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Abstract: Analysis of the accuracy of estimated parameters is an important research direction. In
the article, the maximum likelihood estimation is used to estimate CMOS image noise parameters and
Fisher information is used to analyse their accuracy. The accuracies of the two parameters are different
in different situations. Two applications of it are proposed in this paper. The first one is a guide to
image representation. The standard pixel image has higher accuracy for signal-dependent noise and
higher error for additive noise, in contrast to the normalised pixel image. Therefore, the corresponding
image representation is chosen to estimate the noise parameters according to the dominant noise. The
second application of the conclusions is a guide to algorithm design. For standard pixel images, the
error of additive noise estimation will largely affect the final denoising result if two kinds of noise
are removed simultaneously. Therefore, a divide-and-conquer hybrid total least squares algorithm
is proposed for CMOS image restoration. After estimating the parameters, the total least square
algorithm is first used to remove the signal-dependent noise of the image. Then, the additive noise
parameters of the processed image are updated by using the principal component analysis algorithm,
and the additive noise in the image is removed by BM3D. Experiments show that this hybrid method
can effectively avoid the problems caused by the inconsistent precision of the two kinds of noise
parameters. Compared with the state-of-art methods, the new method shows certain advantages in
subjective visual quality and objective image restoration indicators.

Keywords: parameter accuracy; noise estimation; CMOS image; Fisher information; hybrid total
least square
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1. Introduction

Image denoising is a subject of extensive research. There are many types of image noise, mainly
including additive noise, multiplicative noise, and mixed noise, etc. For additive noise, the image
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degradation process can be formulated as

x(i, j) = s(i, j) + k0δ(i, j), (i, j) ∈ Ω, (1.1)

where x(i, j) is the pixel value of the observed image x at (i, j), s is the original image, k0δ is
independent and identically distributed (i.i.d.) Gaussian noise, δ(i, j) ∼ N(0, 1),∀(i, j) ∈ Ω, k0 is
a constant and Ω is a bounded open subset of R2 with Lipschitz boundary. The general model for
multiplicative noise is

x(i, j) = s(i, j)N(i, j), (i, j) ∈ Ω, (1.2)

where N is i.i.d. noise with mean 1. Many denoising algorithms have been proposed to solve (1.1)
and (1.2), which mainly include image filtering algorithms [1], partial differential equations [2–11],
wavelet-based methods [12–15], sparse representation methods [16], non-local means (NL-means)
based methods [17–23] and neural network-based methods [24–26], etc. Noise generated by common
image sensors usually has specific patterns. In CMOS sensors, we see a fixed-pattern of noise that is a
mixture of additive and multiplication Gaussian noise [27]

x(i, j) = s(i, j) + (k0 + k1s(i, j))δ(i, j), (i, j) ∈ Ω, (1.3)

where x(i, j) is the pixel value of the observed image x at (i, j), s is the original image, k0 and k1

are noise parameters and δ ∼ N(0, 1). There are many methods to remove the noise, which mainly
include equation-based methods [28–35], NL-means based methods [36, 37] and neural network-
based methods [38], etc. Although learning-based models achieve good results, they have a strong
dependence on the dataset. In contrast, traditional methods are more appealing to us because they do
not rely on datasets and achieve better results.

Most of the above methods assume that the noise parameters are known. However, it is unrealistic
due to the complexity of the degradation process, which greatly reduces the applicability of the
algorithm. Although there are many models for noise estimation [39–51], most of them are for additive
or multiplicative noise, and there are relatively few studies for CMOS noise estimation.

Investigation in parameter estimation, based on the maximum likelihood equation is an important
research direction [48, 52–54]. Liu et al. [48] applies the maximum likelihood theory to the noise
estimation of images. It shows that flat image blocks derive their information mainly from noise, so
their noisy parameters are estimated from weak textured image blocks by the maximum likelihood
estimation. This method has achieved good results.

Analysing the accuracy of the estimated parameters gives a clear picture of how well the parameters
match the real data. It reduces the negative impact of parameter errors on experimental results. This is
of great importance in practical applications such as image denoising. There is guidance not only for
traditional methods but also for emerging neural network denoising methods.

Fisher information, which originated in the 1930s, is an important concept in mathematical
statistics. It is a way of measuring the amount of information that an observable random variable
X carries about an unknown parameter θ of a distribution that models X. Ronald Fisher introduced
the maximum likelihood estimation method in 1912 and emphasized the role of Fisher information
in the asymptotic theory of maximum likelihood estimation [55]. He pointed out its mathematical
significance in that it could be used to estimate the variance of the maximum likelihood equation
and reflect the accuracy of the estimated parameters. Later, Fisher information was used not only in
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mathematics but also in physics [56–58] and machine learning [59, 60]. In this paper, the method
in [48] is adapted for use in the CMOS mixed noise model (1.3), and the accuracy of the estimated
parameters is analysed using Fisher information.

