Research article

Distributed adaptive event-triggered control for general linear singular multi-agent systems

  • Received: 26 September 2022 Revised: 16 February 2023 Accepted: 10 March 2023 Published: 26 April 2023
  • MSC : 37F99, 39A05, 39A06, 70E55, 70E60

  • This paper investigates the leader-following consensus of general linear singular multi-agent systems. A fully distributed adaptive event-triggered control protocol is first proposed by using the relative state estimate information between neighboring agents. Moreover, the proposed protocol does not require continuous communication between neighbors, which greatly alleviate the negative impact of communication. In addition, a novel adaptive gain is proposed, which will avoid using the Laplace of communication graph. Zeno behavior is excluded by proving that the inter-event times are lower bounded by a positive constant. Finally, a numerical simulation is proposed to verify the effectiveness and reliability of the protocol.

    Citation: Yuming Chen, Jie Gao, Luan Teng. Distributed adaptive event-triggered control for general linear singular multi-agent systems[J]. AIMS Mathematics, 2023, 8(7): 15536-15552. doi: 10.3934/math.2023792

    Related Papers:

  • This paper investigates the leader-following consensus of general linear singular multi-agent systems. A fully distributed adaptive event-triggered control protocol is first proposed by using the relative state estimate information between neighboring agents. Moreover, the proposed protocol does not require continuous communication between neighbors, which greatly alleviate the negative impact of communication. In addition, a novel adaptive gain is proposed, which will avoid using the Laplace of communication graph. Zeno behavior is excluded by proving that the inter-event times are lower bounded by a positive constant. Finally, a numerical simulation is proposed to verify the effectiveness and reliability of the protocol.



    加载中


    [1] J. Mei, W. Ren, J. Chen, Distributed consensus of second-order multi-agent systems with heterogeneous unknown inertias and control gains under a directed graph, IEEE Trans. Automat. Control, 61 (2016), 2019–2034. https://doi.org/10.1109/tac.2015.2480336 doi: 10.1109/tac.2015.2480336
    [2] L. Ding, Q. L. Han, X. H. Ge, X. M. Zhang, An overview of recent advances in event-triggered consensus of multiagent systems, IEEE Trans. Cybernet., 48 (2018), 1110–1123. https://doi.org/10.1109/tcyb.2017.2771560 doi: 10.1109/tcyb.2017.2771560
    [3] J. H. Qin, Q. C. Ma, Y. Shi, L. Wang, Recent advances in consensus of multi-agent systems: a brief survey, IEEE Trans. Ind. Electron., 64 (2017), 4972–4983. https://doi.org/10.1109/tie.2016.2636810 doi: 10.1109/tie.2016.2636810
    [4] E. Ephrati, J. S. Rosenschein, Deriving consensus in multiagent systems, Artif. Intell., 87 (1996), 21–74. https://doi.org/10.1016/0004-3702(95)00105-0 doi: 10.1016/0004-3702(95)00105-0
    [5] Y. Y. Qian, L. Liu, G. Feng, Output consensus of heterogeneous linear multi-agent systems with adaptive event-triggered control, IEEE Trans. Automat. Control, 64 (2019), 2606–2613. https://doi.org/10.1109/tac.2018.2868997 doi: 10.1109/tac.2018.2868997
    [6] Z. J. Ma, Y. Wang, X. M. Li, Cluster-delay consensus in first-order multi-agent systems with nonlinear dynamics, Nonlinear Dyn., 83 (2016), 1303–1310. https://doi.org/10.1007/s11071-015-2403-8 doi: 10.1007/s11071-015-2403-8
    [7] W. W. Yu, H. Wang, F. Cheng, X. H. Yu, G. H. Wen, Second-order consensus in multiagent systems via distributed sliding mode control, IEEE Trans. Cybernet., 47 (2017), 1872–1881. https://doi.org/10.1109/tcyb.2016.2623901 doi: 10.1109/tcyb.2016.2623901
    [8] J. Y. Yu, Y. Shi, Scaled group consensus in multiagent systems with first/second-order continuous dynamics, IEEE Trans. Cybernet., 48 (2018), 2259–2271. https://doi.org/10.1109/TCYB.2017.2731601 doi: 10.1109/TCYB.2017.2731601
    [9] Y. Y. Chen, Y. Shi, Distributed consensus of linear multiagent systems: Laplacian spectra-based method, IEEE Trans. Syst. Man Cybernet. Syst., 50 (2020), 700–706. https://doi.org/10.1109/tsmc.2017.2774841 doi: 10.1109/tsmc.2017.2774841
    [10] J. X. Xi, C. Wang, H. Liu, Z. Wang, Dynamic output feedback guaranteed-cost synchronization for multiagent networks with given cost budgets, IEEE Access, 6 (2018), 28923–28935. https://doi.org/10.1109/access.2018.2819989 doi: 10.1109/access.2018.2819989
    [11] X. Lin, Y. S. Zheng, Finite-time consensus of switched multiagent systems, IEEE Trans. Syst. Man Cybernet. Syst., 47 (2017), 1535–1545. https://doi.org/10.1109/tsmc.2016.2631659 doi: 10.1109/tsmc.2016.2631659
    [12] P. Lin, Y. M. Jia, Consensus of second-order discrete-time multi-agent systems with nonuniform time-delays and dynamically changing topologies, Automatica, 45 (2009), 2154–2158. https://doi.org/10.1016/j.automatica.2009.05.002 doi: 10.1016/j.automatica.2009.05.002
    [13] F. Xiao, L. Wang, Consensus protocols for discrete-time multi-agent systems with time-varying delays, Automatica, 44 (2008), 2577–2582. https://doi.org/10.1016/j.automatica.2008.02.017 doi: 10.1016/j.automatica.2008.02.017
    [14] K. Y. You, L. H. Xie, Network topology and communication data rate for consensusability of discrete-time multi-agent systems, IEEE Trans. Automat. Control, 56 (2011), 2262–2275. https://doi.org/10.1109/tac.2011.2164017 doi: 10.1109/tac.2011.2164017
    [15] H. Haghshenas, M. A. Badamchizadeh, M. Baradarannia, Containment control of heterogeneous linear multi-agent systems, Automatica, 54 (2015), 210–216. https://doi.org/10.1016/j.automatica.2015.02.002 doi: 10.1016/j.automatica.2015.02.002
    [16] W. F. Hu, L. Liu, G. Feng, Output consensus of heterogeneous linear multi-agent systems by distributed event-triggered/self-triggered strategy, IEEE Trans. Cybernet., 47 (2017), 1914–1924. https://doi.org/10.1109/tcyb.2016.2602327 doi: 10.1109/tcyb.2016.2602327
    [17] X. F. Liu, Y. F. Xie, F. B. Li, W. H. Gui, Admissible consensus for homogenous descriptor multiagent systems, IEEE Trans. Syst. Man Cybernet. Syst., 51 (2021), 965–974. https://doi.org/10.1109/TSMC.2018.2889681 doi: 10.1109/TSMC.2018.2889681
    [18] Y. R. Cong, Z. G. Feng, H. W. Song, S. M. Wang, Containment control of singular heterogeneous multi-agent systems, J. Franklin Inst., 355 (2018), 4629–4643. https://doi.org/10.1016/J.JFRANKLIN.2018.04.009 doi: 10.1016/J.JFRANKLIN.2018.04.009
    [19] X. X. Zhang, X. P. Liu, Z. G. Feng, Distributed containment control of singular heterogeneous multi-agent systems, J. Franklin Inst., 357 (2020), 1378–1399. https://doi.org/10.1016/j.jfranklin.2019.10.025 doi: 10.1016/j.jfranklin.2019.10.025
