Research article

Solving an integral equation vian orthogonal neutrosophic rectangular metric space

  • Received: 07 October 2022 Revised: 13 November 2022 Accepted: 22 November 2022 Published: 28 November 2022
  • MSC : 47H10, 54H25

  • In this paper, we introduce the notion of an orthogonal neutrosophic rectangular metric space and prove fixed point theorems. We extend some of the well-known results in the literature. As applications of the main results, we apply our main results to show the existence of a unique solution.

    Citation: Gunaseelan Mani, Arul Joseph Gnanaprakasam, Vidhya Varadharajan, Fahd Jarad. Solving an integral equation vian orthogonal neutrosophic rectangular metric space[J]. AIMS Mathematics, 2023, 8(2): 3791-3825. doi: 10.3934/math.2023189

    Related Papers:

  • In this paper, we introduce the notion of an orthogonal neutrosophic rectangular metric space and prove fixed point theorems. We extend some of the well-known results in the literature. As applications of the main results, we apply our main results to show the existence of a unique solution.



    加载中


    [1] L. Zadeh, Fuzzy sets, Information and Control, 8 (1965), 338–353. http://dx.doi.org/10.1016/S0019-9958(65)90241-X
    [2] B. Schweizer, A. Sklar, Statistical metric spaces, Pac. J. Math., 10 (1960), 314–334. http://dx.doi.org/10.2140/pjm.1960.10.313
    [3] I. Kramosil, J. Michlek, Fuzzy metric and statistical metric spaces, Kybernetika, 11 (1975), 336–344.
    [4] M. Grabiec, Fixed points in fuzzy metric spaces, Fuzzy Set. Syst., 27 (1988), 385–389. http://dx.doi.org/10.1016/0165-0114(88)90064-4 doi: 10.1016/0165-0114(88)90064-4
    [5] S. Rehman, S. Jabeen, S. Khan, M. Jaradat, Some $\alpha$-$\phi$‐fuzzy cone contraction results with integral type application, J. Math., 2021 (2021), 1566348. http://dx.doi.org/10.1155/2021/1566348 doi: 10.1155/2021/1566348
    [6] J. Park, Intuitionistic fuzzy metric spaces, Chaos Soliton. Fract., 22 (2004), 1039–1046. http://dx.doi.org/10.1016/j.chaos.2004.02.051 doi: 10.1016/j.chaos.2004.02.051
    [7] N. Konwar, Extension of fixed results in intuitionistic fuzzy b‐metric spaces, J. Intell. Fuzzy Syst., 39 (2020), 7831–7841. http://dx.doi.org/10.3233/JIFS-201233 doi: 10.3233/JIFS-201233
    [8] M. Kirişci, N. Simsek, Neutrosophic metric spaces, Math. Sci., 14 (2020), 241–248. http://dx.doi.org/10.1007/s40096-020-00335-8
    [9] N. Simsek, M. Kirişci, Fixed point theorems in Neutrosophic metric spaces, Sigma J. Eng. Nat. Sci., 10 (2019), 221–230.
    [10] S. Sowndrarajan, M. Jeyarama, F. Smarandache, Fixed point results for contraction theorems in neutrosophic metric spaces, Neutrosophic Sets Syst., 36 (2020), 308–318. http://dx.doi.org/10.5281/zenodo.4065458 doi: 10.5281/zenodo.4065458
    [11] A. Hussain, H. Al-Sulami, U. Ishtiaq, Some new aspects in the intuitionistic fuzzy and neutrosophic fixed point theory, J. Funct. Space., 2022 (2022), 3138740. http://dx.doi.org/10.1155/2022/3138740 doi: 10.1155/2022/3138740
    [12] M. Eshaghi Gordji, M. Ramezani, M. De la Sen, Y. Cho, On orthogonal sets and Banach fixed point theorem, Fixed Point Theory, 18 (2017), 569–578. http://dx.doi.org/10.24193/fpt-ro.2017.2.45 doi: 10.24193/fpt-ro.2017.2.45
    [13] M. Eshaghi Gordji, H. Habibi, Fixed point theory in generalized orthogonal metric space, Journal of Linear and Topological Algebra, 6 (2017), 251–260.
    [14] M. Eshaghi Gordji, H. Habibi, Fixed point theory in $\epsilon$-connected orthogonal metric space, Sahand Commun. Math. Anal., 16 (2019), 35–46.
    [15] N. Gungor, D. Turkoglu, Fixed point theorems on orthogonal metric spaces via altering distance functions, AIP Conference Proceedings, 2183 (2019), 040011. http://dx.doi.org/10.1063/1.5136131 doi: 10.1063/1.5136131
    [16] K. Sawangsup, W. Sintunavarat, Fixed point results for orthogonal $Z$-contraction mappings in $\mathfrak{O}$-complete metric space, International Journal of Applied Physics and Mathematics, 10 (2020), 33–40. http://dx.doi.org/10.17706/ijapm.2020.10.1.33-40 doi: 10.17706/ijapm.2020.10.1.33-40
    [17] T. Senapati, L. Dey, B. Damjanović, A. Chanda, New fixed results in orthogonal metric spaces with an application, Kragujev. J. Math., 42 (2018), 505–516.
    [18] A. Gnanaprakasam, G. Mani, J. Lee, C. Park, Solving a nonlinear integral equation vian orthogonal metric space, AIMS Mathematics, 7 (2022), 1198–1210. http://dx.doi.org/10.3934/math.2022070 doi: 10.3934/math.2022070
    [19] G. Mani, A. Gnanaprakasam, N. Kausar, M. Munir, Salahuddin, Orthogonal F-contraction mapping on O-complete metric space with applications, Int. J. Fuzzy Log. Inte., 21 (2021), 243–250. http://dx.doi.org/10.5391/IJFIS.2021.21.3.243 doi: 10.5391/IJFIS.2021.21.3.243
    [20] G. Mani, A. Gnanaprakasam, C. Park, S. Yun, Orthogonal F-contractions on O-complete b-metric space, AIMS Mathematics, 6 (2021), 8315–8330. http://dx.doi.org/10.3934/math.2021481 doi: 10.3934/math.2021481
    [21] A. Gnanaprakasam, G. Mani, V. Parvaneh, H. Aydi, Solving a nonlinear Fredholm integral equation via an orthogonal metric, Adv. Math. Phys., 2021 (2021), 1202527. http://dx.doi.org/10.1155/2021/1202527 doi: 10.1155/2021/1202527
    [22] A. Mukheimer, A. Gnanaprakasam, A. Ul-Haq, S. Prakasam, G. Mani, I. Baloch, Solving an integral equation vian orthogonal Brianciari metric spaces, J. Funct. Space., 2022 (2022), 7251823. http://dx.doi.org/10.1155/2022/7251823 doi: 10.1155/2022/7251823
    [23] O. Yamaod, W. Sintunavarat, On new orthogonal contractions in $b$-metric spaces, International Journal of Pure Mathmatics, 5 (2018), 37–40.
    [24] S. Khalehoghli, H. Rahimi, M. Eshaghi Gordji, Fixed point theorems in R-metric spaces with applications, AIMS Mathematics, 5 (2020), 3125–3137. http://dx.doi.org/10.3934/math.2020201 doi: 10.3934/math.2020201
    [25] S. Khalehoghli, H. Rahimi, M. Eshaghi Gordji, R-topological spaces and SR-topological spaces with their applications, Math. Sci., 14 (2020), 249–255. http://dx.doi.org/10.1007/s40096-020-00338-5 doi: 10.1007/s40096-020-00338-5
    [26] L. Mishra, V. Dewangan, V. Mishra, S. Karateke, Best proximity points of admissible almost generalized weakly contractive mappings with rational expressions on b-metric spaces, JMCS, 22 (2020), 97–109. http://dx.doi.org/10.22436/jmcs.022.02.01 doi: 10.22436/jmcs.022.02.01
    [27] G. Abd-Elhamed, Fixed point results for $(\beta, \alpha)$-implicit contractions in two generalized b-metric spaces, JNSA, 14 (2020), 39–47. http://dx.doi.org/10.22436/jnsa.014.01.05 doi: 10.22436/jnsa.014.01.05
    [28] M. Rossafi, A. Kari, C. Park, J. Lee, New fixed point theorems for $\theta$-$\varphi$-contraction on b-metric spaces, JMCS, 29 (2022), 12–27. http://dx.doi.org/10.22436/jmcs.029.01.02 doi: 10.22436/jmcs.029.01.02
    [29] Humaira, M. Sarwar, N. Mlaiki, Unique fixed point results and its applications in complex-valued fuzzy $b$-metric spaces, J. Funct. Space., 2022 (2022), 2132957. http://dx.doi.org/10.1155/2022/2132957 doi: 10.1155/2022/2132957
    [30] U. Ishtiaq, K. Javed, F. Uddin, M. De la Sen, K. Ahmed, M. Ali, Fixed point results in orthogonal neutrosophic metric spaces, Complexity, 2021 (2021), 2809657. http://dx.doi.org/10.1155/2021/2809657 doi: 10.1155/2021/2809657
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1313) PDF downloads(85) Cited by(0)

Article outline

Figures and Tables

Figures(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog