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1. Introduction

The theory of fractional differential equations (FDEs) and fractional differential inclusions (FDIs)
have recently received significant attention in various fields of engineering and science, see [1-4],
with many applications to name a few [5-14]. Recently, many diverse definitions of fractional
derivatives (or fractional integrals) (FDs or FIs), the most common of which are
Riemann-Liouville [2], Caputo [15] and Hilfer [10], have emerged. This is followed by numerous


http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2022193

3478

generalized fractional operators [16-21]. Moreover, new fabulous generalizations have emerged that
combine a broad classes of the aforementioned fractional operators such as ¢-Caputo [22], and
o-Hilfer [23].

Over the years, many researchers are interested in debating the qualitative analysis of FDEs and
FDIs like existence, uniqueness, controllability, stability, and optimizations, etc, see [24—33]. Some
authors have consecrated their efforts to debate more qualitative analysis of this kinds of equations
and inclusions, while others focused on applications and numerical solutions. A lot of related articles
about the existence, and uniqueness of FDEs (FDIs) under the different types of FDs, can be found
at [34—42]. For the recent development of fractional calculus theory and the importance of application
of Hilfer FD, see [43-45].

The authors in [46] have started the investigation of the following Hilfer-type FDEs

{ Hpereg (1) = f(1,¢ (1)), T€[a,b], ] <o <2,0<0, <1,
(1.1)

$(a)=0, ¢(b) = ﬁaﬁimw,-), 6; € [a,b],

where A; > 0, §; € R, D912 and 3}, are the Hilfer FD of order (o1, 0,) and the Riemann-Liouville
FI of order A;,respectively. The existence and stability of solutions for implicit-type FDEs (1.1) in the
y-Hilfer FD sense have been investigated by [47]. In this regard, Wongcharoen et al., in [48] studied
the problem (1.1) with set-valued case, that is

{ Hpereg (1) e F(r,¢ (1)), T € [a,b],

(a) =0, ¢(b) = icsﬁé;cp(e,-), 6; € [a, b], (1.2)

where IF : [a,b] xR — P (R) is a set-valued map. Motivated by aforesaid works, we prove the existence
of solutions for the following nonlinear FDI in the frame of ¢-Hilfer FD with nonlocal IBCs

It ¢ (1) e F(1,¢ (1)), T € (a,b), a >0,
(1.3)

() =0, ¢ (b) = ﬁmiﬁ% @),

where 7029 is the ¢-Hilfer FD of order o, € (1,2) and type o, € [0, 1], 3% is the ¢-Riemann-
Liouville FI of order 4; > 0, F is a set-valued map from [a, ] X R to the collection of P(R) c R,
—o<a<b<o,0,eR,i=1,2,....m0<a<b<bh<b<..<6,<b.

Remark 1.1. i) The FDI (1.3) involving ¢-Hilfer FD is the more wide category of BVPs that combines
the FDI involving ¢-Riemann—Liouville FD (for g, = 0, ¢(7) = 7) and the FDI involving ¢
-Caputo FD (for 0, = 1, ¢(7) = 7).

ii) For various values of o, and ¢, our problem (1.3) reduces to FDIs involving the FDs like Hilfer,
Katugampola, Erdélyi-Kober, Hadamard, and many other FDs.

iii) The acquired results in the current article include the results of Asawasamrit, et al. [46] (when
e(t)=tand F(1,¢ (1)) = {f(1, ¢ (7)}) and Wongcharoen et al. [48] (when ¢(7) = 7).

The novelty of this work lies in that the obtained results in this work unify most of the preceding
results concerning FDIs.
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This article is framed as follows. In Section 2, we provide some essentials concepts of advanced
fractional calculus, set-valued analysis, and FP methods. The existence results for a ¢-Hilfer type
inclusion problem (1.3) are obtained in Section 3. The results obtained will be illustrated by examples
in the Section 4.

2. Preliminary notions

2.1. Fractional calculus (FC)

In this portion, we introduce some notations and definitions of FC. Let U = [a,b], 0; € (1,2),
02 € [0, 1] where p = 01 + 02 (2 — 1) € (1,2]. Set

C:=C(U,R)={g: U — R; gis continuous}.
Clearly, C is a Banach space with norm

ligll = sup{lg (v)| : 7 € U}.

Denote L' (U, R) be the Banach space of Lebesgue-integrable functions g : U — R with the norm

mm=fmen
(6)

Let g € L' (U,R) and ¢ € C" (U, R) be increasing such that ¢’ (1) # 0 for each 7 € U.
Definition 2.1 ( [2]). The o/"-¢-Riemann-Liouville FI of g is given by

W%(%r(hfwwwm o (O™ g (O dL.

Definition 2.2 ( [2]). The Qtl -¢-Riemann-Liouville FD of g is given by

d\" oo
" (T)E) 3V (1), n= o] + L,neN.

Definition 2.3 ( [23]). The ¢-Hilfer FD of g of order p; and type o, is given by

@Qlﬁog( )_(

S 1
Hbﬁlf’”’ sz(n 01):¢ D c~( —02)(n—01);¢

g(r) = g(1),

I A
where D, _(ga’(‘r)d_‘r) .

Lemma 2.4 ([2,23]). Let 01,02,k > 0. Then

]) 6:591 W 025 Qﬁg (T) CVQH'QZ tpg (T)

2) ¥ (p () - @wlzéﬁgwﬂ—www*P
Lemma 2.5 ( [23]). Fork >0, 0, € (n—1,n) and o, € [0, 1],

P2 (o (1) — g @) = — X (o) = p@) O, k> 1,
'k —01)

In case, if o1 € (1,2) and k € (1,2], then
R (M — @) =0
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Lemma 2.6 ( [23]). Ifg € C" (O, R) n—1<p; <nandp, € (0,1), we have
- (@O-g@)y™* (1 a7k l-en-e)

1) ¥ HDLORE o (1) = o (7) — Z wr(p¢k+1) (de) JUenewy )

2) H@Ql 02;¢ m@l <Pg (T) — g(T)

In regard to the problem (1.3), the next lemma is needed which was demonstrated in [47].

Lemma 2.7 ( [47]). Let ¥ € C and

(p(b) — p(a)™"

Q =
I'(p)

N 0i +2;—1
- Z Foa g @O —e@ T £ 0, 2.1)

then, the solution of nonlocal BVP

HDYL?* ¢(1) = F (1), T € (a,b),
B@) =0 9 (b) = £ 63706, 22
is obtained as
(‘;0 (T) @ (a))p ! <~91+/L @ <~Q1 P ~O1:¢
) = T 5r o [Z S (0) - IEF (b) |+ SEF (7). (2.3)

2.2. Set-valued analysis

We requisition some basics related to the theory of set-valued maps. To this purpose, consider
the Banach space (E, ||.||) and the multi-valued map 0t : E — P(E), (i) is closed (convex) valued
if M (@) is closed (convex) V¢ € E; (i) is bounded if M (D) = UyepNi (¢) is bounded in E for all
bounded set D of E, i.e.,sup.p {sup{la| : @ € M (P)}} < oo; (iii) is measurable if V a € R, the function
7> d(a, V(1)) =inf {|a — 4] : 1 € Vi ()} is measurable.

For other definitions such as completely continuous, upper semi-continuity (u.s.c.), we indicate
to [49]. Further, the set of selections of F is given by

Ry = {% e L' (U,R): (1) eF(r,a) forae. T € U}
Consider
P, (E) = {M e P(E) : M # 0 and has property o},

where Py, P, P.,, and P. are the categories of all closed, bounded, compact and convex subsets of E,
respectively.

Definition 2.8. Set-valued map F: U X R — P (R) is a Carathéodory if 7 — F (7, ¢) is measurable for
any ¢€ R, and ¢— F (1, ¢) is u.s.c., for (a.e.) all T € U.

Besides, a set-valued map F is called L!'-Carathéodory if ¥ w > 0, there exists ® € L' (U,R")
such that

IE (7, p)Il = sup{lx| : x € F(7,$)} < D (7),

for a.e. 7 € U, and for all ||¢]| < w.
Now, we offer the next essential lemmas:
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Lemma 2.9 ( [7]). Let Gr (M) = {(¢,a) e EX Z,a € M (P)} be a graph of M. If M : E — P, (Z) is
u.s.c., then Gr (M) is a closed subset of E X Z. Conversely, if Wi is completely continuous and has a
closed graph, then it is u.s.c.

Lemma 2.10 ( [50]). Let E be a separable Banach space. F : UXR — P, . (E) be an L'-Carathéodory
set-valued map, and T : L' (U, E) — C (U, E) be a linear continuous mapping. Then the operator

T oRe: C(U,E) = Pope (C(U,E)), ¢ = (T oRe) () = T (Ray)
is a closed graph operator in C (U, E) x C (O, E).

3. Existence results for set-valued problem

Definition 3.1. A function ¢€ C is a solution of (1.3), if there is x € L' (U,R) with x (1) € F(1,¢)
V7 € O fulfilling the nonlocal IBC

p@ =0, p(b) = > 53306,
i=1

and

_ @~ ¢ (@)
QI (p)

¢ (1) [Z S () — Jey (b)] + I (1)
i=1

_e@-e@" (¥ 0; " A1
- Qr (p) [;mfa ¢ () (@ O) — ) % () ds
b

T(0) Ja

3.1. The U.S.C. case

1 T
¢ () (@) =) %(é’)d§) T ¢ (@@ =@y x(QdL.

The first consequence transacts with the convex valued F depending on Leray-Schauder-type for
set-valued maps [51].

Theorem 3.2. Let

O @) —e @) () e @)™ (p(b) - @ (@)
= 5,‘ + + , 3.1
1= 2P O T + 4% D T AT+ D * TarsD G-D
and suppose that
(Asl) F :~U XR—>P,.R)isa Ll—Carathéodonet—valued map.
(As2) 4 3, € C (U, [0, )) and a nondecreasing 3, € C ([0, 00), [0, 00)) with
IF (7, $)llp = sup{lal : @ € F(,$)} < 31 (1) 32 (Igl), ¥ (r,¢) € U XR.

(As3) There is a constant K > 0 such that
—r .1 (32)
1|3 32 0

Then the problem (1.3) has at least one solution on O.
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Proof. At first, to convert (1.3) into a FP problem, we define the operator 8 : C — P (C) by

S o (f} s [ O @) - ¢ P @ g

%(¢): 56635(7'): _ﬁ fab‘p;(g)((p(b)_‘p(év))gl—l%({)dév) s (33)
s [T (O (@ (@) — O % () de

for x € R ,4. Clearly, the solution of (1.3) is the FP of the operator B. Proof cases will be given in a
number of steps as:
Case 1. B (¢) is convex for any ¢e C.

Let D1, P> € B (¢). Then there exist x;, %, € Rz, such that for each 7 € U

— (o) - @) [ 0; o L+ -1
P =m0 [Z] Forr f @ () (@ 6) — @) () dd
1 b / Q]—] i
T@o f @ () (@ (b)) — ()™ ;) d()
1 ’ ’ -1 .
+ F(Ql)fa & (@) =) %;(Odl, j=1,2.

Letn € [0, 1]. Then foreach 7 € U

[7p1 + (1 =) D] (7)

_ p=1 (m 5; 0i ~
- ¢ (T)Qljz;? ’ [Zl T (o1 + ) f ¢ () (@ O) =@ r (O + (L= m)xa (D] d¢

1
I"(01)

1 T
= f ¢ (D) (@@ =) [ () + (A = 2 ()] L.
1—‘(Ql) a

b
f ¢ () (@ (B) = 9@ [per (O + (1 =2 (D] d

As F possesses convex values, Mg, is convex and [mx; () + (1 —m)x,()] € Rgy. Thus,
mh + (L= € B(). )
Case 2. The image of a bounded set under B is bounded in C.

For r € R*, let D, = {¢ € C : ||¢|| < r} be a bounded set in C. Then for each p € B (¢) and ¢ D,,
there exists % € Rg 4 such that

_p@-p@)"' (N . 1
- Qr (p) [; T + 1) f ¢ (D (@ O) =)™ % () dL

b
f ¢ D @®d) - ' %) dg)

P(1)

1

I' (1)
1

I'(01)

+

f90’(5)(s0(b)—90(5))9‘_1%({)614-
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From the hypothesis (As2) and V7 € U, we get

_ -~ S 5; b _
Fi) < EEE [ZF = [ Y Oer oo k@l

i=1

1 b
o f ¢ Q) (@b) - o) |%<§>|d§)
1—‘(Ql) a
1 T
f ¢ () (@) -0 k()] dL
F(Ql) a
@ -e@ 3|20 (2, s o
< ler(p')‘ (ZF(QH ) ¢ @O -
i=1 1va

+

Lo o BEe - 1
v f ¢ () (e (B) - () d§)+— f ¢ () (p®) -1 de
['(o1) Ja I"(o1) a

3 (B @) = @FTT (b)) @)™ (p(b) - g (@)
S”&Hg“’”)(;'&"' QTET @ +4+1) QT+ | Tl +D

Thus
7l < 0|31 32 .

Case 3. We prove that B(D,) is equicontinuous.
Let ¢ € D, and p € B (¢). Then there is a function » € Ry 4 such that

_e@-e@y (& s (Y it
=) (;nm = [ v 0@ -e@rxwd
1 b
- 90'(5)(%0(19)—¢(§))g'_l%(§)d§)
F(Q]) a
1 T
f & (OB - e % dl, TET.
F(Ql) a

Lett;,7 € U, 71 < 12. Then

(1)

+

[P(r2) = (1))

< (¢ (1) — @) = (p(11) — p(a)*"
- IQIT (p)

SR “ o
(Zl T (o) +A) f ¢ () (@ 6) — @ () [ () d¢

1 b
o f ¢ (0 (b)) =) I (§)|d§)
F(Ql) a
1 T
+ f ¢ (O (@) =@ = (9 @) = e ") % (Dl d¢
I_‘(Ql) a

T2

1
¢ (8) (9 (12) =@ (O e (D)l d¢
F(Ql) T]

+

AIMS Mathematics Volume 7, Issue 3, 3477-3493.



3484

(0 - @) = (e - @) 31 32 ()

1T (p)

<

) 5i ! .
(Z ﬁ f @' () (@ 0) — @)y dg

i=1
1 b
’ b) — o1—1
o) f 0 () (@ (B) - 9()) d&)

”glugz (r)

T+ (@@ -e@) — @@ -e@)).

As 11 — T,, we obtain
[P(r2) = P(r1)| — 0.

So, B(D,) is equicontinuous. Based on Arzela-Ascoli theorem and above cases (2 — 3), we conclude
that B is completely continuous.
Case 4. The graph of B is closed.

Let ¢, —@., P, € B (¢,) and p, converges to p,. We prove that p, € B (¢,). Since p, € B (¢,), there
exists %, € Rg,y, such that

—~ _(QD(T)—QD(a))p_] C 0; “, 1+ -1
P = g [Z]r o f @' () (9 (6) — 9 ()™ o, () dL

b
f¢'(§)(s0(b)—90(5))9'_1%({)0’{)

1

I"(01)
1

T

Thus, we need to show that there exists %, € Rgg, such that, for each 7 € U,

f @ () (pb) =) " %, () dL, T€U.

— . @-e@)" [ 5 . el
P = —gr [;r<gl+ pn f @' () (@ (0) — () e, () de

1 b

_F(Ql)f 90'(5)(%0(1?)—(P(f))g'_]%*({)df)
1 T

+F(Q1)f ¢ Q) (@) — ) % () dL.

Define 7 : L' (U,R) — C (U, R) such that be continuous linear operator by

(@) —p@)" " [ 0; “ 1+ -1
Qr (p) (; (o, +ﬁi)fa ¢ (D) (p0) -9 () % (0)dl

¢ (D (p(b) - 90(4“))9‘_1%({)615)

%= T () (1) =

b

(o)) Ja

1 T
+—f ¢ D @®) - ' %x(dl, TV,
F(Ql) a
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Observe that

rﬁn - 5*
(1) —p@)"!
QI (p)

m 61‘ 0; ) .
(21 Tl + 1) f ¢ () (@ 0) = @O oy () = . () dg

1

I (01)
1

Ty

when n — co. So in light of Lemma (2.10) that 7~ o Ry, is a closed graph operator. Besides, we have

b
f ¢ () (@ ®) — () (4, () = % (0)) d{)

f & (O (@) = @)™ (e (O) = % () dE — 0” ,

Fﬁn eT (ﬂip’%) .

Since ¢, —¢., Lemma (2.10) gives

_ @@ ({0 . 1
- Qr (p) [; T + 1) f ¢ (D@ O) =)™ x. (D d

b
f ¢ (D (e -y % () dg)

. (1)

1

I"(01)
1

+
I'(o1)
for some », € Rpg, .

Case 5. There exists an open set N C C with ¢¢ 6B (¢) for every 6 € (0, 1) and Yo ON.
Let o € (0,1) and ¢e 5B (¢). Then there exists x € Rg 4 such that

fw’({)(SO(b)—90(5))“_1%*({)61{-

S(p (D) —p@)"!
Qr (p)
b

T Ja
6 T
[ v@w®r-p0r o

I'(o1)
<11[[3]| 32 ety

O 5 -
(Z ey f ¢ D @O) - (O d¢

6 (D) = >t

¢ (D (b) - 90(4“))9‘_1%({)614)

+

Thus, we have

@l <1|[34]| 3 Qg vr e w.

Hence, we obtain

gl .
1131 32 il

From (As3), there is a positive constant K such that ||¢|| # K. We define the set N by

N ={peC:ligll <K}.
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From previous cases, B : N — P(C) is completely continuous and u.s.c. Depending on the choice
of N, there is no ¢ € AN such that ¢e 6B (¢) for some 6 € (0,1). Therefore, We can infer that
problem (1.3) possesses at least one solution ¢ N according to Leray-Schauder theorem for multi-
valued maps. O

3.2. The Lipschitz case

In this part, we give another existence criterion for ¢-Hilfer FDI (1.3) according to new assumptions.
In what follows, we prove the existence result when F has a non convex-valued using Covitz and Nadler
theorem [52].

Let (E, d) be a metric space. Consider H, : P(E) X P(E) — R* U {co} defined by

H, (M,N) = max {supd(ﬁa, N) , supd( ~,ﬁ)},
meM eN
where d (1\7[, fl) = inf, 5 d (7, 1) and d (m, N) = inf,.y d (7, 71). Then (P, (E),H,) is a metric space
(see [53]).
Definition 3.3. A set-valued operator B:E — P, (E)is k-Lipschitz iff 4 x > 0 such that

Hy (B (#).8B () < «d (¢, a) forany ¢, a € E.

Particularly, if k < 1, then B is a contraction.

Theorem 3.4. Suppose that

(As4)F: OXR — P, (R) is such that F (., ¢) : U — P, (R) is measurable for each ¢€ R.

(AsS) Hy (F (1.¢).F(.9)) < 7(1) |¢ — ¢| for (a.e.) all T € U and ¢, ¢ € R with 7 € C (U,R*) and
d(0,F(1,0)) <7 (1) for (a.e.) all T € U.

Then the problem (1.3) has at least one solution on U if

nllFl < 1,

where 1 is defined in (3.1).

Proof. In view of Theorem IIL.6 in [8] and the assumption (As4), F has a measurable selection x :
U—- R, » € L'(U,R), as well as F is integrably bounded. Thus, Rey # ©. Now, we prove that
B : C — P(C) defined in (3.3) satisfies the assumptions of FPT of Nadler and Covitz. To show that
B (¢) is closed for any ¢ C. Let {u,},50 € B (¢) be such that u,, —» u (n — o0) in C. Then u € C and
there is %, € Rg,y, such that

(@ -p@) (< 0 " LH—1
R [Z] e f & () (0 () = (O 20 () e
1 b
_ f & (O (@) - (OP 10 (O dé)
F(Ql) a

1 T
+ —f @ () (@B) - @) "%, (0)de, VT € V.
1—‘(Ql) a
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As F possesses compact values, so there is a subsequence x, — x in L' (U, R). Consequently. » € Rg 4
and we get

Ce@-p@ (& 6 (Y o
i (1) > () = EOEE (MF(W = f ¢ ()@@ - P 2 () de
1

b
/ b) - () d
F(Ql)fa ¢ () (p®d) =)y %) K)
1

f ¢ () (@) =) x(DdL, YT € V.
I_‘(Ql) a
Hence u € B (¢).

+

Next, we show that there is a @ € (0, 1), (¢ = ||7||) such that

H, (% (¢),B (5)) < ||¢ - 5” for each ¢, ¢ € C.

Let¢, ¢ € Candp, € B (¢). Then there exists x; (1) € F (1, ¢ (1)) such that, foreach 7 € U

— @ -p@) Si i a1
PO =GR (;nm ph f @' () (@ (B) = ()™ oy () de

b

——— ' b) - gr-1 d
Fon . ¥ () (@) =@ ()" %1 () {)

1
+

" b) — el dc.
F(gl)fa @ (D) =) x (D d

By (As5), we have B B
Hy (F(7,9),F(1.9)) < F (D) |6 (1) - ¢ (7)].

Thus, there exists w (1) € F (T, 5) such that

by (1) =W < F@|p (@) =4 ()], T€T.
Constructing a set-valued map & : U — P(R) as

E@={eR: b @-W<FO|p@) -5

We can infer that the set-valued map &(r) N F (T, 5) is measurable, because %, and A = 7 |¢ - $| are
both measurable. Now, we choose %, (1) € F (T, 5) with

e (1) =22 (D < F(D) | (1) = p (7)], VT € U.
Define

@@ (K6 ()
()= O [;r<gl+ = f & () (@ (6) — () oy () de
AIMS Mathematics
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b

F( 5 ¢ () (@) =) ua (D) dC

f O () (D) — ) sy (0)d, VT € U.
F(Ql) a

As a result, we get

[P (D) -2 ()|

— p-1 2 (5,‘ O i~
<X (T)grfg ’ [Zl T (o1 + ) f ¢ () @6) =@ ey () = 2 (DN dE

b
f ¢ () (@ B) — @)™ 1 () = 22 () d§)
1—‘(Ql) a

1 T
f ¢ (D (@B =@ w1 () — %2 (D dL
1—‘(Ql) a

i () — @) (p(b) — (@) (p(b) - ¢ (a)
<l -8l 0 T 727D T T T D T TerD

Hence

o1 = B2|| < nliFl||¢ - 9] -
Analogously, interchanging the roles of ¢ and ¢, we get
Hy (B (9),B(8)) < nliFil|l¢ - ]
As B is a contraction, we conclude that it has a FP ¢ which is a solution of (1.3) according to the Covitz
and Nadler theorem. O

4. Examples

In this section, we give some special cases of FDIs to illustrate the obtained outcomes.
Consider the FDIs of the following type

HDai?%¢ (1) € F(x, +9). 7€ (a.b),
. 4.1
@ =0. 9(0) = X536 6). D
The following instances are special cases of FDIs defined by (4.1).
Example 4.1. Using the following data ¢ (1) = log7, 00 > 0,a=1,b=¢,01 = 3,6, = 3,6, = 1,
A =1, =3,0=2,0,=2in(4.1). Thus, the problem (4.1) convert to

{ HD T () e B(r,¢), T e (1,e), w2

6(1)=0, p(e) = 131179 (3) + 5316 2),
with p= 2. LetF : [1,e] X R — P (R) defined by
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1 ¢’ 1 ¢l
(7 +6exp (%) 3(¢* +2)” Vr+8lpl+1
From above data we get QO = 0.84640 # 0. Clearly F fulfills (As1) and

¢ —> F(r,¢) =

4.3)

1 - -
IE (7, )z = sup{le] : @ € F(7,9)} < =31 (M) 3208l
’ vr+g
which yields H§1H = Land 3, (I¢l) = 1. Therefore, the condition (As2) is fulfilled, and by (As3), it
found that K > 0.72503.
Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of the problem (4.2)
on|[1,e].

Example 4.2. Using the following data ¢ (1) = 7,00 - 0,a=0,b=1,0; = %, 01=3,0,=54, = i,
A = %, 0, = }1, 6, = % in (4.1). Thus, the problem (4.1) convert to
Hpr7 g (1) e F(r,4). 7€ (0,1), »
~1T 4 (1 ~3T 4 (1 (4.4)
$(0) =0, ¢(1) =330 (1) + 5356 (1).
with p = %. LetF:[0,1] xR — P(R) defined by
¢ - F(r,¢) = [exp (—¢4) +7+4, i +7+2]. 4.5)
gl + 1

From above data we get Q = —3.8241 # 0. Clearly F fulfills (As1) and
IE (7, @)l = suplel : @ € F(, )} < 6 = 31 (1) 3 (lgl])

where ‘51 H = 1 and 3, (¢ll) = 6. Therefore, the condition (As2) is valid, and by (As3), it follows that
K > 16.111.

Hence all suppositions of Theorem 3.2 hold, and so there is at least one solution of (4.4) on [0, 1].
Example 4.3. Using the following data ¢ () = 7,0, > 1,a=0,b=1,01 = 12,6, =3,6,=5,4, = 1,
A = % 6, = }1, 6, = % in (4.1). Thus, the problem (4.1) convert to

Dy g (r) € F(r.¢). T € (0. 1),
' TN (4.6)
$(0)=0, ¢(1)=3370(1)+53276 (%),
with p= 2. LetF : [0, 1] X R — P (R) given by
2 sin (¢) 1
F =0, ——= + —|. 4.7
¢ — F(1,0) [,(Tz+16) 20] @.7)
From above data we get Q = —1.1237 # 0. Obviously Hj, (F (1,9) ,F(T, 5)) < 7 (1) |¢) — ¢|, where

F(1) = oy and d (0, F (7,0)) = 35 < 7(2) for (a.e.) all 7 € [0, 1]. Additionally, we obtain [|7| = §
which leads to n||7|| = 0.55 < 1. Accordingly, all hypotheses of Theorem (3.4) are satisfied, and so

there exists at least one solution of the problem (4.6) on [0, 1].

AIMS Mathematics Volume 7, Issue 3, 3477-3493.



3490

5. Conclusions

In this article, we have considered a class of BVP’s for ¢-Hilfer-type FDIs subjected to nonlocal
IBC. The existence results have been proved by considering the kinds when the set-valued map has
convex or nonconvex values. In the case of a convex set-valued map, we have applied the Leray-
Schauder FPT, whereas the Nadler’s and Covitz’s FPT concern set-valued contractions are used in the
case of a nonconvex set-valued map. The obtained outcomes are well explained through many relevant
illustrative examples. We have settled that current results are new in the frame of ¢-Hilfer FDIs and it
covers many findings in the existing literature as a special case as shown in the Remark 1.1.

In future studies. We will try to expand the problem presented in this article to a general structure
using the Mittag-Leffler power law [21] and fractal fractional operators [54].
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