    [20] T. Zheng, M. He, J. X. Xi, G. B. Liu, Leader-following guaranteed-performance consensus design for singular multi-agent systems with Lipschitz nonlinear dynamics, Neurocomputing, 266 (2017), 651–658. https://doi.org/10.1016/j.neucom.2017.05.073 doi: 10.1016/j.neucom.2017.05.073
    [21] J. Wu, Q. Deng, T. Han, H. C. Yan, Bipartite output regulation for singular heterogeneous multi-agent systems on signed graph, Asian J. Control, 24 (2022), 2452–2460. https://doi.org/10.1002/asjc.2654 doi: 10.1002/asjc.2654
    [22] T. X. Zhang, H. Yu, F. Hao, A novel distributed event-triggered control with time-varying thresholds, J. Franklin Inst., 357 (2020), 4132–4153. https://doi.org/10.1016/j.jfranklin.2020.01.019 doi: 10.1016/j.jfranklin.2020.01.019
    [23] X. H. Ge, Q. L. Han, L. Ding, Y. L. Wang, X. M. Zhang, Dynamic event-triggered distributed coordination control and its applications: a survey of trends and techniques, IEEE Trans. Syst. Man Cybernet. Syst., 50 (2020), 3112–3125. https://doi.org/10.1109/TSMC.2020.3010825 doi: 10.1109/TSMC.2020.3010825
    [24] S. L. Li, X. H. Nian, Z. H. Deng, Distributed optimization of second-order nonlinear multiagent systems with event-triggered communication, IEEE Trans. Control Network Syst., 8 (2021), 1954–1963. https://doi.org/10.1109/TCNS.2021.3092832 doi: 10.1109/TCNS.2021.3092832
    [25] A. Jenabzadeh, B. Safarinejadian, Y. Lu, W. D. Zhang, Distributed event-triggered target tracking under cyber attacks, J. Franklin Inst., 359 (2022), 2377–2402. https://doi.org/10.1016/j.jfranklin.2021.12.020 doi: 10.1016/j.jfranklin.2021.12.020
    [26] K. Mohammadi, E. Azizi, J. Choi, M. T. Hamidi-Beheshti, A. Bidram, S. Bolouki, Asynchronous periodic distributed event-triggered voltage and frequency control of microgrids, IEEE Trans. Power Syst., 36 (2021), 4524–4538. https://doi.org/10.1109/TPWRS.2021.3059158 doi: 10.1109/TPWRS.2021.3059158
    [27] Z. G. Wu, Y. Xu, R. Q. Lu, Y. Q. Wu, T. W. Huang, Event-triggered control for consensus of multiagent systems with fixed/switching topologies, IEEE Trans. Syst. Man Cybernet. Syst., 48 (2018), 1736–1746. https://doi.org/10.1109/TSMC.2017.2744671 doi: 10.1109/TSMC.2017.2744671
    [28] B. Cheng, Z. K. Li, Fully distributed event-triggered protocols for linear multiagent networks, IEEE Trans. Automat. Control, 64 (2019), 1655–1662. https://doi.org/10.1109/TAC.2018.2857723 doi: 10.1109/TAC.2018.2857723
    [29] D. V. Dimarogonas, E. Frazzoli, K. H. Johansson, Distributed event-triggered control for multi-agent systems, IEEE Trans. Automat. Control, 57 (2012), 1291–1297. https://doi.org/10.1109/TAC.2011.2174666 doi: 10.1109/TAC.2011.2174666
    [30] D. D. Wang, Q. H. Zhou, W. Zhu, Adaptive event-based consensus of multi-agent systems with general linear dynamics, J. Syst. Sci. Complexity, 31 (2018), 120–129. https://doi.org/10.1007/s11424-018-7360-0 doi: 10.1007/s11424-018-7360-0
    [31] W. B. Zhang, Y. Tang, Y. R. Liu, J. Kurths, Event-triggering containment control for a class of multi-agent networks with fixed and switching topologies, IEEE Trans. Circuits Syst. I. Regul. Pap., 64 (2017), 619–629. https://doi.org/10.1109/TCSI.2016.2618944 doi: 10.1109/TCSI.2016.2618944
    [32] Z. K. Li, Z. S. Duan, Cooperative control of multi-agent systems: a consensus region approach, Boca Raton: CRC Press, 2015. https://doi.org/10.1201/b17571
    [33] R. Gao, J. S. Huang, L. Wang, Leaderless consensus control of uncertain multi-agents systems with sensor and actuator attacks, Inform. Sci., 505 (2019), 144–156. https://doi.org/10.1016/j.ins.2019.07.075 doi: 10.1016/j.ins.2019.07.075
    [34] S. L. Du, J. F. Qiao, W. Li, Leader-following consensus for nonlinear multiagent systems with large delays, Trans. Inst. Meas. Control, 41 (2019), 2223–2235. https://doi.org/10.1177/0142331218796121 doi: 10.1177/0142331218796121
    [35] Z. K. Li, G. H. Wen, Z. S. Duan, W. Ren, Designing fully distributed consensus protocols for linear multi-agent systems with directed graphs, IEEE Trans. Automat. Control, 60 (2015), 1152–1157. https://doi.org/10.1109/TAC.2014.2350391 doi: 10.1109/TAC.2014.2350391
    [36] X. W. Li, Y. Tang, H. R. Karimi, Consensus of multi-agent systems via fully distributed event-triggered control, Automatica, 116 (2020), 108898. https://doi.org/10.1016/j.automatica.2020.108898 doi: 10.1016/j.automatica.2020.108898
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1209) PDF downloads(90) Cited by(0)

Article outline

Figures and Tables

Figures(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog