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1. Introduction

We let A to denote the usual class of analytic functions having a Taylor’s series expansion of the
form

f (z) = z +
∞∑

k=2

akzk, (z ∈ U = {z : |z| < 1}) . (1.1)

Let 0 ≤ η < 1, S∗(η) and C(η) symbolize the classes of starlike functions of order η and convex
functions of order η respectively. InA, we classify the collection P of functions p ∈ A with p(0) = 1
and Re p(z) > 0. The class of functions in P is not univalent. However, if the family of functions in P

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.2021742


12864

are single valued then the set P is normal and compact [14, p. 136]. Babalola [4] introduced the class
of functions Lλ(η) so called λ-pseudo-starlike functions of order η as follows: A function f ∈ A is
said to be in Lλ(η), with 0 ≤ η < 1, λ ≥ 1, if and only if it satisfies the inequality

Re
z ( f ′(z))λ

f (z)
> η, z ∈ U.

Let f and g be analytic in U. Then we say that the function f is subordinate to g in U, if there exists
a Schwarz function w in U such that |w(z)| < |z| and f (z) = g(w(z)), denoted by f ≺ g. If g is univalent
in U, then the subordination is equivalent to f (0) = g(0) and f (U) ⊂ g(U).

Using the concept of subordination for holomorphic functions, Ma and Minda [12] introduced the
classes

S∗(ψ) =
{

f ∈ A :
z f
′

(z)
f (z)

≺ ψ(z)
}

and C(ψ) =
{

f ∈ A : 1 +
z f ′′(z)
f ′(z)

≺ ψ(z)
}
,

where ψ ∈ P with ψ
′

(0) > 0 maps U onto a region starlike with respect to 1 and symmetric with respect
to real axis. By choosing ψ to map unit disc on to some specific regions like parabolas, cardioid,
lemniscate of Bernoulli, booth lemniscate in the right-half of the complex plane, various interesting
subclasses of starlike and convex functions can be obtained.

For arbitrary fixed numbers C, D, −1 < C ≤ 1, −1 ≤ D < C, we denote by P(C, D) the family of
functions p(z) = 1 + p1z + p2z2 + · · · analytic in the unit disc and p(z) ∈ P(C, D) if and only if

p(z) =
1 +Cw(z)
1 + Dw(z)

,

where w(z) is the Schwarz function. Geometrically, p(z) ∈ P(C, D) if and only if p(0) = 1 and p(U)
lies inside an open disc centred with center 1−CD

1−D2 on the real axis having radius C−D
1−D2 with diameter

end points p1(−1) = 1−C
1−D and p1(1) = 1+C

1+D . On observing that w(z) = p(z)−1
p(z)+1 for p(z) ∈ P, we have

S (z) ∈ P(C, D) if and only if for some p(z) ∈ P

S (z) =
(1 +C)p(z) + 1 −C
(1 + D)p(z) + 1 − D

. (1.2)

For detailed studying on the class of Janowski functions, we refer to [8]. For −1 ≤ D < C ≤ 1
we denote by S∗(C, D) and by C(C, D) the class of Janowski starlike functions and Janowski convex
functions, defined by

S∗(C, D) :=
{

f ∈ A :
z f ′(z)
f (z)

≺
1 +Cz
1 + Dz

,−1 ≤ D < C ≤ 1
}

and

C(C, D) :=
{

f ∈ A : 1 +
z f ′(z)
f (z)

≺
1 +Cz
1 + Dz

,−1 ≤ D < C ≤ 1
}
,

respectively.
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The function p̂η,σ(z) plays the role of an extremal functions those related to these conic domain
Dk =

{
u + iv : u > η

√
(u − 1)2 + v2

}
and is given by

p̂η,σ(z) =



1+(1−2σ)z
1−z , if η = 0,

1 + 2(1−σ)
π2

(
log 1+

√
z

1−
√

z

)2
, if η = 1,

1 + 2(1−σ)
1−η2 sinh2

[(
2
π

arccos η
)

arc tanh
√

z
]
, if 0 < η < 1,

1 + 2(1−σ)
1−η2 sin

(
π

2R(t)

∫ u(z)
t

0
1

√
1−x2
√

1−(tx)2
dx

)
+ 1

η2−1 , if η > 1,

(1.3)

where u(z) = z−
√

t
1−
√

tz , t ∈ (0, 1) and t is chosen such that η = cosh
(
πR′(t)
4R(t)

)
, with R(t) is Legendre’s

complete elliptic integral of the first kind and R′(t) is complementary integral of R(t). Clearly, p̂η,σ(z)
is in P with the expansion of the form

p̂η,σ(z) = 1 + δ1z + δ2z2 + · · · (δ j = p j(η, σ), j = 1, 2, 3, · · · ), (1.4)

we get

δ1 =


8(1−σ)(arccos η)2

π2(1−η2) , if 0 ≤ η < 1,
8(1−σ)
π2 , if η = 1,

π2(1−σ)
4
√

t(η2−1)R2(t)(1+t)
, if η > 1.

(1.5)

Noor in [15, 16] replaced p(z) in (1.2) with p̂η,σ(z) and studied the impact of Janowski function on
conic regions.

For f ∈ A given by (1.1) and 0 < q < 1, the Jackson’s q-derivative operator or q-difference operator
for a function f ∈ A is defined by (see [1, 2])

Dq f (z) :=


f ′(0), if z = 0,
f (z) − f (qz)

(1 − q)z
, if z , 0.

(1.6)

From (1.6), if f has the power series expansion (1.1) we can easily see that Dq f (z) = 1 +
∞∑

k=2
[k]qakzk−1,

for z , 0, where the q-integer number [k]q is defined by

[k]q :=
1 − qk

1 − q

and note that lim
q→1−
Dq f (z) = f ′(z). Throughout this paper, we let denote

([k]q)n := [k]q[k + 1]q[k + 2]q . . . [k + n − 1]q.

The q-Jackson integral is defined by (see [7])

Iq
[
f (z)

]
:=

∫ z

0
f (t)dqt = z(1 − q)

∞∑
k=0

qk f (zqk)
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provided the q-series converges. Further observe that

DqIq f (z) = f (z) and IqDq f (z) = f (z) − f (0),

where the second equality holds if f is continuous at z = 0.

For the function f ∈ A given by (1.1) and h ∈ A of the form h(z) = z +
∞∑

k=2
Θkzk, the Hadamard

product (or convolution) of these two functions is defined by

H(z) := ( f ∗ h)(z) := z +
∞∑

k=2

akΘkzk, z ∈ U. (1.7)

Throughout our present discussion, to avoid repetition, we will assume that −1 ≤ D < C ≤ 1 and
Θk , 0 may real or complex numbers.

Motivated by the definition of λ-pseudo-starlike functions, we now introduce the following class of
functions:

Definition 1. For s, t ∈ C, with s , t, |t| ≤ 1, λ ≥ 1, 0 ≤ α ≤ 1, β ≥ 0 andH = f ∗h defined as in (1.7),
we say that the function f belongs to the class Kβ

λ (α; s, t; ψ; h; C,D) if it satisfies the subordination
condition

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ[
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]]1−β ≺
(C + 1)ψ(z) − (C − 1)
(D + 1)ψ(z) − (D − 1)

, (1.8)

where “≺” denotes subordination, ψ ∈ P and ψ which has a power series expansion of the form

ψ(z) = 1 + L1z + L2z2 + L3z3 + · · · , z ∈ U, L1 , 0. (1.9)

Remark 1. Here we list some special cases of the class Kβ
λ (α; s, t; ψ; h; C,D):

(i) If we replace h(z) = z +
∑∞

k=2 zn, s = λ = 1, β = 0 and ψ(z) = p̂η,σ(z) in Kβ
λ (α; s, t; ψ; h; C,D),

where p̂η,σ(z) is defined as in (1.3), we can get the classes η−US[C,D, σ, t] and η−US[C,D, σ, t]
defined by Arif et al. in [3] by choosing α = 0 and α = 1 respectively.

(ii) If we replace h(z) = z+
∑∞

k=2 zn, s = λ = 1, t = β = 0 and ψ(z) = p̂η,0(z) inKβ
λ (α; s, t; ψ; h; C,D),

where p̂η,0(z) is defined as in (1.3), we can get the classes η−ST [C,D] and η−UC[C,D] defined
by Noor and Malik in [16, Definition 1.3 and Definition 1.4] by choosing α = 0 and α = 1
respectively.

Several other well-known classes can be obtained as special cases ofKβ
λ (α; s, t; ψ; h; C,D), refer to [3]

and the references provided therein.

The study of geometric function theory in dual with quantum calculus was initiated by
Srivastava [20]. For recent developments pertaining to this duality theory, refer to [27] and references
provided therein. A number of families of q-extensions of analytic functions in the open unit disk U
have been defined by means of basic (or q-)calculus and considered from many distinctive prospectives
and viewpoints. Many authors, generalize and study certain subclasses of analytic functions involving
q-derivative operators and settle characteristic equations for these presumably new classes and study
numerous coefficient inequalities and also carry out appropriate connections with those in multiple

AIMS Mathematics Volume 6, Issue 11, 12863–12877.



12867

other concerning works on this subject. The study of conic regions impacted by Janowski function
involving q-derivative was dealt in detail by Srivastava et al. [21–26, 28], also see [11, 29, 30] and
references cited therein.

Using the q-derivative, we now define the following.

Definition 2. For s, t ∈ C, with s , t, |t| ≤ 1, λ ≥ 1, 0 ≤ α ≤ 1, β ≥ 0 andH = f ∗h defined as in (1.7),
we say that the function f belongs to the class Lβλ(α; s, t; ψ; h; C,D) if it satisfies the subordination
condition

[(s − t)z]1−β [DqH(z) + αqzD2
qH(z)]λ{

(1 − α)
[
H(sz) −H(tz)

]
+ αz

[
sDqH(sz) − tDqH(tz)

]}1−β ≺
(C + 1)ψ(z) − (C − 1)
(D + 1)ψ(z) − (D − 1)

, (1.10)

where “≺” denotes subordination, ψ ∈ P and ψ which has a power series expansion of the form (1.9).

Remark 2. Here we list some special cases of the class Lβλ(α; s, t; ψ; h; C,D):

(i) If we replace h(z) = z +
∑∞

k=2 zn, C = s = λ = 1, α = β = 0, D = t = −1 and ψ(z) = p̂η,0(z) in
L
β
λ(α; s, t; ψ; h; C,D), where p̂η,σ(z) is defined as in (1.3), we can get the following class Ss( p̂η)

defined by

Ss( p̂k) :=
{

f ∈ A :
2z[Dq f (z)]
f (z) − f (−z)

≺ p̂η,0(z)
}
.

The class Ss( p̂η) was defined by Olatunji and Dutta in [17, Definition 1.1].
(ii) If we replace h(z) = z +

∑∞
k=2 zn, C = s = λ = 1, β = 0, D = t = −1, q → 1− and ψ(z) = p̂η,0(z)

in Lβλ(α; s, t; ψ; h; C,D), where p̂η,σ(z) is defined as in (1.3), then we get the class Ms(α, p̂η)
recently studied by Kavitha and Dhanalakshmi [9, Definition 1.1].

We call by QLβλ(α; s, t; h; C,D) if ψ(z) is replaced with
1 + z

1 − qz
, q ∈ (0, 1) in (1.10). Remark that,

by the definition of the subordination, a function H ∈ A is said to be in QLβλ(α; s, t; h; C,D) if and
only if there exists a function w analytic in U, with w(0) = 0, and |w(z)| < 1 for all z ∈ U, such that

[(s − t)z]1−β [DqH(z) + αqzD2
qH(z)]λ{

(1 − α)
[
H(sz) −H(tz)

]
+ αz

[
sDqH(sz) − tDqH(tz)

]}1−β (1.11)

=
(C + 1)w(z) + 2 + (C − 1)qw(z)
(D + 1)w(z) + 2 + (D − 1)qw(z)

,

where q ∈ (0, 1). Class closely related toQLβλ(α; s, t; h; C,D) was studied by Srivastava et al. (see [22,
Definition 8]).

2. Preliminaries

In this section we state the results that would be used to establish our main results which can be
found in the standard text on univalent function theory.
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Lemma 1. [6, p. 56] If the function f ∈ A given by (1.1) and g given by

g(w) = w +
∞∑

k=2

bkwk (2.1)

is inverse function, then the coefficients bk, for k ≥ 2, are given by

bk =
(−1)k+1

k!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ka2 1 0 . . . 0
2ka3 (k + 1)a2 2 . . . 0
3ka4 (2k + 1)a3 (k + 2)a2 . . . 0
...

...
...

... (k − 2)
(k − 1)kak [k(k − 2) + 1] ak−1 [k(k − 3) + 2] ak−2 . . . (2k − 2)a2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.2)

Remark 3. The elements of the above determinant (2.2) are given by

Λi j =


[
(i − j + 1)k + j − 1

]
ai− j+2, if i + 1 ≥ j,

0, if i + 1 < j.

Lemma 2. [18, p. 41] If p(z) = 1+
∞∑

k=1
pkzk ∈ P, then |pk| ≤ 2 for all k ≥ 1 and the inequality is sharp

for pλ(z) =
1 + λz
1 − λz

, |λ| ≤ 1.

Lemma 3. [12] If p(z) = 1 +
∞∑

k=1
pkzk ∈ P and v is complex number, then∣∣∣p2 − vp2

1

∣∣∣ ≤ 2 max {1; |2v − 1|}

and the result is sharp for the functions

p1(z) =
1 + z
1 − z

and p2(z) =
1 + z2

1 − z2 .

3. Main results

In general, the functions in Kβ
λ (α; s, t; ψ; h; C,D) and Lβλ(α; s, t; ψ; h; C,D) are not univalent.

Hence the inverse function of f defined in the unit disc is not guaranteed. However, it is always
possible to find the inverse of a function in a smaller disk. The following theorem is based on the
assumption that if g is the inverse of f .

Throughout this paper, we let once for all

ϑn =

n∑
k=1

tk−1sn−k. (3.1)

Theorem 4. If f ∈ Kβ
λ (α; s, t; ψ; h; C,D), is given by (1.1) , then for the coefficients of g = f −1 the

following estimates hold:

|b2| ≤
2|L1|(C − D)

|2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}| |Θ2|
(3.2)
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and
|b3| ≤

2|L1|(C − D)
|3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}| |Θ3|

max {1; |2ν − 1|} (3.3)

with

ν :=
1
4

[
(D + 1)L1 + 2

(
1 −

L2

L1

)
+M +N

]
, (3.4)

where

M :=
L1(C − D)

[
4λ(λ − 1)(1 + α)2 + 4λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3}

]
2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

+
L1(C − D)(β − 1)(β − 2) {(1 − α)ϑ2 + 2αϑ3}

2

2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2 (3.5)

and

N :=
8L1(C − D)

[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3[

2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}
]2
Θ2

2

. (3.6)

Proof. If f ∈ Kβ
λ (α; s, t; ψ; h; C,D), then by the definition of subordination, there exists a function w

analytic in U, with w(0) = 0 and |w(z)| < 1, z ∈ U, such that

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ{
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]}1−β

=
(C + 1)ψ(w(z)) − (C − 1)
(D + 1)ψ(w(z)) − (D − 1)

, z ∈ U.

Thus, let ℓ ∈ P be of the form ℓ(z) = 1 +
∞∑

k=1
pkzk and defined by

ℓ(z) :=
1 + w(z)
1 − w(z)

, z ∈ U.

A simple computation shows that

w(z) =
ℓ(z) − 1
ℓ(z) + 1

=
p1z + p2z2 + p3z3 + . . .

2 + p1z + p2z2 + p3z3 + . . .

=
1
2

p1z +
1
2

(
p2 −

1
2

p2
1

)
z2 +

1
2

(
p3 − p1 p2 +

1
4

p3
1

)
z3 + · · · , z ∈ U

and considering

(C + 1)ψ (w(z)) − (C − 1)
(D + 1)ψ (w(z)) − (D − 1)

= 1 +
L1 p1(C − D)

4
z +

(C − D)L1

4

p2 − p2
1

 (D + 1)L1 + 2
(
1 − L2

L1

)
4


 z2 + · · · ,
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we have

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ[
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]]1−β = 1 +
L1 p1(C − D)

4
z

+
(C − D)L1

4

p2 − p2
1

 (D + 1)L1 + 2
(
1 − L2

L1

)
4


 z2 + · · · , z ∈ U. (3.7)

The left hand side of (3.7) will be of the form

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ[
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]]1−β

= 1 +
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]
Θ2a2z

+

{ [
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3a3

+
[
2λ(λ − 1)(1 + α)2 + 2λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3}

+
(β − 1)(β − 2)

2
{(1 − α)ϑ2 + 2αϑ3}

2
]
Θ2

2a2
2

}
z2 + · · · , z ∈ U, (3.8)

where Θk are the corresponding coefficients from the power series expansion of h, which may be real
or complex.

From (3.7) and (3.8) we obtain

a2 =
L1 p1(C − D)[

2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}
]
Θ2

(3.9)

and

a3 =
L1(C − D)[

3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}
]
Θ3

[
p2 −

1
4

(
(D + 1)L1 + 2

(
1 −

L2

L1

)
+

L1(C − D)
[
4λ(λ − 1)(1 + α)2 + 4λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3}

]
2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

+
L1(C − D)(β − 1)(β − 2) {(1 − α)ϑ2 + 2αϑ3}

2

2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

 p2
1

 . (3.10)

From (2.2) we see that b2 = −a2, and applying Lemma 2 for (3.9) we obtain the inequality (3.2).
Also, from (2.2) we have

b3 =
(−1)4

3!

∣∣∣∣∣∣ 3a2 1
6a3 4a2

∣∣∣∣∣∣
= 2a2

2 − a3

=
2L2

1 p2
1(C − D)2[

2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}
]2
Θ2

2

−
L1(C − D)[

3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}
]
Θ3

[
p2 −

1
4

(
(D + 1)L1 + 2

(
1 −

L2

L1

)
AIMS Mathematics Volume 6, Issue 11, 12863–12877.
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+
L1(C − D)

[
4λ(λ − 1)(1 + α)2 + 4λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3}

]
2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

+
L1(C − D)(β − 1)(β − 2) {(1 − α)ϑ2 + 2αϑ3}

2

2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

 p2
1


=

−L1(C − D)[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3

×

[
p2

1
4

{
(D + 1)L1 + 2

(
1 −

L2

L1

)
+M +N

}
p2

1

]
,

whereM and N are given by (3.5) and (3.6) respectively. Now using Lemma 2 we get (3.3), with ν
given by (3.4). □

Theorem 5. If f ∈ Lβλ(α; s, t; ψ; h; C,D) is given by (1.1) then for the coefficients of g = f −1 the
following estimates hold:

|b2| ≤
2|L1|(C − D)

|λ(1 + q)(1 + α) + (β − 1){(1 − α)ϑ2 + α(1 + q)ϑ3}| |Θ2|
(3.11)

and
|b3| ≤

2|L1|(C − D)∣∣∣∣λ[3]q(1 + α + qα) + (β − 1)
{
(1 − α)ϑ3 + α[3]qϑ4

}∣∣∣∣ |Θ3|
max {1; |2τ − 1|} (3.12)

with

τ :=
1
4

[
(D + 1)L1 + 2

(
1 −

L2

L1

)
+Mq +Nq

]
, (3.13)

where

Mq :=
L1(C − D)

[
λ(λ − 1)(1 + q)2(1 + 2α)2 + 2λ(1 + α)(β − 1) {(1 − α)ϑ2 + α(1 + q)ϑ3}

]
2
[
λ(1 + q)(1 + α) + (β − 1){(1 − α)ϑ2 + α(1 + q)ϑ3}

]2

+
L1(C − D)(β − 1)(β − 2) {(1 − α)ϑ2 + α(1 + q)ϑ3}

2

2
[
λ(1 + q)(1 + α) + (β − 1){(1 − α)ϑ2 + α(1 + q)ϑ3}

]2 (3.14)

and

Nq :=
2L1(C − D)

[
λ[3]q(1 + α + qα) + (β − 1)

{
(1 − α)ϑ3 + α[3]qϑ4

}]
Θ3[

λ(1 + q)(1 + α) + (β − 1){(1 − α)ϑ2 + α(1 + q)ϑ3}
]2
Θ2

2

. (3.15)

Proof. Let f ∈ Lβλ(α; s, t; ψ; h; C,D), then from (1.11) we have

1 +
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]
Θ2a2z

+

{ [
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3a3

+
[
2λ(λ − 1)(1 + α)2 + 2λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3} +
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(β − 1)(β − 2)
2

{(1 − α)ϑ2 + 2αϑ3}
2
]
Θ2

2a2
2

}
z2 + · · · = 1 +

L1 p1(C − D)
4

z+

(C − D)L1

4

p2 − p2
1

 (D + 1)L1 + 2
(
1 − L2

L1

)
4


 z2 + · · · . (3.16)

From (3.16) we can prove the assertion of Theorem 5 by the following the steps as in Theorem 4. □

The impact of the well-known Janowski function on

J(z) := 1 +
2
π2

(
log

1 +
√

z
1 −
√

z

)2

, z ∈ U, (3.17)

was recently studied by Malik et al. [13]. Following the same steps as in Theorem 1 of [10] we get

J(z) = 1 +
8
π2 z +

16
3π2 z2 + . . . , z ∈ U. (3.18)

Replacing the values of L1, L2 and L3 of Theorem 4 with the corresponding coefficients of the power
series (3.18) we obtain the next result:

Theorem 6. If f ∈ Kβ
λ (α; s, t; J ; h; C,D) is given by (1.1) with J defined as in (3.17) and for the

coefficients of g = f −1 the following estimates hold:

|b2| ≤
16(C − D)

π2 |2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}| |Θ2|

and

|b3| ≤
16(C − D)

π2 |3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}| |Θ3|
max

{
1;

4
π2

∣∣∣∣∣∣
(
D + 1 −

π2

6

)
+

8(C − D)
[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3[

2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}
]2
Θ2

2

(C − D)
[
4λ(λ − 1)(1 + α)2 + 4λ(1 + α)(β − 1) {(1 − α)ϑ2 + 2αϑ3}

]
2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

+
(C − D)(β − 1)(β − 2) {(1 − α)ϑ2 + 2αϑ3}

2

2
[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2

∣∣∣∣∣∣
 .

If we let α = β = t = 0, s = λ = 1 and h(z) = z +
∞∑

k=2

(2)k−1

(1)k−1
zk, z ∈ U, in Theorem 6, we obtain the

following result:

Corollary 7. [13, Theorem 4] If f ∈ K0
1 (0; 1, 0; J ; h; C,D) with J defined as in (3.17), is given

by (1.1), then for the coefficients of g = f −1 the following estimate hold:

|bk| ≤
4(C − D)
k(k − 1)π2 , k = 2, 3.
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We let Lb
c f to denote the well-known Carlson-Shaffer operator [5] which can be obtained by

replacing h(z) = z +
∑∞

k=2
(b)k−1
(c)k−1

zk in (1.7).

Corollary 8. If Lb
c f ∈ A satisfies the condition

[(s − t)z] [(Lb
c f (z))′ + αz(Lb

c f (z))′′][
(1 − α)

[
Lb

c f (sz) − Lb
c f (tz)

]
+ αz

[
s(Lb

c f (sz))′ − t(Lb
c f (tz))′

]] ≺ z +
√

1 + z2,

then for κ ∈ C,

|b2| ≤

∣∣∣∣∣ (c)2

(b)2

∣∣∣∣∣ 4
|2(1 + α) − {(1 − α)ϑ2 + 2αϑ3}|

and

|b3| ≤

∣∣∣∣∣ (c)3

(b)3

∣∣∣∣∣ 4
|3(1 + 2α) − {(1 − α)ϑ3 + 3αϑ4}|

max {1; |2κ − 1|}

with

κ :=
1
4

[
1 −

2(1 + 2α) {(1 − α)ϑ2 + 2αϑ3}

[2(1 + α) − {(1 − α)ϑ2 + 2αϑ3}]2 +
16(b)3[(c)2]2 [2(1 + 2α) − {(1 − α)ϑ3 + 2αϑ4}]

(c)3[(b)2]2 [2(1 + α) − {(1 − α)ϑ2 + 2αϑ3}]2

]
.

4. Fekete-Szegö inequality for the functions of Kβ
λ (α; s, t; ψ; h; C,D) and Lβλ(α; s, t; ψ; h; C,D)

We will give the solution of the Fekete-Szegö problem for the functions that belong to the classes
we defined in the first section.

Theorem 9. If f ∈ Kβ
λ (α; s, t; ψ; h; C,D) is given by (1.1), then for all µ ∈ C we have

∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|L1|(C − D)
|
[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
||Θ3|

max {1; |2ρ − 1|}

withM andN is defined as in (3.5) and (3.6) respectively, ρ is given by ρ := 1
4

[
(D+1)L1+2

(
1 − L2

L1

)
+

µN

2 +M
]
. The inequality is sharp for each µ ∈ C.

Proof. If f ∈ Kβ
λ (α; s, t; ψ; h; C,D), in view of the relations (3.9) and (3.10), for µ ∈ C we have

∣∣∣a3 − µa2
2

∣∣∣ = ∣∣∣∣∣∣ L1(C − D)[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3

[
p2 −

1
4

((D + 1)L1

+2
(
1 −

L2

L1

)
+M

)
p2

1

]
−

µL2
1 p2

1(C − D)2[
2λ(1 + α) + (β − 1){(1 − α)ϑ2 + 2αϑ3}

]2
Θ2

2

∣∣∣∣∣∣
=

∣∣∣∣∣∣ L1(C − D)[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
Θ3

[
p2 −

1
4

((D + 1)L1

+2
(
1 −

L2

L1

)
+M +

µN

2

)
p2

1

] ∣∣∣∣∣∣
≤

|L1|(C − D)
|
[
3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}

]
||Θ3|
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2 +

1
4
|p1|

2
(∣∣∣∣∣L2

L1
− (D + 1)L1 −M−

µN

2

∣∣∣∣∣ − 2
)]
. (4.1)

Now if
∣∣∣∣ L2

L1
− (D + 1)L1 −M−

µN

2

∣∣∣∣ ≤ 2, from (4.1) we obtain

∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|L1|(C − D)
|3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}| |Θ3|

. (4.2)

Further, if
∣∣∣∣ L2

L1
− (D + 1)L1 −M−

µN

2

∣∣∣∣ ≥ 2, from (4.1) we deduce

∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|L1|(C − D)
|3λ(1 + 2α) + (β − 1) {(1 − α)ϑ3 + 3αϑ4}| |Θ3|

(∣∣∣∣∣L2

L1
− (D + 1)L1 −M−

µN

2

∣∣∣∣∣). (4.3)

An examination of the proof shows that the equality for (4.2) holds if p1 = 0, p2 = 2. Equivalently,

by Lemma 3 we have p(z2) = p2(z) =
1 + z2

1 − z2 . Therefore, the extremal function of the class

K
β
λ (α; s, t; ψ; h; C,D) is given by

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ[
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]]1−β =
(C + 1)p(z2) − (C − 1)
(D + 1)p(z2) − (D − 1)

.

Similarly, the equality for (4.3) holds if p2 = 2. Equivalently, by Lemma 3 we have p(z) = p1(z) =
1 + z
1 − z

. Therefore, the extremal function in Kβ
λ (α; s, t; ψ; h; C,D) is given by

[(s − t)z]1−β [H ′(z) + αzH ′′(z)]λ[
(1 − α)

[
H(sz) −H(tz)

]
+ αz

[
sH ′(sz) − tH ′(tz)

]]1−β =
(C + 1)p1(z) − (C − 1)
(D + 1)p1(z) − (D − 1)

and the proof of the theorem is complete. □

Using Theorem 5, we can obtain the following result.

Theorem 10. If f ∈ Lβλ(α; s, t; ψ; h; C,D) is given by (1.1), then for all µ ∈ C we have

∣∣∣a3 − µa2
2

∣∣∣ ≤ 2|L1|(C − D)[
λ[3]q(1 + α + qα) + (β − 1)

{
(1 − α)ϑ3 + α[3]qϑ4

}]
Θ3

max {1; |2ϱ − 1|}

withMq and Nq is defined as in (3.14) and (3.15) respectively, ϱ is given by

ϱ :=
1
4

[
(D + 1)L1 + 2

(
1 −

L2

L1

)
+
µNq

2
+Mq

]
.

The inequality is sharp for each µ ∈ C.

If we replace h(z) = z +
∑∞

n=2 zn, C = s = λ = 1, α = β = 0, D = t = −1 and ψ(z) = p̂k,0(z) in
Theorem 10, we get the following result.
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Corollary 11. [17, Theorem 2.1] Let p̂η,σ(z) = 1 + δ1z + δ2z2 + · · · (δ j = p j(η, σ), j = 1, 2, 3, · · · ) be
defined as (1.3). If f ∈ S∗s(pη) (see Remark 2 (i)), then for µ ∈ C we have

| a3 − µa2
2 |≤

δ1

[3]q − 1
max

{
1,

∣∣∣∣∣∣δ2

δ1
−
µδ1([3]q − 1)

[2]2
q

∣∣∣∣∣∣
}
,

where δ1 is given by (1.5).

If we replace h(z) = z+
∑∞

n=2 zn, C = s = λ = 1, β = 0, D = t = −1 and ψ(z) = p̂η,0(z) in Theorem 9,
we have

Corollary 12. [9, Theorem 2.1] Let p̂η,σ(z) = 1 + δ1z + δ2z2 + · · · (δ j = p j(η, σ), j = 1, 2, 3, · · · ) be
defined as (1.3) and p(z) = 1 + p1z + p2z2 + · · · ∈ P. If f ∈ Ms(pη) (see Remark 2 (ii)), then we have

a2 =
δ1 p1

4(1 + α)
, a3 =

δ1

4(1 + 2α)

[
p2 −

p2
1

2

(
1 −

δ2

δ1

)]
and for any complex number µ,

| a3 − µa2
2 |≤

δ1

2(1 + 2α)
max

{
1,

∣∣∣∣∣δ2

δ1
−
µδ1(1 + 2α)

2(1 + α)2

∣∣∣∣∣} .
If h(z) = z +

∑∞
n=2 zn, ψ(z) = z +

√
1 + z2, t = α = β = 0, λ = s = C = 1 and D = −1 in Theorem 9,

we get the following result.

Corollary 13. [19] If f ∈ A satisfies the following condition

z f ′(z)
f (z)

≺ z +
√

1 + z2,

then |a2| ≤ 1, |a3| ≤
3
4 and |a3 − µa2

2| ≤ max
{

1
2 , |µ −

3
4 |
}
.

5. Conclusions

We unify and extend various classes of analytic function by defining λ-pseudo starlike function
using subordination and Hadamard product. New extensions were discussed in details. Further,
by replacing the ordinary differentiation with quantum differentiation, we have attempted at the
discretization of some of the well-known results. For other several results which are closely related to
the results presented here, refer to [3, 13, 22] and references provided therein.
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