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Abstract: This paper investigates the leader-following consensus of general linear singular multi-
agent systems. A fully distributed adaptive event-triggered control protocol is first proposed by using
the relative state estimate information between neighboring agents. Moreover, the proposed protocol
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1. Introduction

The consensus control is one of the most basic distributed coordination control problems in
multi-agent networks. In the past decade, the study of consensus in multi-agent systems has
attracted considerable attention from a great many scholars. It is mainly due to the potential
applications of multi-agent systems in various fields, such as physics, biology, control theory, and
engineering, etc. [1–4]. The leaderless consensus problem and the leader-following consensus problem
are the research basis of consensus. Their purpose is to design a suitable controller so that a group of
agents reach agreement on a quantity of particular interest [5]. In practical applications, the distributed
control protocol can greatly reduce the cost of information transmission and centralized control because
the controller designed for each agent only relates to available information of its neighbors. In recent
decades, some remarkable achievements have been made based on distributed consensus control for
different systems, such as first-order/second-order continuous multi-agent system [6–8], general linear
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continuous multi-agent system [9–11], discrete-time multi-agent system [12–14], heterogeneous linear
multi-agent system [15, 16], and so on. It is worth noting that there are few results of singular multi-
agent systems in the existing literature.

In general, singular multi-agent systems can be decomposed into the exponential mode part (i.e.,
the normal dynamics part) and the impulsive mode part (i.e., the specific part of the descriptor
dynamics) [17]. Singular multi-agent systems are more felicitous to describe the complicated dynamics
phenomenon than normal systems and have been extensively used to describe power systems, robot
systems, economic systems and so on. As more and more scholars study singular systems, many
excellent conclusions are drawn in this respect [18–21]. For example, the authors in [18] investigated
the containment control problem of singular heterogeneous multi-agent systems by state feedback and
output feedback control protocols. The containment control of singular heterogeneous multi-agent
systems is studied under directed interaction topology in [19]. The bipartite output regulation problem
for singular heterogeneous multi-agent systems with signed graph is considered by state feedback and
output feedback control protocols in [21]. For singular multi-agent systems, it is worth noting that the
existing distributed control strategies need to use the global information of communication topology,
that is, the eigenvalue of the Laplace matrix L. In practical applications, it may be difficult to obtain
for large-scale networks. Therefore, there are still many challenges to solve the consensus problem of
the general liner singular multi-agent systems.

Meanwhile, too many communication resources will be used to update controllers and exchange
information between neighbors. Therefore, we introduce an event-based mechanism to achieve the
consensus of the singular multi-agent systems. However, there is no research on event-based distributed
control strategy for singular systems in the existing literature, and most of the research is for general
liner non-singular multi-agent systems [22–26]. Two distributed filters are introduced to solve the
problem of distributed target tracking under cyber attacks for targets with the nonlinear dynamics [22].
In [24], the authors discussed the event-triggered distributed optimization problem of second-order
nonlinear multi-agent systems under undirected and connected communication topologies. The authors
in [25] put forward a dynamic event-triggered control law and discussed its application in smart grids
and intelligent transportation systems in detail. Based on the above, the distributed event-triggered
control strategies in those literatures all need the global information of the communication topology
and thereby are not fully distributed.

Therefore, inspired by the above papers, we are interested in the leader-following consensus of
singular multi-agent systems based on fully distributed adaptive event-triggered control law which is a
challenging problem and needs further research. The main contributions of this paper are highlighted
as follows. First, a novel fully distributed adaptive event-triggered controller is proposed to solve the
leaderless consensus problem of singular multi-agent systems, which reduce the number of information
transmission and the load and cost of the communication. Meanwhile, the proposed controller avoids
using global information by introducing an adaptive gain. Second, we further extend it to solve the
problem of leader-following consensus for general liner singular multi-agent systems. Third, it is
proved that the inter-event times are lower bounded by a positive constant to exclude the Zeno behavior.

The rest of this paper is organized as follows. Section 2 presents some preliminary information
as well as the problem formulation. Then, we propose two novel fully distributed event-triggered
strategies for the leaderless consensus and leader-following consensus and present the corresponding
results in Sections 3 and Section 4, respectively. Section 5 includes simulations that validate the
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effectiveness and feasibility of the designed control law. Section 6 contains the conclusions and the
further study.

Notations: Rm andRn×m denote the set of m-dimensional real column vectors and n×m real matrices,
respectively. Any matrix A>0 means A is positive definite. ⊗ denotes the Kronecker product. ∥·∥ denote
Euclidean vector norm or induced 2-norm for matrix. For any matrix B, λmin(B) and λ2(B) refer to the
minimum and minimum nonzero eigenvalues, respectively.

2. Problem formulation and preliminaries

2.1. Graph theory

The communication graph G among the N agents is presented by a fixed undirected graph G =
(V, ε,A) with a finite set of N nodesV = {v1, v2, ..., vN}, a set of edges ε ⊂ V ×V, and the adjacency
matrix A = [ai j] ∈ RN×N . For i, j ∈ V, where ai j > 0, if (i, j) ∈ ε; otherwise, ai j = 0. Define
the in-degree matrix as D = diag(di) ∈ RN×N with di =

∑N
j=1 ai j. The Laplacian matrix is defined as

L = D−A.

2.2. Problem formulation

In the subsection, a group of N identical agents with continuous-time general linear singular
dynamics are considered. The dynamics of the ith agent is given by

Eẋi(t) = Axi(t) + Bui(t), i ∈ {1, 2, ...,N}, (2.1)

where xi(t) ∈ Rn and ui(t) ∈ Rm are the state information and the control input of the ith agent,
respectively. E, A ∈ Rn×n and B ∈ Rn×m are constant matrices with appropriate dimensions. The
systems (2.1) is said to be singular, if rank(E)<n.

The main purpose of this article is to solve the adaptive event-triggered consensus problem for the
singular agents in the systems (2.1). The critical of the adaptive event-triggered consensus problem
is to design a fully distributed event-based consensus protocol that consist of the event-based control
laws and the triggering functions for each agent. Specifically, the goal is to solve the adaptive event-
triggered leaderless consensus problem for the singular agents in the systems (2.1) by ensuring that
lim

t→+∞
∥xi(t) − x j(t)∥ = 0, where i, j ∈ {1, 2, ...,N} and excluding Zeno behavior, i.e., the event-triggered

number in a limited time is finite.

3. Fully distributed adaptive event-triggered control law for leaderless consensus

In the section, we will design fully distributed adaptive event-triggered laws for leaderless consensus
of the singular multi-agent systems. The following assumptions and lemmas are needed.

Assumption 3.1. (E, A) is regular and (E, A, B) is stabilizable.

Remark 3.1. Assumption 3.1 ensures that the adaptive event-triggered consensus problem is well
posed. For the regularity of (E, A), it makes sure the existence and uniqueness of the solution of the
system equations (2.1) of the agents. For the stabilizable of (E, A, B), it guarantees the existence of the
distributed control law.
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Assumption 3.2. The undirected graph G is connected, i.e., there exists a root agent that has directed
paths to all other agents.

Remark 3.2. Similar to Assumption 3.1, Assumption 3.2 also guarantees that the adaptive event-
triggered consensus problem is well posed. Without this assumption, at least one isolated agent can’t
get any information from other agents.

Lemma 3.1. [18] For E, A ∈ Rn×n, and B ∈ Rn×m, suppose that (E, A) is regular and impulse free, and
(E, A, B) is R-controllable. Then, for any given positive definite matrices Q > 0, there exists a positive
define matrix P > 0 which is the solution of the following equality:

AT PE + ET PA − ET PBBT PE + ET QE = 0. (3.1)

Lemma 3.2. (Cauchys covergence criterion) [27] The sequence V(ti), i = 0, 1, 2, ... converges to
something if and only if this holds: For any ϕ > 0, there exists a positive number Wϕ such that
∀s >Wϕ,

|V(ts+1) − V(ts)| < ϕ or |

∫ ts+1

ts

V̇(t) dt| < ϕ. (3.2)

Compared with the traditional controller, we consider the following fully distributed adaptive event-
triggered controller for the ith agent:{

ui(t) = ci(t)K
∑N

j=1 ai j(x̃i(t) − x̃ j(t)),
ċi(t) =

(1−α)
(1+α)∥K

∑N
j=1 ai j(x̃i(t) − x̃ j(t))∥2,

(3.3)

where α ∈ (0, 1), the gain matrix K is to be designed; x̃i(t) ∈ Rn, which are described by (3.4), is the
state estimate value of xi(t). E ˙̃xi(t) = Ax̃i(t), t ∈ [ti

k, t
i
k+1),

x̃i(t) = xi(t), t = ti
k,

(3.4)

where the sampling instant ti
k means the kth triggering time instant of the ith agent.

Remark 3.3. The distributed control means that the ith agent only communicates with its neighbor
agents, instead of communicating with all agents in (3.3). The event-triggered control laws of [28–31]
require absolute real state information, namely xi(ti

k) and x j(t
j
k′). Especially, the adaptive gains ci j(t)

in [28] are required to satisfy ci j(t) = c ji(t) for ∀t ≥ 0. It undoubtedly complicates the triggering
mechanism, raises the computing cost, and increases the communication load, implying that it is not
feasible in some practical applications. However, the estimate value x̃i(t) of xi(t) only requires real
state information at discrete event-triggered time instants, which greatly makes up these shortcomings.
Meanwhile, in [32–35], the adaptive event-triggered consensus protocols require the global eigenvalue
information of the communication graph G. In this paper, the gain ci(t) in (3.3) is adaptively adjusted
which is based on sampling relative estimate value information to avoid using the global information
of the Laplace matrix.

We further propose the following triggering condition to determine the sampling instants:

ti
k+1 = in f {t > ti

k| fi(t) ≥ 0}, i = 1, 2, ...,N, (3.5)
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fi(t) = α∥K
N∑

j=1

ai j(zi(t) − z j(t))∥2 − ∥K
N∑

j=1

ai j(ei(t) − e j(t))∥2 +
µ

ci(t)
e−νt, (3.6)

where µ > 0, ν > 0, ei(t) = x̃i(t) − xi(t) the measurement error and the error zi(t) = xi(t) − 1
N

∑N
k=1 xk(t)

between the state of each agent and the average state of all states, respectively. Obviously, x̃i(t)− x̃ j(t) =
ei(t) − e j(t) + (zi(t) − z j(t)). Then, the time derivative of ei(t) can be written as

Eėi(t) =Ax̃i(t) − Exi(t)

=Aei(t) − ci(t)BK
N∑

j=1

ai j(x̃i(t) − x̃ j(t))

=Aei(t) − ci(t)BK
N∑

j=1

ai j(ei(t) − e j(t)) − ci(t)BK
N∑

j=1

ai j(zi(t) − z j(t)).

(3.7)

Therefore, (3.7) can be rewritten as

diag(E)ė(t) = (IN ⊗ A)e(t) − (c(t)L ⊗ BK)e(t) − (c(t)L ⊗ BK)z(t), (3.8)

where e(t) = col(e1(t), e2(t), ..., eN(t)), c(t) = diag{c1(t), c2(t), ..., cN(t)} and z(t) =

col(z1(t), z2(t), ..., zN(t)). Let εi(t) = Exi(t).
Then, the time derivative of ε(t) can be written as

ε̇(t) = (IN ⊗ A)x(t) + (c(t)L ⊗ BK)e(t) + (c(t)L ⊗ BK)z(t). (3.9)

Definition 3.1. To simplify the calculation, define éi(t) =
∑N

j=1 ai j(ei(t) − e j(t)), ´̃xi(t) =
∑N

j=1 ai j(x̃i(t) −
x̃ j(t)), źi(t) =

∑N
j=1 ai j(zi(t) − z j(t)), M = IN −

1
N 11T.

Therefore,

diag(E)ż(t) =(M ⊗ IN)ε̇(t)
=(M ⊗ A)x(t) + (Mc(t)L ⊗ BK)e(t) + (Mc(t)L ⊗ BK)z(t)
=(IN ⊗ A)z(t) + (Mc(t)L ⊗ BK)e(t) + (Mc(t)L ⊗ BK)z(t).

(3.10)

We are now ready to present the main results of this section.

Theorem 3.1. Given Assumptions 3.1, 3.2 and Lemma 3.1, the leader-following multi-agent
system (2.1) under the control protocol (3.3) with the dynamic event-triggered strategy i.e. described
as (3.5) and (3.6), will achieve leaderless consensus if α ∈ (0, 1) and K = −BT PE.

Consider the Lyapunov-like function candidate

V1(t) = (diag(E)z(t))T (L ⊗ P)diag(E)z(t) +
1
4

N∑
i=1

(ci(t) − c0)2, (3.11)

where c0 is a positive constant satisfying c0 ≥
2(1+α)(1+κ)

λ2(L)κ(1−α)(1−α−κ) with (0 < α < 1, 0 < κ < 1
α
− 1).
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The time derivative of V1(t) along the trajectory of zi(t) in (3.1) with K = −BT PE is given by

V̇1(t) =2zT (t)diag(ET )(L ⊗ P)diag(E)ż(t) +
1 − α

2(1 + α)

N∑
i=1

(ci(t) − c0)∥K ´̃xi(t)∥2

=2zT (t)diag(ET )(L ⊗ P)[(IN ⊗ A)z(t) + (Mc(t)L ⊗ BK)e(t) + (Mc(t)L ⊗ BK)z(t)]

+
1 − α

2(1 + α)

N∑
i=1

(ci(t) − c0)∥K ´̃xi(t)∥2.

(3.12)

Obviously, LM = L. Then,

V̇1(t) ≤2zT (t)(L ⊗ ET PA)z(t) − zT (t)(L ⊗ Γ)z(t) + eT (t)(Lc(t)L ⊗ Γ)e(t)

+
1 − α

2(1 + α)

N∑
i=1

(ci(t) − c̄0)∥K ´̃xi(t)∥2.
(3.13)

Moreover, let Γ = ET PBBT PE,

1 − α
2(1 + α)

N∑
i=1

ci(t)∥K ´̃xi(t)∥2

=
1 − α

2(1 + α)

N∑
i=1

ci(t)∥Kéi(t) + Kźi(t)∥2

≤
1 − α

2(1 + α)

N∑
i=1

ci(t)(2∥Kéi(t)∥2 + 2∥Kźi(t)∥2)

=
1 − α
1 + α

eT (t)(Lc(t)L ⊗ Γ)e(t) +
1 − α
1 + α

zT (t)(Lc(t)L ⊗ Γ)z(t).

(3.14)

Then, by triggering condition (3.6), we can further imply

eT (t)(Lc(t)L ⊗ Γ)e(t) ≤ αzT (t)(Lc(t)L ⊗ Γ)z(t) + Nµe−νt. (3.15)

Substituting (3.14) and (3.15) into (3.13) yields

V̇1(t) ≤ 2zT (t)(L ⊗ ET PA)z(t) +
2Nµ
1 + α

e−νt −
1 − α

2(1 + α)
c0∥K ´̃xi(t)∥2. (3.16)

It can be verified that

∥Kźi(t)∥2 =∥K ´̃xi(t) − Kéi(t)∥2

=∥K ´̃xi(t)∥2 + ∥Kéi(t)∥2 − 2 ´̃xi(t)TΓéi(t)

≤∥K ´̃xi(t)∥2 + ∥Kéi(t)∥2 +
1
κ
∥K ´̃xi(t)∥2 + κ∥Kéi(t)∥2,

(3.17)

where 0 < κ < 1/α − 1. According to (3.17) and the triggering condition (3.5), one has

−∥K ´̃xi(t)∥2 ≤κ∥Kéi(t)∥2 −
κ

1 + κ
∥Kźi(t)∥2

≤κ[α∥Kźi(t)∥2 +
µ

ci(t)
e−νt] −

κ

1 + κ
∥Kźi(t)∥2

≤
κµ

ci(t)
e−νt −

κ(1 − α − ακ)
1 + κ

∥Kźi(t)∥2.

(3.18)
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Thus, it further follows that

V̇1(t) ≤2zT (t)(L ⊗ ET PA)z(t) +
2Nµ
1 + α

e−νt +
1 − α

2(1 + α)
c0[
κµ

ci(t)
e−νt −

κ(1 − α − ακ)
1 + κ

∥Kźi(t)∥2]

≤2zT (t)(L ⊗ ET PA)z(t) − c0ϱzT (t)(L2 ⊗ Γ)z(t) + θe−νt,
(3.19)

where ϱ = κ(1−α)(1−α−ακ)
2(1+α)(1+κ) > 0 and θ = 2Nµ

1+α +
c0(1−α)κµ

2(1+α) min ci(0) > 0.
Under Assumption 3.2, the Laplacian matrix L is symmetric and a M-matrix. Thus, there exists an

orthogonal matrix U such that UT LU = Λ = diag{λ1, λ2, ..., λN}, with 0 = λ1 < λ2 ≤ λ3... ≤ λN . Let
z̄(t) = (UT ⊗ IN)z(t) = col(z̄1(t), z̄2(t), ..., z̄N(t), ) and ẑi(t) = Ez̄i(t). Then, one has

V̇1(t) ≤
N∑

i=1

λiz̄T
i (t)[ET PA + AT PE − c0ϱλiΓ]z̄i(t) + θe−νt

≤

N∑
i=1

λiz̄T
i (t)[ET PA + AT PE − Γ]z̄i(t) + θe−νt

≤ −

N∑
i=1

λiz̄T
i (t)ET QEz̄i(t) + θe−νt

= −

N∑
i=1

λiẑT
i (t)Qẑi(t) + θe−νt

≤ − λ2(L)λmin(Q)
N∑

i=1

ẑT
i (t)ẑi(t) + θe−νt,

(3.20)

where Q satisfies the equality (3.1) and λmin(Q) is the minimal eigenvalue of Q. Consider the following
function:

W1(t) = V1(t) +
1
ν
θe−νt, (3.21)

which is continuous on the interval [0,+∞). It follows from (3.20) that

Ẇ1(t) ≤ −λ2(L)λmin(Q)
N∑

i=1

ẑT
i (t)ẑi(t). (3.22)

Therefore, it can be seen from (3.22) that W1(t) is non-increasing on the interval [0,+∞). Because of
W1(t) ≥ 0, W1(t) is bounded. It implies that W1(t) is bounded, i.e., lim

t→+∞
W1(t) exists. Thus, from the

definition of W1(t), it can be seen that zi(t) and ci(t) are bounded over [0,+∞), for i, j = 1, 2, ...,N.
Since lim

t→+∞
W1(t) exists, by the Cauchy convergence criterion in Lemma 3.2, there exists a positive

number T0, such that for any T2 > T1 > T0, V1(T1) − V1(T2) < ε. Suppose that the triggering time
instants for all agents over (T1,T2) are given by t1

l < t2
l < t3

l < ... < tr
l . Then, it follows from (3.22) that
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λ2(L)λmin(Q)
∫ T2

T1

N∑
i=1

ẑT
i (s)ẑi(s) ds

=λ2(L)λmin(Q) × (
∫ t1l

T1

N∑
i=1

ẑT
i (s)ẑi(s) ds +

∫ t2l

t1l

N∑
i=1

ẑT
i (s)ẑi(s) ds + ... +

∫ T2

trl

N∑
i=1

ẑT
i (t)ẑi(t) ds)

≤ − (
∫ t1l

T1

Ẇ1(s) ds +
∫ t2l

t1l

Ẇ1(s) ds + ... +
∫ T2

trl

Ẇ1(s) ds)

=(W1(T1) −W1(T2)) < ε.

(3.23)

By the Cauchy criterion, we can conclude that lim
t→+∞
λ2(L)λmin(Q)

∫ t

0

∑N
i=1 ẑT

i (s)ẑi(s) ds exists, i.e.,

lim
t→+∞

∫ t

0
ẑT (s)ẑ(s) ds exists. Because of (3.9) and (3.10),

∫ t

0
ẑT (s)ẑ(s) ds is twice differentiable on each

interval [ti
k, t

i
k+1). Note that the boundedness of ẑ(t) and ˙̂z(t) are bounded over the interval [0,+∞).

Therefore, there exists a positive constant H, such that

sup
t∈[tik ,t

i
k+1)
|ẑT (t)˙̂z(t)| ≤ H. (3.24)

Then, by Lemma 1 in [36], i.e., the general Barbalat’s lemma, lim
t→+∞

ẑT (t)ẑ(t) = 0, which means that

lim
t→+∞

zT (t)z(t) = 0.
The proof is thus completed.
The following theorem excludes the Zeno behavior.

Theorem 3.2. Under the conditions in Theorem 3.1, the network does not exhibit the Zeno behavior
and the interval between two consecutive triggering instants for any agent is strictly positive.

Proof. For the ith agent at time interval t ∈ [ti
k, t

i
k+1), it follows from (3.8) that

N∑
i=1

d∥Kéi(t)∥2

dt
=2(Ee(t))T (LL ⊗ PBBT P)(Eė(t))

=2(Ee(t))T (LL ⊗ PBBT P)[(IN ⊗ A)e(t) − (c(t)L ⊗ BK)e(t) − (c(t)L ⊗ BK)z(t)].

(3.25)

From Theorem 3.1, we know that zi(t), ei(t) and ci(t) are bounded over [0,+∞), for i =

1, 2, ...,N. Therefore,
d∥K
∑N

j=1 ai j(ei(t)−e j(t))∥2

dt is an upper bound, which is assumed to be ϖi. Note that
∥K
∑N

j=1 ai j(ei(ti
k) − e j(ti

k))∥
2 = 0. Using these two properties, one has

∥Kéi(t)∥2 ≤ ϖi(t − ti
k), t ∈ [ti

k, t
i
k+1). (3.26)

When the triggering function (3.6) is at t = ti
k+1, there is

∥Kéi(ti
k+1)∥2 = α∥Kźi(ti

k+1))∥2 +
µ

c0
e−νt

i
k+1 . (3.27)

Combining (3.26) and (3.27), one has
µ

c0
e−νt

i
k+1 ≤ ∥Kéi(ti

k+1)∥2 ≤ ϖi(ti
k+1 − ti

k). (3.28)

According to the above inequality, it is obvious that τi
k = ti

k+1 − ti
k > 0 for any finite horizon. Thus,

no agent exhibits Zeno behavior for each agent in the system for any limited time. The proof is over.
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4. Fully distributed adaptive event-triggered control law for leader-follower consensus

In this section, we consider the event-triggered consensus problem in the presence of a leader.
Without loss of generality, assume that the agent indexed by x1(t) is the leader whose control input
u1(t) = 0. The communication graph G among the agents is assumed to satisfy the following
assumption.

Assumption 4.1. The pair (A, B) in (2.1) is stabilizable. The subgraph associated with the followers
is undirected and the graph G contains a directed spanning tree with the leader as the root.

Because the leader has no neighbors, the Laplacian matrix L can be partitioned as L =[
0 01×(N−1)

L2 L1

]
, where L1 ∈ R

(N−1)×(N−1) is symmetric and L2 ∈ R
(N−1)×1. In light of Lemma 1 in [28], L1

is positive definite.

Definition 4.1. To simplify the calculation, define èi(t) =
∑N

j=2 ai j(ei(t) − e j(t)) + ai1ei(t); `̃xi(t) =∑N
j=2 ai j(x̃i(t) − x̃ j(t)) + ai1(x̃i(t) − x1(t)); z̀i(t) =

∑N
j=2 ai j(zi(t) − z j(t)) + ai1zi(t); z̃i(t) = x̃i(t) − x1(t).

For each follower, we propose the following adaptive event-based control law:{
ui(t) = ci(t)Kèi(t),
ċi(t) =

(1−α)
(1+α)∥Kèi(t)∥2,

(4.1)

where i = 2, 3, ...,N.
We further propose the following triggering condition for determining the sampling instants:

ti
k+1 = in f {t > ti

k| fi(t) ≥ 0}, i = 2, ...,N, (4.2)

where
fi(t) = α∥Kz̀i(t)∥2 − ∥Kèi(t)∥2 +

µ

ci(t)
e−νt. (4.3)

For the ith follower, we define the measurement error ei(t) = x̃i(t) − xi(t) and the error zi(t) =
xi(t) − x1(t), respectively. Then, the time derivative of ei(t) can be written as

Eėi(t) =Ax̃i(t) − Exi(t)
=Aei(t) − ci(t)BK `̃xi(t)

=Aei(t) − ci(t)BK
N∑

j=2

hi jz̃ j(t),
(4.4)

where H = L1 + ∆ and ∆ = diag{a11, a21, ..., aN−11}. Then, (4.4) can be rewritten as

diag(E)ė(t) = (IN ⊗ A)e(t) − (c(t)H ⊗ BK)e(t) − (c(t)H ⊗ BK)z(t). (4.5)

Therefore, the time derivative of zi(t) can be written as

Eżi(t) =Axi(t) + Bui(t) − Ex1(t)
=Azi(t) + ci(t)BK `̃xi(t)

=Azi(t) + ci(t)BK
N∑

j=2

hi jz̃ j(t).
(4.6)
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Then, (4.6) can be rewritten in a compact form as

diag(E)ż(t) = (IN ⊗ A)z(t) + (c(t)H ⊗ BK)e(t) + (c(t)H ⊗ BK)z(t). (4.7)

Theorem 4.1. Given Assumption 4.1 and Lemma 3.1, the leader-following multi-agent system (2.1)
under the control protocol (4.1) with the dynamic event-triggered strategy (4.2), will achieve consensus
if α ∈ (0, 1) and K = −BT PE.

Proof. Consider the Lyapunov-like function candidate

V2(t) = (diag(E)z(t))T (H ⊗ P)diag(E)z(t) +
1
4

N∑
i=2

(ci(t) − c0)2, (4.8)

where c0 ≥
2(1+α)(1+κ)

λ2(L1)κ(1−α)(1−α−ακ) with 0 < α < 1, 0 < κ < 1
α
− 1.

The time derivative of V2(t) along the trajectory of Ezi(t) in (4.7) with K = −BT PE is given by

V̇2(t) =2zT (t)diag(ET )(H ⊗ P)diag(E)ż(t) +
1 − α

2(1 + α)

N∑
i=2

(ci(t) − c0)∥K `̃xi(t)∥2

=2zT (t)diag(ET )(H ⊗ P)[(IN ⊗ A)z(t) + (c(t)H ⊗ BK)e(t) + (c(t)H ⊗ BK)z(t)]

+
1 − α

2(1 + α)

N∑
i=2

(ci(t) − c0)∥K `̃xi(t)∥2.

(4.9)

Then, one has

V̇2(t) ≤2zT (t)(H ⊗ ET PA)z(t) − zT (t)(H ⊗ 2Γ)e(t) − zT (t)(Hc(t)H ⊗ 2Γ)z(t)

+
1 − α

2(1 + α)

N∑
i=2

(ci(t) − c0)∥K `̃xi(t)∥2

≤2zT (t)(H ⊗ ET PA)z(t) − zT (t)(Hc(t)H ⊗ Γ)e(t) − zT (t)(Hc(t)H ⊗ Γ)z(t)

+
1 − α

2(1 + α)

N∑
i=2

(ci(t) − c0)∥K `̃xi(t)∥2.

(4.10)

Moreover,
1 − α

2(1 + α)

N∑
i=2

ci(t)∥K `̃xi(t)∥2

=
1 − α

2(1 + α)

N∑
i=2

ci(t)∥Kèi(t) + Kz̀i(t)∥2

≤
1 − α

2(1 + α)

N∑
i=2

ci(t)(2∥Kèi(t)∥2 + 2∥Kz̀i(t)∥2)

=
1 − α
1 + α

eT (t)(Hc(t)H ⊗ Γ)e(t) +
1 − α
1 + α

zT (t)(Hc(t)H ⊗ Γ)z(t).

(4.11)

The triggering condition (4.3) implies

eT (t)(Hc(t)H ⊗ Γ)e(t) ≤ αzT (t)(Hc(t)H ⊗ Γ)z(t) + (N − 1)µe−νt. (4.12)
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Substituting (4.11) and (4.12) into (4.10), one gets

V̇2(t) ≤ 2zT (t)(H ⊗ ET PA)z(t) +
2(N − 1)µ

1 + α
e−νt −

1 − α
2(1 + α)

c0∥K `̃xi(t)∥2. (4.13)

It can be verified that

∥Kz̀i(t)∥2 =∥K `̃xi(t) − Kèi(t)∥2

=∥K `̃xi(t)∥2 + ∥Kèi(t)∥2 − 2 `̃xi(t)TΓèi(t)

≤∥K `̃xi(t)∥2 + ∥Kèi(t)∥2 +
1
κ
∥K `̃xi(t)∥2 + κ∥Kèi(t)∥2,

(4.14)

where κ is a positive constant which is determined later. By using of the triggering condition (4.3),
one has

−∥K `̃xi(t)∥2 ≤κ∥Kèi(t)∥2 −
κ

1 + κ
∥Kz̀i(t)∥2

≤κ[α∥Kz̀i(t)∥2 +
µ

ci(t)
e−νt] −

κ

1 + κ
∥Kz̀i(t)∥2

≤
κµ

ci(t)
e−νt −

κ(1 − α − ακ)
1 + κ

∥Kz̀i(t)∥2.

(4.15)

Thus, it further follows that

V̇2(t) ≤2zT (t)(H ⊗ ET PA)z(t) +
2(N − 1)µ

1 + α
e−νt +

1 − α
2(1 + α)

c0[
κµ

ci(t)
e−νt −

κ(1 − α − ακ)
1 + κ

∥Kz̀i(t)∥2]

≤2zT (t)(H ⊗ ET PA)z(t) − c0ϱzT (t)(H2 ⊗ Γ)z(t) + θe−νt,
(4.16)

where ϱ = κ(1−α)(1−α−ακ)
2(1+α)(1+κ) > 0 and θ = 2(N−1)µ

1+α +
c0(1−α)κµ

2(1+α) min ci(0) > 0.
Under Assumption 3.3, the Laplacian matrix H is symmetric. Thus, there exists an orthogonal

matrix U such that UT HU = Λ = diag{λ1, λ2, ..., λN−1}, with 0 = λ1 < λ2 ≤ ... ≤ λN−1. Let z̄(t) =
(UT ⊗ IN)z(t) = col(z̄1(t), z̄2(t), ..., z̄N−1(t), ). Then, it follows from condition in Theorem 3.1, ẑi(t) =
Ez̄i(t) and (3.1) that

V̇2(t) ≤
N∑

i=2

λiz̄T
i (t)[ET PA + AT PE − c0ϱλiΓ]z̄i(t) + θe−νt

≤

N∑
i=2

λiz̄T
i (t)[ET PA + AT PE − Γ]z̄i(t) + θe−νt

≤ −

N∑
i=2

λiz̄T
i (t)ET QEz̄i(t) + θe−νt

=

N∑
i=2

λiẑT
i (t)Qẑi(t) + θe−νt

≤ − λnonz(L1)λmin(Q)
N∑

i=2

ẑT
i (t)ẑi(t) + θe−νt.

(4.17)

Then, the rest of the proof is similar with in Theorem 3.1.
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Theorem 4.2. Under the conditions of Theorem 4.1, the Zeno behavior can be excluded in the leader-
following system.

The proof of Theorem 4.2 is similar with Theorem 3.2 and it is omitted the details of the proof for
brevity.

5. Illustrative examples

In this section, an example is provided to demonstrate the effectiveness of the results obtained.
Consider the singular multi-agent systems with six agents, Its communication topology is G, which is
described in Figure 1. The dynamic model of the ith agent is based on (2.1), where

E =


1 0 0
0 1 0
0 0 0

 , A =


−2 3 0
3 −4 2
−1 −3 −2

 , B =


1
2
−1

 .

Figure 1. Communication topology G.

In the trigger function (3.15), the parameter is selected as β = 0.5, γ = 0.95, µ = 8 and ν = 3. Later,
to satisfy (3.1), we use the tool of the LMI toolbox to get

P =


1.3276 0.6912 0.4233
0.6912 0.6931 0.2017
0.4233 0.2017 0.5181

 ,

Q =


1.0051 6.7933 0
−7.2368 1.3037 0

0 0 1.3356

 .
Then, for the initial conditions, ci(0) = 0 and xi(0), x̃i(0) can be selected randomly, i = 1, 2, ..., 6.

Finally, various initial conditions are simulated. The results corresponding to an initial condition
are shown in the Figures 2–4. Adaptive parameters ci(t) is described in Figure 2, which ultimately
converge to some positive values. Triggered instants under adaptive event-triggered control law in (3.6)
is presented in Figure 3, which shows that the Zeno behavior can be excluded. Figure 4 shows that the
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errors of all agents converges to zero, which proves the effectiveness and authenticity of the proposed
fully distributed adaptive event-triggered control strategy.
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Figure 2. Adaptive parameters ci(t), i = 1, 2, ..., 6.
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Figure 3. Triggered instants under adaptive event-triggered control law.
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Figure 4. The errors of all agents under adaptive event-triggered control law.

6. Conclusions and future work

In the paper, we propose the fully distributed adaptive event-based control laws to solve the
leaderless consensus problem and the leader-following consensus problem of the general linear singular
multi-agent systems. The triggering conditions and the adaptive gains depend on the relative state
estimate information between adjacent agents for each agent. Therefore, the proposed event-triggered
protocol does not require continuous communication between neighbors, which greatly alleviate the
negative impact of communication. Based on the designed adaptive gain, the protocol does not need
to know the Laplace of the communication graph which can be designed in a fully distributed. It has
been shown that Zeno behavior is avoided during triggering process. In addition, numerical examples
show the effectiveness and reliability of the method. Extending the results to heterogeneous singular
multi-agent systems is a promising future direction.
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