Research article Special Issues

Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications

  • Received: 06 March 2022 Revised: 21 April 2022 Accepted: 04 May 2022 Published: 19 May 2022
  • MSC : 30C45, 30C50, 30C80

  • By the principle of differential subordination and the $ q $-derivative operator, we introduce the $ q $-analog $ \mathcal{SP}^{q}_{snail}(\lambda; \alpha, \beta, \gamma) $ of certain class of analytic functions associated with the generalized Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant. Secondly, for all the above results we provide the corresponding results for the reduced classes $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $ and $ \mathcal{RP}^{q}_{snail}(\alpha, \beta, \gamma) $. Thirdly, we characterize the Bohr radius problems for the function class $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $. Lastly, we establish certain results for some new subclasses of functions defined by the neutrosophic Poisson distribution series.

    Citation: Pinhong Long, Jinlin Liu, Murugusundaramoorthy Gangadharan, Wenshuai Wang. Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications[J]. AIMS Mathematics, 2022, 7(7): 13423-13441. doi: 10.3934/math.2022742

    Related Papers:

  • By the principle of differential subordination and the $ q $-derivative operator, we introduce the $ q $-analog $ \mathcal{SP}^{q}_{snail}(\lambda; \alpha, \beta, \gamma) $ of certain class of analytic functions associated with the generalized Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant. Secondly, for all the above results we provide the corresponding results for the reduced classes $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $ and $ \mathcal{RP}^{q}_{snail}(\alpha, \beta, \gamma) $. Thirdly, we characterize the Bohr radius problems for the function class $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $. Lastly, we establish certain results for some new subclasses of functions defined by the neutrosophic Poisson distribution series.



    加载中


    [1] S. Agrawal, Coefficient estimates for some classes of functions associated with $ q $-function theory, Bull. Aust. Math. Soc., 95 (2017), 446–456. https://doi.org/10.1017/S0004972717000065 doi: 10.1017/S0004972717000065
    [2] L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math., 180 (2007), 161–168. https://doi.org/10.4064/sm180-2-5 doi: 10.4064/sm180-2-5
    [3] H. Aldweby, M. Darus, Coefficient estimates of classes of $ q $-starlike and $ q $-convex functions, Adv. Stud. Contemp. Math., 26 (2016), 21–26.
    [4] K. Ahmad, M. Arif, J. L. Liu, Convolution properties for a family of analytic functions involving $ q $-analogue of Ruscheweyh differential operator, Turkish J. Math., 43 (2019), 1712–1720.
    [5] V. Allu, H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl., 493 (2021), 124519. https://doi.org/10.1016/j.jmaa.2020.124519 doi: 10.1016/j.jmaa.2020.124519
    [6] R. M. Ali, N. K. Jain, V. Ravichandran, Bohr radius for classes of analytic functions, Results Math., 74 (2019), 1–13. https://doi.org/10.1007/s00025-019-1102-z doi: 10.1007/s00025-019-1102-z
    [7] S. A. Alkhaleefah, I. R. Kayumov, S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, Proc. Amer. Math. Soc., 147 (2019), 5263–5274. https://doi.org/10.1090/proc/14634 doi: 10.1090/proc/14634
    [8] S. Agrawa, M. R. Mohapatra, Bohr radius for certain classes of analytic functions, J. Class. Anal., 12 (2018), 109–118. https://doi.org/10.7153/jca-2018-12-10 doi: 10.7153/jca-2018-12-10
    [9] M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264. https://doi.org/10.1017/S0004972717001174 doi: 10.1017/S0004972717001174
    [10] H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc., 2 (1914), 1–5. https://doi.org/10.1112/plms/s2-13.1.1 doi: 10.1112/plms/s2-13.1.1
    [11] B. Bhowmik, N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462 (2018), 1087–1098. https://doi.org/10.1016/j.jmaa.2018.01.035 doi: 10.1016/j.jmaa.2018.01.035
    [12] C. Bénéteau, A. Dahlner, D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory, 4 (2004), 1–19. https://doi.org/10.1007/BF03321051 doi: 10.1007/BF03321051
    [13] P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften 259, New York: Springer-Verlag, 1983.
    [14] M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407
    [15] F. H. Jackson, $ q $-difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183
    [16] S. Kanas, V. S. Masih, On the behaviour of analytic representation of the generalized Pascal snail, Anal. Math. Phys., 11 (2021), 1–27. https://doi.org/10.1007/s13324-021-00506-3 doi: 10.1007/s13324-021-00506-3
    [17] I. R. Kayumov, S. Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Math., 44 (2019), 301–310. https://doi.org/10.5186/AASFM.2019.4416 doi: 10.5186/AASFM.2019.4416
    [18] P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of $ q $-starlike and $ q $-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Math., 6 (2020), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073
    [19] W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, Cambridge, Massachusetts: International Press, 1994,157–169.
    [20] S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, 1 Ed., Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817
    [21] A. T. Oladipo, Bounds for Poisson and neutrosophic Poisson distributions associated with Chebyshev polynominals, Palestine J. Math., 10 (2021), 169–174.
    [22] S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 984135. https://doi.org/10.1155/2014/984135 doi: 10.1155/2014/984135
    [23] V. I. Paulsen, G. Popescu, D. Singh, On Bohr's inequality, Proc. Lond. Math. Soc., 85 (2002), 493–512. https://doi.org/10.1112/S0024611502013692 doi: 10.1112/S0024611502013692
    [24] S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional $ q $-calculus operators, Math. Scand., 109 (2011), 55–70.
    [25] H. M. Srivastava, Operators of basic (or $ q $-) calculus and fractional $ q $-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0
    [26] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $ q $-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. https://doi.org/10.2298/FIL1909613S doi: 10.2298/FIL1909613S
    [27] H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $ q $-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15. https://doi.org/10.3390/math7020181 doi: 10.3390/math7020181
    [28] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $ q $-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. https://doi.org/10.14492/hokmj/1562810517 doi: 10.14492/hokmj/1562810517
    [29] H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. https://doi.org/10.1216/RMJ-2019-49-7-2325 doi: 10.1216/RMJ-2019-49-7-2325
    [30] H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7080706 doi: 10.3390/math7080706
    [31] H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions, RACSAM, 113 (2019), 3563–3584. https://doi.org/10.1007/s13398-019-00713-5 doi: 10.1007/s13398-019-00713-5
    [32] D. Srivastava, S. Porwal, Some sufficient conditions for Poisson distribution series associated with conic regions, Int. J. Adv. Technol. Eng. Sci., 3 (2015), 229–236.
    [33] H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $ q $-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292
    [34] D. K. Thomas, S. A. Halim, Retracted article: Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40 (2017), 1781–1790. https://doi.org/10.1007/s40840-016-0385-4 doi: 10.1007/s40840-016-0385-4
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1835) PDF downloads(75) Cited by(2)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog