By the principle of differential subordination and the $ q $-derivative operator, we introduce the $ q $-analog $ \mathcal{SP}^{q}_{snail}(\lambda; \alpha, \beta, \gamma) $ of certain class of analytic functions associated with the generalized Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant. Secondly, for all the above results we provide the corresponding results for the reduced classes $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $ and $ \mathcal{RP}^{q}_{snail}(\alpha, \beta, \gamma) $. Thirdly, we characterize the Bohr radius problems for the function class $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $. Lastly, we establish certain results for some new subclasses of functions defined by the neutrosophic Poisson distribution series.
Citation: Pinhong Long, Jinlin Liu, Murugusundaramoorthy Gangadharan, Wenshuai Wang. Certain subclass of analytic functions based on $ q $-derivative operator associated with the generalized Pascal snail and its applications[J]. AIMS Mathematics, 2022, 7(7): 13423-13441. doi: 10.3934/math.2022742
By the principle of differential subordination and the $ q $-derivative operator, we introduce the $ q $-analog $ \mathcal{SP}^{q}_{snail}(\lambda; \alpha, \beta, \gamma) $ of certain class of analytic functions associated with the generalized Pascal snail. Firstly, we obtain the coefficient estimates and Fekete-Szegö functional inequalities for this class. Meanwhile, we also estimate the corresponding symmetric Toeplitz determinant. Secondly, for all the above results we provide the corresponding results for the reduced classes $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $ and $ \mathcal{RP}^{q}_{snail}(\alpha, \beta, \gamma) $. Thirdly, we characterize the Bohr radius problems for the function class $ \mathcal{SP}^{q}_{snail}(\alpha, \beta, \gamma) $. Lastly, we establish certain results for some new subclasses of functions defined by the neutrosophic Poisson distribution series.
[1] | S. Agrawal, Coefficient estimates for some classes of functions associated with $ q $-function theory, Bull. Aust. Math. Soc., 95 (2017), 446–456. https://doi.org/10.1017/S0004972717000065 doi: 10.1017/S0004972717000065 |
[2] | L. Aizenberg, Generalization of results about the Bohr radius for power series, Stud. Math., 180 (2007), 161–168. https://doi.org/10.4064/sm180-2-5 doi: 10.4064/sm180-2-5 |
[3] | H. Aldweby, M. Darus, Coefficient estimates of classes of $ q $-starlike and $ q $-convex functions, Adv. Stud. Contemp. Math., 26 (2016), 21–26. |
[4] | K. Ahmad, M. Arif, J. L. Liu, Convolution properties for a family of analytic functions involving $ q $-analogue of Ruscheweyh differential operator, Turkish J. Math., 43 (2019), 1712–1720. |
[5] | V. Allu, H. Halder, Bohr radius for certain classes of starlike and convex univalent functions, J. Math. Anal. Appl., 493 (2021), 124519. https://doi.org/10.1016/j.jmaa.2020.124519 doi: 10.1016/j.jmaa.2020.124519 |
[6] | R. M. Ali, N. K. Jain, V. Ravichandran, Bohr radius for classes of analytic functions, Results Math., 74 (2019), 1–13. https://doi.org/10.1007/s00025-019-1102-z doi: 10.1007/s00025-019-1102-z |
[7] | S. A. Alkhaleefah, I. R. Kayumov, S. Ponnusamy, On the Bohr inequality with a fixed zero coefficient, Proc. Amer. Math. Soc., 147 (2019), 5263–5274. https://doi.org/10.1090/proc/14634 doi: 10.1090/proc/14634 |
[8] | S. Agrawa, M. R. Mohapatra, Bohr radius for certain classes of analytic functions, J. Class. Anal., 12 (2018), 109–118. https://doi.org/10.7153/jca-2018-12-10 doi: 10.7153/jca-2018-12-10 |
[9] | M. F. Ali, D. K. Thomas, A. Vasudevarao, Toeplitz determinants whose elements are the coefficients of analytic and univalent functions, Bull. Aust. Math. Soc., 97 (2018), 253–264. https://doi.org/10.1017/S0004972717001174 doi: 10.1017/S0004972717001174 |
[10] | H. Bohr, A theorem concerning power series, Proc. Lond. Math. Soc., 2 (1914), 1–5. https://doi.org/10.1112/plms/s2-13.1.1 doi: 10.1112/plms/s2-13.1.1 |
[11] | B. Bhowmik, N. Das, Bohr phenomenon for subordinating families of certain univalent functions, J. Math. Anal. Appl., 462 (2018), 1087–1098. https://doi.org/10.1016/j.jmaa.2018.01.035 doi: 10.1016/j.jmaa.2018.01.035 |
[12] | C. Bénéteau, A. Dahlner, D. Khavinson, Remarks on the Bohr phenomenon, Comput. Methods Funct. Theory, 4 (2004), 1–19. https://doi.org/10.1007/BF03321051 doi: 10.1007/BF03321051 |
[13] | P. L. Duren, Univalent functions, Grundlehren der mathematischen Wissenschaften 259, New York: Springer-Verlag, 1983. |
[14] | M. E. H. Ismail, E. Merkes, D. Styer, A generalization of starlike functions, Complex Var. Theory Appl., 14 (1990), 77–84. https://doi.org/10.1080/17476939008814407 doi: 10.1080/17476939008814407 |
[15] | F. H. Jackson, $ q $-difference equations, Amer. J. Math., 32 (1910), 305–314. https://doi.org/10.2307/2370183 doi: 10.2307/2370183 |
[16] | S. Kanas, V. S. Masih, On the behaviour of analytic representation of the generalized Pascal snail, Anal. Math. Phys., 11 (2021), 1–27. https://doi.org/10.1007/s13324-021-00506-3 doi: 10.1007/s13324-021-00506-3 |
[17] | I. R. Kayumov, S. Ponnusamy, On a powered Bohr inequality, Ann. Acad. Sci. Fenn. Math., 44 (2019), 301–310. https://doi.org/10.5186/AASFM.2019.4416 doi: 10.5186/AASFM.2019.4416 |
[18] | P. H. Long, H. Tang, W. S. Wang, Functional inequalities for several classes of $ q $-starlike and $ q $-convex type analytic and multivalent functions using a generalized Bernardi integral operator, AIMS Math., 6 (2020), 1191–1208. https://doi.org/10.3934/math.2021073 doi: 10.3934/math.2021073 |
[19] | W. C. Ma, D. Minda, A unified treatment of some special classes of univalent functions, In: Proceedings of the conference on complex analysis, Cambridge, Massachusetts: International Press, 1994,157–169. |
[20] | S. S. Miller, P. T. Mocanu, Differential subordinations: Theory and applications, 1 Ed., Boca Raton: CRC Press, 2000. https://doi.org/10.1201/9781482289817 |
[21] | A. T. Oladipo, Bounds for Poisson and neutrosophic Poisson distributions associated with Chebyshev polynominals, Palestine J. Math., 10 (2021), 169–174. |
[22] | S. Porwal, An application of a Poisson distribution series on certain analytic functions, J. Complex Anal., 2014 (2014), 984135. https://doi.org/10.1155/2014/984135 doi: 10.1155/2014/984135 |
[23] | V. I. Paulsen, G. Popescu, D. Singh, On Bohr's inequality, Proc. Lond. Math. Soc., 85 (2002), 493–512. https://doi.org/10.1112/S0024611502013692 doi: 10.1112/S0024611502013692 |
[24] | S. D. Purohit, R. K. Raina, Certain subclasses of analytic functions associated with fractional $ q $-calculus operators, Math. Scand., 109 (2011), 55–70. |
[25] | H. M. Srivastava, Operators of basic (or $ q $-) calculus and fractional $ q $-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[26] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general families of $ q $-starlike functions associated with the Janowski functions, Filomat, 33 (2019), 2613–2626. https://doi.org/10.2298/FIL1909613S doi: 10.2298/FIL1909613S |
[27] | H. M. Srivastava, Q. Z. Ahmad, N. Khan, N. Khan, B. Khan, Hankel and Toeplitz determinants for a subclass of $ q $-starlike functions associated with a general conic domain, Mathematics, 7 (2019), 1–15. https://doi.org/10.3390/math7020181 doi: 10.3390/math7020181 |
[28] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, Coefficient inequalities for $ q $-starlike functions associated with the Janowski functions, Hokkaido Math. J., 48 (2019), 407–425. https://doi.org/10.14492/hokmj/1562810517 doi: 10.14492/hokmj/1562810517 |
[29] | H. M. Srivastava, B. Khan, N. Khan, Q. Z. Ahmad, M. Tahir, A generalized conic domain and its applications to certain subclasses of analytic functions, Rocky Mountain J. Math., 49 (2019), 2325–2346. https://doi.org/10.1216/RMJ-2019-49-7-2325 doi: 10.1216/RMJ-2019-49-7-2325 |
[30] | H. M. Srivastava, N. Khan, M. Darus, M. T. Rahim, Q. Z. Ahmad, Y. Zeb, Properties of spiral-like close-to-convex functions associated with conic domains, Mathematics, 7 (2019), 1–12. https://doi.org/10.3390/math7080706 doi: 10.3390/math7080706 |
[31] | H. M. Srivastava, N. Raza, E. S. A. AbuJarad, G. Srivastava, M. H. AbuJarad, Fekete-Szegö inequality for classes of $(p, q)$-starlike and $(p, q)$-convex functions, RACSAM, 113 (2019), 3563–3584. https://doi.org/10.1007/s13398-019-00713-5 doi: 10.1007/s13398-019-00713-5 |
[32] | D. Srivastava, S. Porwal, Some sufficient conditions for Poisson distribution series associated with conic regions, Int. J. Adv. Technol. Eng. Sci., 3 (2015), 229–236. |
[33] | H. M. Srivastava, M. Tahir, B. Khan, Q. Z. Ahmad, N. Khan, Some general classes of $ q $-starlike functions associated with the Janowski functions, Symmetry, 11 (2019), 1–14. https://doi.org/10.3390/sym11020292 doi: 10.3390/sym11020292 |
[34] | D. K. Thomas, S. A. Halim, Retracted article: Toeplitz matrices whose elements are the coefficients of starlike and close-to-convex functions, Bull. Malays. Math. Sci. Soc., 40 (2017), 1781–1790. https://doi.org/10.1007/s40840-016-0385-4 doi: 10.1007/s40840-016-0385-4 |