ℘♭) is a ℘♭-complete P♭MS, O,S : U → U are two mappings and
α

j
i : U 2 → [0,∞) is a function. Assume that the subsequent statements are satisfied:

i. O,S are generalized α j
i -
(
DC

(
PÊ

))
-contractions mappings;

ii. the pair (O,S) is triangular α j
i -orbital-admissible;

iii. ȷ0 ∈ U exists, satisfying α j
i

(
ȷ0,O

i ȷ0
)
≥ ς f ;

iv. one of the below terms is provided:

iva. O
i and S j are ℘♭-continuous,

or
ivb. if { ȷn}n∈N is a sequence in U such that α j

i ( ȷn, ȷn+1) ≥ ς f for each n ∈ N and ȷn → r ∈ U as
n→ ∞, then a subsequence

{
ȷnk

}
of { ȷn} exists such that α j

i
(
ȷnk , r

)
≥ ς f for each k ∈ N;

v. for all r ∈ Fix
(
Oi

)
or w ∈ Fix

(
S j

)
we have α j

i (r,w) ≥ ς f .

Then, the set of CFix(O,S) consists of a unique element belonging to (U , ℘♭).

Proof. An initial point ȷ0 ∈ U with the property α j
i

(
ȷ0,O

i ȷ0
)
≥ ς f exists from (iii). Consider { ȷn}n∈N in

U , which is constructed as
ȷ2n+2 = O

i ȷ2n+1 and ȷ2n+1 = S
j ȷ2n
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for each n ∈ N. Hypothetically, a natural number n0 exists such that ȷn0 = ȷn0+1. Let ȷ2n0 = ȷ2n0+1;
then, ȷ2n0 = ȷ2n0+1 = S

j ȷ2n0 . Hence, Fix
(
S j

)
=

{
ȷ2n0

}
. Suppose that ℘♭

(
ȷ2n0+2, ȷ2n0+1

)
> 0 and

Oi ȷ2n0+1 , S
j ȷ2n0 . According to Lemma 2.0.34, we have

α
j
i
(
ȷ2n0 , ȷ2n0+1

)
= α

j
i
(
ȷ2n0+1, ȷ2n0

)
≥ ς f .

In (3.1), writing ȷ = o2n0+1 and ρ = o2n0 , we attain

D
(
℘♭

(
Oi ȷ2n0+1,S

j ȷ2n0

))
≤ D

(
αi, j

(
ȷ2n0+1, ȷ2n0

)
℘♭

(
Oi ȷ2n0+1,S

j ȷ2n0

))
≤ C

(
D

(
P

(
ÊS,O

(
ȷ2n0+1, ȷ2n0

))
ÊS,O

(
ȷ2n0+1, ȷ2n0

)))
< C

(
D

(
1
ς
ÊS,O

(
ȷ2n0+1, ȷ2n0

)))
,

where

ÊS,O
(
ȷ2n0+1, ȷ2n0

)
= ℘♭

(
ȷ2n0+1, ȷ2n0

)
+

∣∣∣∣℘♭ ( ȷ2n0+1,O
i ȷ2n0+1

)
− ℘♭

(
ȷ2n0 ,S

j ȷ2n0

)∣∣∣∣
= ℘♭

(
ȷ2n0+1, ȷ2n0+1

)
+

∣∣∣℘♭ ( ȷ2n0+1, ȷ2n0+2
)
− ℘♭

(
ȷ2n0+1, ȷ2n0+1

)∣∣∣
= ℘♭

(
ȷ2n0+1, ȷ2n0+1

)
+ ℘♭

(
ȷ2n0+1, ȷ2n0+2

)
− ℘♭

(
ȷ2n0+1, ȷ2n0+1

)
= ℘♭

(
ȷ2n0+1, ȷ2n0+2

)
.

Hence, employing the property of C (a) < a, we obtain the following contradictory expression:

D
(
℘♭

(
ȷ2n0+2, ȷ2n0+1

))
= D

(
℘♭

(
Oi ȷ2n0+1,S

j ȷ2n0

))
< C

(
D

(
1
ς
℘♭

(
ȷ2n0+1, ȷ2n0+2

)))
< D

(
1
ς
℘♭

(
ȷ2n0+1, ȷ2n0+2

))
.

In this case, we obtain ℘♭
(
ȷ2n0+2, ȷ2n0+1

)
= 0, with the property (D1) of the function D. By (℘♭2), we

have that ℘♭
(
ȷ2n0+2, ȷ2n0+2

)
= ℘♭

(
ȷ2n0+1, ȷ2n0+1

)
= 0, and it yields that

℘♭
(
ȷ2n0+2, ȷ2n0+2

)
= ℘♭

(
ȷ2n0+1, ȷ2n0+1

)
= ℘♭

(
ȷ2n0+2, ȷ2n0+1

)
.

By (℘♭1), ȷ2n0+2 = ȷ2n0+1 and Oi ȷ2n0+1 = ȷ2n0+1. Therefore, ȷ2n0+1 is a fixed-point of Oi, and then
ȷ2n0 = ȷ2n0+1 belongs to CFix

(
Oi,S j

)
. For some natural numbers n0, we achieve a similar result for

ȷ2n0 = ȷ2n0−1. Hereafter, we presume that ȷn , ȷn+1 for all n ∈ N. It is needed to investigate the
subsequent two cases:
Case 1: Presume that ȷ2n , ȷ2n−1 for all n ∈ N. ℘♭

(
Oi ȷ2n−1,S

j ȷ2n

)
> 0 and, moreover, α j

i ( ȷ2n−1, ȷ2n) ≥
ς f . Therefore, employing (3.1), we gain

D (℘♭ ( ȷ2n, ȷ2n+1)) = D
(
℘♭

(
Oi ȷ2n−1,S

j ȷ2n

))
≤ D

(
α

j
i ( ȷ2n−1, ȷ2n)℘♭

(
Oi ȷ2n−1,S

j ȷ2n

))
≤ C

(
D

((
ÊS,O ( ȷ2n−1, ȷ2n)

)
ÊS,O ( ȷ2n−1, ȷ2n)

))
< C

(
D

(
1
ς
ÊS,O ( ȷ2n−1, ȷ2n)

))
,

where
ÊS,O ( ȷ2n−1, ȷ2n) = ℘♭ ( ȷ2n−1, ȷ2n) +

∣∣∣∣℘♭ ( ȷ2n−1,O
i ȷ2n−1

)
− ℘♭

(
ȷ2n,S

j ȷ2n

)∣∣∣∣
= ℘♭ ( ȷ2n−1, ȷ2n) + |℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n, ȷ2n+1)| .
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If ℘♭ ( ȷ2n, ȷ2n+1) ≥ ℘♭ ( ȷ2n−1, ȷ2n), the following expression is obtained:

ÊS,O ( ȷ2n−1, ȷ2n) = ℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n−1, ȷ2n) + ℘♭ ( ȷ2n, ȷ2n+1) .

Thereby, the inequality given below is obtained:

D (℘♭ ( ȷ2n, ȷ2n+1)) < C
(
D

(
1
ς
℘♭ ( ȷ2n, ȷ2n+1)

))
< D

(
1
ς
℘♭ ( ȷ2n, ȷ2n+1)

)
.

However, this produces a discrepancy. Accordingly, the following statement must be true:

℘♭ ( ȷ2n, ȷ2n+1) < ℘♭ ( ȷ2n−1, ȷ2n) .

Case 2: Presume that ȷ2n , ȷ2n+1 for all n ∈ N. For all n ∈ N, ℘♭
(
Oi ȷ2n,S

j ȷ2n+1

)
> 0 and α j

i ( ȷ2n, ȷ2n+1) ≥
ς f , we procure

D (℘♭ ( ȷ2n+1, ȷ2n+2)) = D
(
℘♭

(
Oi ȷ2n,S

j ȷ2n+1

))
≤ D

(
α

j
i ( ȷ2n, ȷ2n+1)℘♭

(
Oi ȷ2n,S

j ȷ2n+1

))
≤ C

(
D

(
P

(
ÊS,O ( ȷ2n, ȷ2n+1)

)
ÊS,O ( ȷ2n, ȷ2n+1)

))
< C

(
D

(
1
ς
ÊS,O ( ȷ2n, ȷ2n+1)

))
,

where
ÊS,O ( ȷ2n, ȷ2n+1) = ℘♭ ( ȷ2n, ȷ2n+1) +

∣∣∣∣℘♭ ( ȷ2n,O
i ȷ2n

)
− ℘♭

(
ȷ2n+1,S

j ȷ2n+1

)∣∣∣∣
= ℘♭ ( ȷ2n, ȷ2n) + |℘♭ ( ȷ2n, ȷ2n+1) − ℘♭ ( ȷ2n+1, ȷ2n+2)| .

If ℘♭ ( ȷ2n+1, ȷ2n+2) ≥ ℘♭ ( ȷ2n, ȷ2n+1), the following equation is obtained:

ÊS,O ( ȷ2n, ȷ2n+1) = ℘♭ ( ȷ2n, ȷ2n+1) − ℘♭ ( ȷ2n, ȷ2n+1) + ℘♭ ( ȷ2n+1, ȷ2n+2) .

Thus, we conclude that

D (℘♭ ( ȷ2n+1, ȷ2n+2)) < C
(
D

(
1
ς
℘♭ ( ȷ2n+1, ȷ2n+2)

))
< D

(
1
ς
℘♭ ( ȷ2n+1, ȷ2n+2)

)
.

This indicates a contradiction. Thus, the subsequent situation is provided:

℘♭ ( ȷ2n+1, ȷ2n+2) < ℘♭ ( ȷ2n, ȷ2n+1) .

As can be seen from the above two cases, {℘♭ ( ȷn, ȷn+1)}n∈N is a non-increasing sequence. Therefore,
L ≥ 0 exists such that lim

n→∞
℘♭ ( ȷn, ȷn+1) = L. Suppose that L > 0. If the limit is taken on both sides of

the subsequent inequality owing to the fact that D and C are continuous functions, we gain

D
(
lim
n→∞

℘♭ ( ȷ2n, ȷ2n+1)
)
< C

(
D

(
1
ς

lim
n→∞

ÊS,O ( ȷ2n−1, ȷ2n)
))
,
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where
ÊS,O ( ȷ2n−1, ȷ2n) = ℘♭ ( ȷ2n−1, ȷ2n) +

∣∣∣∣℘♭ ( ȷ2n−1,O
i ȷ2n−1

)
− ℘♭

(
ȷ2n,S

j ȷ2n

)∣∣∣∣
= ℘♭ ( ȷ2n−1, ȷ2n) + |℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n, ȷ2n+1)|
= 2℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n, ȷ2n+1)

and
lim
n→∞

inf ÊS,O ( ȷ2n−1, ȷ2n) = lim inf
n→∞

[
2℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n, ȷ2n+1)

]
≤ lim sup

n→∞

[
2℘♭ ( ȷ2n−1, ȷ2n) − ℘♭ ( ȷ2n, ȷ2n+1)

]
= L.

Hence, we attain

D (L) = D
(
lim
n→∞

℘♭ ( ȷ2n, ȷ2n+1)
)
< C

(
D

(
1
ς

lim
n→∞

sup ÊS,O ( ȷ2n−1, ȷ2n)
))

< C
(
D

(
1
ς
L
))
< D

(
L
ς

)
,

which is a contradiction. The same argument is true for ℘♭ ( ȷ2n, ȷ2n−1). Therefore,

lim
n→∞

℘♭ ( ȷn, ȷn+1) = 0.

Because of (℘♭2), we have that ℘♭ ( ȷn, ȷn) ≤ ℘♭ ( ȷn, ȷn+1) and ℘♭ ( ȷn+1, ȷn+1) ≤ ℘♭ ( ȷn, ȷn+1); then,

lim
n→∞

℘♭ ( ȷn, ȷn) = lim
n→∞

℘♭ ( ȷn+1, ȷn+1) = 0.

Using Proposition 2.0.11, we write

d℘♭ ( ȷn, ȷn+1) = 2.℘♭ ( ȷn, ȷn+1) − ℘♭ ( ȷn, ȷn) − ℘♭ ( ȷn+1, ȷn+1) .

If we take the limit in the above equation as n tends to infinity, we get

0 ≤ lim
n→∞

d℘♭ ( ȷn, ȷn+1) = lim
n→∞

2
[
℘♭ ( ȷn, ȷn+1) − ℘♭ ( ȷn, ȷn) − ℘♭ ( ȷn+1, ȷn+1)

]
≤ lim

n→∞
sup 2

[
℘♭ ( ȷn, ȷn+1) − ℘♭ ( ȷn, ȷn) − ℘♭ ( ȷn+1, ȷn+1)

]
= 0.

Thus, lim
n→∞

d℘♭ ( ȷ2n, ȷ2n+1) = 0 for all n ∈ N. Furthermore, we currently possess the subsequent
expression for all n,m ≥ 1:

lim
n,m→∞

d℘♭ ( ȷ2m, ȷ2n) = 2 lim
n,m→∞

sup℘♭ ( ȷ2m, ȷ2n) .

It is necessary to indicate that the sequence { ȷn}n∈N is a ℘♭-Cauchy sequence in (U , ℘♭). Instead, it is
needed to verify that { ȷ2n}n∈N is a ℘♭-Cauchy sequence. According to Lemma 2.0.16 (1), it is required
to explicitly state that { ȷ2n}n∈N is a Cauchy sequence in

(
U , d℘♭

)
. Assume that { ȷ2n}n∈N is not a Cauchy

sequence in
(
U , d℘♭

)
. In this instance, two subsequences of positive numbers

{
ȷ2mk

}
and

{
ȷ2nk

}
exist

such that n (k) > m (k) > k and the number ε > 0, which yield that

d℘♭
(
ȷ2mk , ȷ2nk

)
≥ ε, (3.2)
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and, for k ∈ N,
d℘♭

(
ȷ2mk , ȷ2nk−2

)
< ε. (3.3)

Applying ♭3, we deduce that

ε ≤ d℘♭
(
ȷ2mk , ȷ2nk

)
≤ ςd℘♭

(
ȷ2mk , ȷ2mk+1

)
+ ςd℘♭

(
ȷ2mk+1, ȷ2nk

)
.

By taking the limit in the above as k → ∞, we write

ε

ς
≤ lim

k→∞
inf d℘♭

(
ȷ2mk+1, ȷ2nk

)
≤ lim

k→∞
sup d℘♭

(
ȷ2mk+1, ȷ2nk

)
. (3.4)

Also, employing ♭3, we gain

d℘♭
(
ȷ2mk , ȷ2nk−1

)
≤ ςd℘♭

(
ȷ2mk , ȷ2nk−2

)
+ ςd℘♭

(
ȷ2nk−2, ȷ2nk−1

)
;

again, taking the limit in the above as k → ∞, we get

lim
k→∞

sup d℘♭
(
ȷ2mk , ȷ2nk−1

)
≤ ςε. (3.5)

Moreover, the following statement is derived:

d℘♭
(
ȷ2mk , ȷ2nk

)
≤ ςd℘♭

(
ȷ2mk , ȷ2nk−2

)
+ ςd℘♭

(
ȷ2nk−2, ȷ2nk

)
≤ ςd℘♭

(
ȷ2mk , ȷ2nk−2

)
+ ς2d℘♭

(
ȷ2nk−2, ȷ2nk−1

)
+ ς2d℘♭

(
ȷ2nk−1, ȷ2nk

)
.

Similarly, if the limit is taken for k → ∞, we obtain

lim
k→∞

sup d℘♭
(
ȷ2mk , ȷ2nk

)
≤ ςε. (3.6)

Again, from ♭3, it is achievable to produce

d℘♭
(
ȷ2mk+1, ȷ2nk−1

)
≤ ςd℘♭

(
ȷ2mk+1, ȷ2mk

)
+ ςd℘♭

(
ȷ2mk , ȷ2nk−1

)
.

Likewise, taking the limit as k → ∞, it is concluded that

lim
k→∞

sup d℘♭
(
ȷ2mk+1, ȷ2nk−1

)
≤ ς2ε. (3.7)

From the inequalities (3.4)–(3.7), the subsequent expressions are attained:

ε

2ς
≤ lim

k→∞
inf ℘♭

(
ȷ2mk+1, ȷ2nk

)
≤ lim

k→∞
sup℘♭

(
ȷ2mk+1, ȷ2nk

)
, (3.8)

lim
k→∞

sup℘♭
(
ȷ2mk , ȷ2nk−1

)
≤
ςε

2
, (3.9)

lim
k→∞

sup℘♭
(
ȷ2mk , ȷ2nk

)
≤
ςε

2
, (3.10)

lim
k→∞

sup℘♭
(
ȷ2mk+1, ȷ2nk−1

)
≤
ς2ε

2
. (3.11)
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Due to Lemma 2.0.18, it is known that α j
i
(
ȷ2mk , ȷ2nk−1

)
≥ ς f and

D
(
℘♭

(
ȷ2mk+1, ȷ2nk

))
≤ D

(
α

j
i
(
ȷ2mk , ȷ2nk−1

)
℘♭

(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ C

(
D

(
P

(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
,

where
ÊS,O

(
ȷ2mk , ȷ2nk−1

)
= ℘♭

(
ȷ2mk , ȷ2nk−1

)
+

∣∣∣∣℘♭ ( ȷ2mk ,O
i ȷ2mk

)
− ℘♭

(
ȷ2nk−1,S

j ȷ2nk−1

)∣∣∣∣
= ℘♭

(
ȷ2mk , ȷ2nk−1

)
+

∣∣∣℘♭ ( ȷ2mk , ȷ2mk+1
)
− ℘♭

(
ȷ2nk−1, ȷ2nk

)∣∣∣ ,
and, taking the limit in the above as k → ∞, we procure

lim
k→∞

inf ÊS,O
(
ȷ2mk , ȷ2nk−1

)
= lim

k→∞
inf ℘♭

(
ȷ2mk , ȷ2nk−1

)
≤ lim

k→∞
sup℘♭

(
ȷ2mk , ȷ2nk−1

)
= lim

k→∞
sup ÊS,O

(
ȷ2mk , ȷ2nk−1

)
≤

ςε
2 .

In light of the results obtained above, using (3.1), we write

D
(
ε
2

)
= D

(
ς ε

2ς

)
≤ D

(
ς lim

k→∞
inf ℘♭

(
ȷ2mk+1, ȷ2nk

))
≤ D

(
ςp lim

k→∞
inf ℘♭

(
ȷ2mk+1, ȷ2nk

))
≤ D

(
lim
k→∞

inf α j
i
(
ȷ2mk , ȷ2nk−1

)
℘♭

(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ C

(
D

(
lim
k→∞

infP
(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
≤ D

(
lim
k→∞

inf 1
ς
ςε
2

)
= D

(
ε
2

)
.

(3.12)

Then,

D
(
ε
2

)
≤ D

(
αi, j

(
ȷ2mk , ȷ2nk−1

)
lim
k→∞

sup℘♭
(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ lim

k→∞
sup D

(
α

j
i
(
ȷ2mk , ȷ2nk−1

)
℘♭

(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ lim

k→∞
sup C

(
D

(
P

(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
= C

(
D

(
lim
k→∞

supP
(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
< D

(
lim
k→∞

sup 1
ς
ςε
2

)
= D

(
ε
2

)
.

(3.13)

Therefore, from (3.12) and (3.13), we obtain

lim
k→∞
P

(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)
=
ε

2
. (3.14)
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Similarly,

D
(
ςε
2

)
= D

(
ς2 ε

2ς

)
≤ D

(
ς2 lim

k→∞
inf ℘♭

(
ȷ2mk+1, ȷ2nk

))
≤ D

(
ςp lim

k→∞
inf ℘♭

(
ȷ2mk+1, ȷ2nk

))
≤ D

(
lim
k→∞

inf α j
i
(
ȷ2mk , ȷ2nk−1

)
℘♭

(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ C

(
D

(
lim
k→∞

infP
(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
< D

(
lim
k→∞

inf ÊS,O
(
ȷ2mk , ȷ2nk−1

))
≤ D

(
ςε
2

)
,

(3.15)

and

D
(
ςε
2

)
≤ D

(
α

j
i
(
ȷ2mk , ȷ2nk−1

)
lim
k→∞

sup℘♭
(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ lim

k→∞
sup D

(
α

j
i
(
ȷ2mk , ȷ2nk−1

)
℘♭

(
Oi ȷ2mk ,S

j ȷ2nk−1

))
≤ lim

k→∞
sup C

(
D

(
P

(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
= C

(
D

(
lim
k→∞

supP
(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
ÊS,O

(
ȷ2mk , ȷ2nk−1

)))
< D

(
lim
k→∞

sup ÊS,O
(
ȷ2mk , ȷ2nk−1

))
≤ D

(
ςε
2

)
.

(3.16)

From (3.15) and (3.16), it is obtained that

lim
k→∞

ÊS,O
(
ȷ2mk , ȷ2nk−1

)
=
ςε

2
. (3.17)

Because of (3.14) and (3.17), we conclude that

lim
k→∞
P

(
ÊS,O

(
ȷ2mk , ȷ2nk−1

))
=

1
ς
, (3.18)

and, in (3.18), it is deduced by using the property of P that

lim
k→∞

ÊS,O
(
ȷ2mk , ȷ2nk−1

)
= 0.

This contradiction brings about the sequence { ȷn}n∈N as a Cauchy sequence in
(
U , d℘♭

)
. The

completeness of
(
U , d℘♭

)
provides that the sequence { ȷn}n∈N converges to r ∈ U . Thus,

lim
n→∞

d℘♭ ( ȷn, r) = 0.

By Lemma 2.0.16, we derive

℘♭ (r, r) = lim
n→∞

℘♭ ( ȷn, r) = lim
n,m→∞

℘♭ ( ȷn, ȷm) .
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Then, { ȷn}n∈N converges to r ∈ (U , ℘♭). Additionally, by ♭3, the following expression is evident:

d℘♭ ( ȷn, ȷm) ≤ ς
[
d℘♭ ( ȷn, r) + d℘♭ (r, ȷm)

]
.

If the limit for n,m→ ∞ is taken in the above equation, we have

0 ≤ lim
n,m→∞

sup d℘♭ ( ȷn, ȷm) ≤ lim
n,m→∞

sup ς
[
d℘♭ ( ȷn, r) + d℘♭ (r, ȷm)

]
and lim

n,m→∞
d℘♭ ( ȷn, ȷm) = 0. If we consider the fact that lim

n→∞
℘♭ ( ȷn, ȷn) = 0, and, taking the limit as

n,m→ ∞ in the following equations, we procure

d℘♭ ( ȷn, ȷm) = 2℘♭ ( ȷn, ȷm) − ℘♭ ( ȷn, ȷn) − ℘♭ ( ȷm, ȷm) (3.19)

and
lim

n,m→∞
℘♭ ( ȷn, ȷm) = 0.

So,
℘♭ (r, r) = lim

n→∞
℘♭ ( ȷn, r) = lim

n,m→∞
℘♭ ( ȷn, ȷm) = 0. (3.20)

Because of the hypothesis (iv), a subsequence
{
ȷ2nk

}
of { ȷn}n∈N exists such that α j

i
(
ȷ2nk , r

)
≥ ς f and

D
(
℘♭

(
ȷ2nk+1,S

jr
))
≤ D

(
α

j
i
(
ȷ2nk , r

)
℘♭

(
Oi ȷ2nk ,S

jr
))

≤ C
(
D

(
P

(
ÊS,O

(
ȷ2nk , r

))
ÊS,O

(
ȷ2nk , r

)))
< D

(
P

(
ÊS,O

(
ȷ2nk , r

))
ÊS,O

(
ȷ2nk , r

))
< D

(
1
ς
ÊS,O

(
ȷ2nk , r

))
,

where

ÊS,O
(
ȷ2nk , r

)
= ℘♭

(
ȷ2nk , r

)
+

∣∣∣∣℘♭ ( ȷ2nk ,O
i ȷ2nk

)
− ℘♭

(
r,S jr

)∣∣∣∣
= ℘♭

(
ȷ2nk , r

)
+

∣∣∣∣℘♭ ( ȷ2nk , ȷ2nk+1
)
− ℘♭

(
r,S jr

)∣∣∣∣ .
In the last equality, by taking the limit as k → ∞, we have

lim
k→∞

sup ÊS,O
(
ȷ2nk , r

)
= ℘♭

(
r,S jr

)
, (3.21)

and, using this, we get the following expression:

D
(
lim
k→∞

sup℘♭
(
ȷ2nk+1,S

jr
))
< D

(
1
ς
℘♭

(
r,S jr

))
. (3.22)

Further, since 1
ς
℘♭

(
r,S jr

)
≤ lim

k→∞
sup℘♭

(
ȷ2nk+1,S

jr
)
, we attain

D
(
1
ς
℘♭

(
r,S jr

))
≤ D

(
lim
k→∞

sup℘♭
(
ȷ2nk+1,S

jr
))
. (3.23)
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Therefore, using the expressions (3.22) and (3.23), we obtain

D
(

1
ς
℘♭

(
r,S jr

))
≤ D

(
lim
k→∞

sup℘♭
(
ȷ2nk+1,S

jr
))

≤ D
(
lim
k→∞
P

(
ÊS,O

(
ȷ2nk , r

))
ÊS,O

(
ȷ2nk , r

))
≤ D

(
1
ς
℘♭

(
r,S jr

))
.

From here, one can deduce that

lim
k→∞
P

(
ÊS,O

(
ȷ2nk , r

))
ÊS,O

(
ȷ2nk , r

)
=

1
ς
℘♭

(
r,S jr

)
. (3.24)

Because of (3.21) and (3.24), it is concluded that

lim
k→∞
P

(
ÊS,O

(
ȷ2nk , r

))
=

1
ς
. (3.25)

In (3.25), due to the property ofP, we obtain that lim
k→∞

ÊS,O
(
ȷ2nk , r

)
= 0. Thus, ℘♭

(
r,S jr

)
= 0. From

the axiom (℘♭2), ℘♭ (r, r) ≤ ℘♭
(
r,S jr

)
and ℘♭

(
S jr,S jr

)
≤ ℘♭

(
r,S jr

)
. Obviously,

℘♭ (r, r) = ℘♭
(
r,S jr

)
= 0.

Therefore, we get that ℘♭ (r, r) = ℘♭
(
r,S jr

)
= ℘♭

(
S jr, S jr

)
. Because of (℘♭1), r = S jr. This

also yields that r is the fixed-point of S j. In the same way, one can see that ℘♭
(
r,Oir

)
= 0. In

this instance, r is the fixed-point of Oi. So, r is the common fixed-point of S j and Oi. Now, to
demonstrate the uniqueness of the fixed-point, let S j have another fixed-point, provided that w ∈ U
satisfies S jw = w , r. Because of the fifth hypothesis of the theorem, we have that α j

i (r,w) ≥ ς f .
By (3.1), we obtain

D (℘♭ (r,w)) ≤ D
(
α

j
i (r,w)℘♭ (r,w)

)
= D

(
αi, j (r,w)℘♭

(
Oir,S jw

))
≤ C

(
D

(
P

(
ÊS,O (r,w)

)
ÊS,O (r,w)

))
≤ C

(
D

(
1
ς
ÊS,O (r,w)

))
< D

(
1
ς
ÊS,O (r,w)

)
,

where

ÊS,O (r,w) = ℘♭ (r,w) +
∣∣∣∣℘♭ (r,Oir

)
− ℘♭

(
w,S jw

)∣∣∣∣
= ℘♭ (r,w) + |℘♭ (r, r) − ℘♭ (w,w)| = ℘♭ (r,w) .

Hence, this indicates that D (℘♭ (r,w)) < D
(

1
ς
℘♭ (r,w)

)
. However, this causes a contradiction. So,

assuming thatS j has a different fixed-point is inaccurate. Thus, Fix
(
S j

)
= {r}. With the same method,

it turns out that Fix
(
Oi

)
= {r}. Accordingly, CFix

(
S j,Oi

)
= {r}. Due to the fact that

Sr = SS jr = S j
Sr
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and
Or = OO jr = O jOr,

it is obvious to verify that S and O own a unique common fixed-point owing to the uniqueness of the
common fixed-point of S j and Oi. □

Example 3.0.3. Assume that U = [0, 1] and ℘♭ : U ×U → R+ is determined as ℘♭ ( ȷ, ρ) = ( ȷ − ρ)2.
Then, (U , ℘♭) is a complete P♭MS with the coefficient ς = 2. α j

i : U 2 → [0,∞) is defined as follows:

α
j
i ( ȷ, ρ) =

{
ς f , ȷ, ρ ∈ [0, 1],
0, otherwise,

with f ≥ 2. Let O,S : U → U be defined by O ( ȷ) = ȷ

2 , S ( ȷ) = ȷ

4 and take P (t) = 1
32 , t > 0,P ∈ Bς.

The pair (O,S) is triangular α j
i -orbital-admissible. Define D : (0,∞) → (0,∞) by D (θ) = θeθ for

each θ > 0; then, D ∈ ∆. C : (0,∞) → (0,∞), which is defined by C (r) = r
2 for all r ∈ (0,∞),

is a continuous comparison function. It shall be determined that O and S constitute α j
i -
(
DC

(
PÊ

))
-

contraction mappings. If f = 2, i = 4 and j = 2, then we have that α j
i ( ȷ, ρ) = 4. The above choices

ensure that

℘♭
(
Oi ȷ,S jρ

)
= ℘♭

(
ȷ

16
,
ρ

16

)
=

1
162 ( ȷ − ρ)2,

ÊS,O ( ȷ, ρ) = ℘♭ ( ȷ, ρ) +
∣∣∣∣℘♭ ( ȷ,Oi ȷ

)
− ℘♭

(
ρ,S jρ

)∣∣∣∣
= ( ȷ − ρ)2 +

∣∣∣∣( 15 ȷ
16

)2
−

(
15ρ
16

)2∣∣∣∣ ,
and

D
(
αi, j ( ȷ, ρ)℘♭

(
Oi ȷ,S jρ

))
= D

(
4 1

162 ( ȷ − ρ)2
)
= D

(
1

64 ( ȷ − ρ)2
)

= 1
64 ( ȷ − ρ)2e

1
64 ( ȷ−ρ)2

.

Then,

C
(
D

(
P

(
ÊS,O ( ȷ, ρ)

)
ÊS,O ( ȷ, ρ)

))
= C

(
D

(
1

32

[
( ȷ − ρ)2 +

∣∣∣∣( 15 ȷ
16

)2
−

(
15ρ
16

)2∣∣∣∣]))
= 1

2
1

32

[
( ȷ − ρ)2 +

∣∣∣∣( 15 ȷ
16

)2
−

(
15ρ
16

)2∣∣∣∣] e
1
32

[
( ȷ−ρ)2+

∣∣∣∣∣( 15 ȷ
16

)2
−
( 15ρ

16

)2
∣∣∣∣∣].

Therefore, (3.1) is achieved; so, CFix (O,S) = {0}, where 0 is the unique common fixed-point of O and
S.

Example 3.0.4. Assume that U = [0, 1] and ℘♭ : U × U → R+ is determined as ℘♭ ( ȷ, ρ) =
(max { ȷ, ρ})2. Then, (U , ℘♭) is a complete P♭MS with the coefficient ς = 2. α

j
i : U 2 → [0,∞) is

defined as follows:

α
j
i ( ȷ, ρ) =

{
ς f , ȷ, ρ ∈ [0, 1],
0, otherwise,

with f ≥ 2. Let O,S : U → U be respectively defined by O ( ȷ) = ȷ

16 , S ( ȷ) = ȷ

4 , and take P (t) =
1

256 , t > 0,P ∈ Bς. The pair (O,S) is triangular α j
i -orbital-admissible. Define D : (0,∞) → (0,∞)
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by D (ϑ) = ϑ for each ϑ > 0; then, D ∈ ∆. C : (0,∞) → (0,∞), which is defined by C ( ȷ) = ȷ

16

for all ȷ ∈ (0,∞), is a continuous comparison function. Now, it is shown that O,S are α j
i -
(
DC

(
PÊ

))
-

contraction mappings. If f = 4, i = 2 and j = 4, then we currently have that α j
i ( ȷ, ρ) = 16. Based on

these, we acquire

℘♭
(
Oi ȷ,S jρ

)
= ℘♭

(
ȷ

162 ,
ρ

162

)
=

1
164 (max { ȷ, ρ})2,

ÊS,O ( ȷ, ρ) = ℘♭ ( ȷ, ρ) +
∣∣∣∣℘♭ ( ȷ,Oi ȷ

)
− ℘♭

(
ρ,S jρ

)∣∣∣∣
= (max { ȷ, ρ})2 + | ȷ − ρ| ,

and

D
(
αi, j ( ȷ, ρ)℘♭

(
Oi ȷ,S jρ

))
= D

(
16 1

164 (max { ȷ, ρ})2
)
= D

(
1

163 (max { ȷ, ρ})2
)

= 1
163 (max { ȷ, ρ})2.

Thus, we derive that

C
(
D

(
P

(
ÊS,O ( ȷ, ρ)

)
ÊS,O ( ȷ, ρ)

))
= C

(
D

(
1

256

[
(max { ȷ, ρ})2 + | ȷ − ρ|

]))
= 1

16
1

256

[
(max { ȷ, ρ})2 + | ȷ − ρ|

]
.

As a result, (3.1) becomes apparent; then, CFix (O,S) = {0}.

4. Consequences

In this section, contemplating our main theorem, we list some conclusions involving an E-
contraction endowed with various auxiliary functions.

Initially, the subsequent corollary generalizes Theorem 5 in [44].

Corollary 4.0.1. Consider that (U , ℘♭) indicates a ℘♭-complete P♭MS and O,S represent two self-
mappings on this space. Presume that C : (0,∞) → (0,∞) is a continuous comparison function,
D : (0,∞)→ (0,∞), D ∈ ∆, and P : [0,∞)→

[
0, 1

ς

)
, P ∈ Bς. If the pair (O,S) provides the following

statement:

℘♭ (O ȷ,Sρ) > 0,D (℘♭ (O ȷ,Sρ)) ≤ C
(
D

(
P

(
ES,O ( ȷ, ρ)

)
ES,O ( ȷ, ρ)

))
for all ȷ, ρ ∈ U , then the set of CFix(O,S) has a unique element.

Proof. Consider that α j
i ( ȷ, ρ) = ς f = 1 and i = j = 1 in Theorem 3.0.2; then, the result is obvious. □

Moreover, by taking S = O in Corollary 4.0.1, we gain the below consequence.

Corollary 4.0.2. Consider that (U , ℘♭) indicates a ℘♭-complete P♭MS and O represents a self-
mapping on this space. Suppose that C : (0,∞) → (0,∞) is a continuous comparison function,
D : (0,∞)→ (0,∞), D ∈ ∆, and P : [0,∞)→

[
0, 1

ς

)
, P ∈ Bς. If O provides the following statement:

℘♭ (O ȷ,Oρ) > 0,D (℘♭ (O ȷ,Oρ)) ≤ C (D (P (EO ( ȷ, ρ)) EO ( ȷ, ρ)))

for all ȷ, ρ ∈ U , then Fix (O) consists of a unique element which belongs to (U , d).
The following consequence is an analysis of Theorem 2.1 presented by Aydi et al. in [45].
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Corollary 4.0.3. Consider that (U , ℘♭) indicates a ℘♭-complete P♭MS, O : U → U represents a
mapping and α : U ×U → [0,∞) is a function. Let C : (0,∞)→ (0,∞) be a continuous comparison
function, D : (0,∞) → (0,∞), D ∈ ∆, and P : [0,∞) →

[
0, 1

ς

)
, P ∈ Bς. Presume that O fulfills the

following conditions for ℘♭ (O ȷ,Oρ) > 0 :

i. α ( ȷ, ρ) ≥ 1⇒ D (℘♭ (O ȷ,Oρ)) ≤ C (D (P (EO ( ȷ, ρ)) EO ( ȷ, ρ))) for all ȷ, ρ ∈ U .

ii. O is a triangular α-orbital-admissible mapping.
iii. ȷ0 exists in U satisfying α ( ȷ0,O ȷ0) ≥ 1.
iv. O is ℘♭-continuous, or, if { ȷn}n∈N is a sequence in U such that α ( ȷn, ȷn+1) ≥ 1 for all n ∈ N and

ȷn → ȷ as n→ ∞, then a subsequence
{
ȷnk

}
of { ȷn} exists such that α

(
ȷnk , ȷ

)
≥ 1 for all k ∈ N.

Then, Fix (O) consists of a unique element which belongs to (U , d).

Proof. By selecting α
j
i ( ȷ, ρ) ≥ ς f ≥ 1 with i = j = 1 and S = O in Theorem 3.0.2, the proof is

completed. □

The subsequent conclusion is an enhancement of the Banach fixed-point theorem [1] by taking the
E-contraction into account.

Corollary 4.0.4. Consider that (U , ℘♭) indicates a ℘♭-complete P♭MS and O represents a self-
mapping. Suppose that, for all ȷ, ρ ∈ U and ℏ ∈ [0, 1), the following statement holds:

℘♭ (O ȷ,Oρ) ≤ ℏ (EO ( ȷ, ρ)) . (4.1)

Then, Fix (O) consists of a unique element which belongs to (U , d).

Proof. By taking C (t) = ℏt and D ∈ ∆ with D (t) = t, as well as α ( ȷ, ρ) = 1, and keeping P : [0,∞)→[
0, 1

ς

)
in mind, in Corollary 4.0.3, we achieve the desired conclusion. □

Now, we state a new concept.

Definition 4.0.5. Consider that (U , ℘♭) indicates a P♭MS and O : U → U represents a mapping.
Presume that P ∈ Bς, θ ∈ Θ̃ and τ ∈ (0, 1) exist such that

℘♭ (O ȷ,Oρ) , 0 ⇒ θ (℘♭ (O ȷ,Oρ)) ≤
[
θ (P (EO ( ȷ, ρ)) EO ( ȷ, ρ))

]τ (4.2)

for all ȷ, ρ ∈ U . Thus, O : U → U is termed as a Geraghty θE-contraction.

Theorem 4.0.6. Consider that (U , ℘♭) indicates a ℘♭-complete P♭MS and O : U → U represents a
Geraghty θE-contraction mapping. Thus, Fix (O) consists of a unique element which belongs to (U , d).

Proof. It is enough to take in Corollary 4.0.2 C (t) = (ln k) t and D ∈ ∆ with D (t) = ln θ : (0,∞) →
(0,∞); then, the proof is evident. □

On the other hand, we characterize a new notation, which is an extension of [39], introduced by
Fulga and Proca in 2017.

Definition 4.0.7. Consider that (U , ℘♭) indicates a P♭MS and O : U → U represents a mapping. If
P ∈ Bς, F ∈ F and κ > 0 exist satisfying the inequality
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κ + F (℘♭ (O ȷ,Oρ)) ≤ F (P (EO ( ȷ, ρ)) EO ( ȷ, ρ)) (4.3)

for all ȷ, ρ ∈ U , then O is a Geraghty FE-contraction.

Theorem 4.0.8. Let (U , ℘♭) be a ℘♭-complete P♭MS and O : U → U be a Geraghty FE-contraction.
Thus, O has a unique fixed point.

Proof. By selecting C (t) = e−κt and D ∈ ∆ with D (t) = eF : (0,∞) → (0,∞) in Corollary 4.0.2, we
attain the claim. □

5. An application to homotopy theory

We verify the following theorem, which offers an application of Corollary 4.0.2 to homotopy theory.

Theorem 5.0.1. Let (U , ℘♭) be a ℘♭-complete P♭MS and Υ,Λ be open and closed subsets of U ,
respectively. Presume that R : Λ × [0, 1]→ U is an operator ensuring the subsequent statements.

i. ȷ , R ( ȷ, ι) for every ȷ ∈ Λ\Υ and ι ∈ [0, 1) .
ii. For all ȷ, ρ ∈ Λ and ι, ℏ ∈ [0, 1), we have

D (℘♭ (R ( ȷ, ι) ,R (ρ, ι))) ≤ C (D (P (EO ( ȷ, ρ)) EO ( ȷ, ρ))) ,

where
EO ( ȷ, ρ) = ℘♭ ( ȷ, ρ) + |℘♭ ( ȷ,R ( ȷ, ι)) − ℘♭ (ρ,R (ρ, ι))|.

iii. A function ψ : [0, 1]→ R, which has the continuity property, exists such that

ς℘♭ (R ( ȷ, ι) ,R ( ȷ, ι∗)) ≤ |ψ (ι) − ψ (ι∗)|

for all ι, ι∗ ∈ [0, 1) and ∀o ∈ Λ.

Then, R (., 0) holds a fixed-point⇔ R (., 1) holds a fixed-point.

Proof. Define the subsequent set

X = {ι ∈ [0, 1] : ȷ = R ( ȷ, ι) for some o ∈ Υ} .

(⇒:) Presume that R (., 0) has a fixed-point. Then, X is nonempty, which signifies that 0 ∈ X. Our
claim is that X is both open and closed in [0, 1]. As a result of utilizing the connectedness aspect, we
derive X = [0, 1]. In this case, R (., 1) allows a fixed-point in Υ.

Initially, the closedness of X in [0, 1] is verified. Assume that {ιn}∞n=1 ⊆ X with ιn → ι ∈ [0, 1] as
n → ∞. It is essential to point out that ι ∈ X. For this reason, ιn ∈ X for n = 1, 2, 3, . . .; ȷn ∈ Υ exists
with ȷn = R ( ȷn, ιn). Also, for n,m ∈ {1, 2, 3, . . .}, we have

℘♭ ( ȷn, ȷm) = ℘♭ (R ( ȷn, ιn) ,R ( ȷm, ιm))
≤ ς℘♭ (R ( ȷn, ιn) ,R ( ȷn, ιm)) + ς℘♭ (R ( ȷn, ιm) ,R ( ȷm, ιm)) .

(5.1)
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Also, by considering the function C x with ℏ ∈ (0, 1), from (b), we get

D (℘♭ (R ( ȷn, ιm) ,R ( ȷm, ιm))) ≤ C (D (P (EO ( ȷn, ȷm)) EO ( ȷn, ȷm)))
= ℏD (P (EO ( ȷn, ȷm)) EO ( ȷn, ȷm))
≤ ℏD

(
1
ς

[
℘♭ ( ȷn, ȷm) + |℘♭ ( ȷn,R ( ȷn, ιm)) − ℘♭ ( ȷm,R ( ȷm, ιm))|

])
= ℏD

(
1
ς

[
℘♭ ( ȷn, ȷm) + ℘♭ (R ( ȷn, ιn) ,R ( ȷn, ιm))

])
,

which, by (D1), implies that

ς℘♭ (R ( ȷn, ιm) ,R ( ȷm, ιm)) < ℏ
[
℘♭ ( ȷn, ȷm) + ℘♭ (R ( ȷn, ιn) ,R ( ȷn, ιm))

]
.

So, by using the above inequality and (iii), (5.1) becomes

℘♭ ( ȷn, ȷm) ≤ |ψ (ιn) − ψ (ιm)| + ℏ
[
℘♭ ( ȷn, ȷm) +

1
ς
|ψ (ιn) − ψ (ιm)|

]
such that

℘♭ ( ȷn, ȷm) ≤
(

1 + ς
ς (1 − ℏ)

)
|ψ (ιn) − ψ (ιm)| .

Then, employing the convergence of {ιn}n∈N with n,m→ ∞, we procure

lim
n,m→∞

℘♭ ( ȷn, ȷm) = 0.

This confirms that { ȷn} is a ℘♭-Cauchy sequence in U . ℘♭-completeness of (U , ℘♭) ensures that ȷ∗ ∈ Λ
exists such that

℘♭ ( ȷ∗, ȷ∗) = lim
n→∞

℘♭ ( ȷ∗, ȷn) = lim
n,m→∞

℘♭ ( ȷn, ȷm) = 0.

Moreover,
℘♭ ( ȷn,R ( ȷ∗, ι)) = ℘♭ (R ( ȷn, ιn) ,R ( ȷ∗, ι))

≤ ς℘♭ (R ( ȷn, ιn) ,R ( ȷn, ι)) + ς℘♭ (R ( ȷn, ι) ,R ( ȷ∗, ι)) .
(5.2)

Likewise, we have

D (℘♭ (R ( ȷn, ι) ,R ( ȷ∗, ι))) ≤ C (D (P (EO ( ȷn, ȷ∗)) EO ( ȷn, ȷ∗)))
≤ ℏD

(
1
ς
EO ( ȷn, ȷ∗)

)
= ℏD

(
1
ς

[
℘♭ ( ȷn, ȷ∗) + |℘♭ ( ȷn,R ( ȷn, ι)) − ℘♭ ( ȷ∗,R ( ȷ∗, ι))|

])
such that

ς℘♭ (R ( ȷn, ι) ,R ( ȷ∗, ι)) < ℏ
[
℘♭ ( ȷn, ȷ∗) + |℘♭ ( ȷn,R ( ȷn, ι)) − ℘♭ ( ȷ∗,R ( ȷ∗, ι))|

]
.

Then, by (5.2), we obtain

℘♭ ( ȷn,R ( ȷ∗, ι)) ≤ |ψ (ιn) − ψ (ι)| + ℏ℘♭ ( ȷn, ȷ∗) .

By taking the limit as n→ ∞ in the above equation, we have that lim
n→∞

℘♭ ( ȷn,R ( ȷ∗, ι)) = 0; hence,

℘♭ ( ȷ∗,R ( ȷ∗, ι)) = lim
n→∞

℘♭ ( ȷn,R ( ȷn, ι)) = 0.
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This means that ȷ∗ = R ( ȷ∗, ι). As (i) is provided, we obtain ȷ∗ ∈ Υ. Thus, ι ∈ X and X is closed in
[0, 1] .

Second, the openness of X in [0, 1] will be verified. Let ι0 ∈ X. Then, ȷ0 ∈ Υ exists with ȷ0 =

R ( ȷ0, ι0). Because Υ is open, a non-negative δ exists such that B℘♭ ( ȷ0, δ) ⊆ Υ in U . Considering that
ε = ς(1−ℏ)

ς+ℏ
(℘♭ ( ȷ0, ȷ0) + δ) > 0 with ℏ ∈ [0, 1) and ς ≥ 1, there exists ϑ (ε) > 0 such that |ψ (ι) − ψ (ι0)| <

ε for all ι ∈ (ι0 − ϑ (ε) , ι0 + ϑ (ε)) owing to fact of the continuity of ψ on ι0.
Let ι ∈ (ι0 − ϑ (ε) , ι0 + ϑ (ε)); for

p ∈ B℘♭ ( ȷ0, δ) = { ȷ ∈ U : ℘♭ ( ȷ, ȷ0) ≤ ℘♭ ( ȷ0, ȷ0) + δ} ,

we obtain

℘♭ (R ( ȷ, ι) , ȷ0) = ℘♭ (R ( ȷ, ι) ,R ( ȷ0, ι0))
≤ ς℘♭ (R ( ȷ, ι) ,R ( ȷ, ι0)) + ς℘♭ (R ( ȷ, ι0) ,R ( ȷ0, ι0)) .

(5.3)

Furthermore,

D (℘♭ (R ( ȷ, ι0) ,R ( ȷ0, ι0))) ≤ C (D (P (EO ( ȷ, ȷ0)) EO ( ȷ, ȷ0)))
≤ ℏD

(
1
ς
EO ( ȷ, ȷ0)

)
= ℏD

(
1
ς

[
℘♭ ( ȷ, ȷ0) + |℘♭ ( ȷ,R ( ȷ, ι0)) − ℘♭ ( ȷ0,R ( ȷ0, ι0))|

])
,

which implies that

ς℘♭ (R ( ȷ, ι0) ,R ( ȷ0, ι0)) < ℏ
[
℘♭ ( ȷ, ȷ0) + ℘♭ (R ( ȷ, ι) ,R ( ȷ, ι0))

]
.

Finally, taking the above inequalities into account, from (5.3), we gain

℘♭ (R ( ȷ, ι) , ȷ0) ≤ |ψ (ι) − ψ (ι0)| + ℏ
[
℘♭ ( ȷ, ȷ0) + 1

ς
|ψ (ι) − ψ (ι0)|

]
≤

(
1 + ℏ

ς

)
|ψ (ι) − ψ (ι0)| + ℏ (℘♭ ( ȷ0, ȷ0) + δ)

≤
(
1 + ℏ

ς

)
ε + ℏ (℘♭ ( ȷ0, ȷ0) + δ)

≤ ℘♭ ( ȷ0, ȷ0) + δ,

and R ( ȷ, ι) ∈ B℘♭ ( ȷ0, δ). Therefore,

R (., ι) : B℘♭ ( ȷ0, δ)→ B℘♭ ( ȷ0, δ)

holds for every fixed ι ∈ (ι0 − ϑ (ε) , ι0 + ϑ (ε)). We can now apply Corollary 4.0.2, contemplating the
function C as C x; then, R (., ι) has a fixed-point in Λ. However, this point belongs to Υ, as (i) is true.
Therefore, (ι0 − ϑ (ε) , ι0 + ϑ (ε)) ⊆ X, and we induce that X is open in [0, 1] . □
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