The remainder of the paper is organized as follows. Section 2 introduces related work on noise
estimation and section 3 presents a new estimation algorithm for CMOS mixed noise. Section 4
introduces the definition of Fisher information and gives a theoretical analysis of the noise parameter
error. In Section 5, based on the theoretical analysis of noise estimation, we present two applications
of the theorem. Subsection 5.1 and 5.2 show guidance for image representation and algorithm design
respectively. Finally, we provide some discussion and conclude the paper in Section 6.

2. Related works on noise estimation

Noise estimation methods are mainly divided into two categories: filter-based and block-based.
The key to the filter-based noise estimation method is to extract the differencing image by

convolving the noisy image with a specially designed filter. After revealing the image structure,
the filtered image is used as noise to estimate the noise level. In 1995, Donoho et al. proposed
a classic and commonly used image estimation algorithm in [39], which involves transforming the
image to the wavelet domain for estimation. The following year, Immerkaer et al. achieved their goal
by designing appropriate filters and operating them on the image, as described in [40]. Zoran and
Weiss [41] described the related work of Zoran et al. using the discrete cosine transform. In recent
years, filtering-based noise estimation algorithms are evolving and more and more related studies are
proposed [42–44]. Although this kind of method can achieve certain performances, the accuracy of the
algorithm’s estimation is greatly reduced when dealing with images with many textures.

The block-based noise estimation algorithm estimates the noise related information from the
appropriate image blocks after division. Research shows that the information of weak textured patches
mainly comes from noise, and its noise parameters can be calculated by appropriate processing. In [45],
Shin et al. proposed a block-based algorithm in which an image is split into numerous patches. Then
smooth patches are selected and the noise level is computed from them. The main issue of the method
is how to identify the weak textured or smooth blocks for various scenes in the presence of noise.

In [46], Danielyan et al. estimated image noise by stacking similar blocks in an image together
and using a 3D transform, and retaining some of the transformed information as input samples. The
essence of the algorithm is to achieve the separation of signal and noise by using the non-local self-
similarity of the image. Relatively good results are achieved. However, because the algorithm requires
block matching and related transformations, it greatly increases the running time of the algorithm and
reduces its efficiency.

In [47], Liu et al. exploited this conclusion and proposed a noise estimation algorithm for Gaussian
additive noise. The article considered that the minimum eigenvalue of the noiseless weak texture block
is 0. The noise level of the image is the minimum eigenvalue of the covariance matrix of the selected
weak texture block obtained by principal component analysis (PCA).

Liu et al. [48] proposed a parameter estimation method for a general signal-dependent noise model
that can represent different types of noise. The observed noisy pixel value can be expressed by

x(i, j) = s(i, j) + k0δ0(i, j) + k1s(i, j)γδ1(i, j), (i, j) ∈ Ω (2.1)
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where (i, j) is the coordinate position, x is the observed image, s is the original image, γ is the
exponential parameter, k0 and k1 are noise parameters, δ0, δ1 ∼ N(0, 1) and they are independent.
This is a generalized noise model that can represent various types of noise by changing the values of
k0, k1, and γ. Liu et al. [48] uses the maximum likelihood estimator to estimate noise parameters.
Firstly, based on the noise model and the independence of δ0 and δ1, the theoretical variance function
is determined as

σ2 = k2
0 + k2

1 s2γ, (2.2)

where s is the pixel value at any position in the image. Then we select M weak textured blocks
and estimate the mean ŝi and variance σ̂2

i according to the i-th observed weak textured block. The
likelihood with selected weak textured patches is

L =

M∏
i=1

1√
2π(k2

0 + k2
1 ŝ2γ

i )
exp

− σ̂2
i

2(k2
0 + k2

1 ŝ2γ
i )

 . (2.3)

The energy functional can be derived from negative log-likelihood function as

E(γ, k2
0, k

2
1) =

M∑
i=1

log(k2
0 + k2

1 ŝ2γ
i ) +

σ̂2
i

k2
0 + k2

1 ŝ2γ
i

 . (2.4)

The gradient-descent algorithm is applied here to solve the problem, and we get the estimated noise
parameters. This method also achieved good results, but the error analysis of the estimated parameters
is not given in [48]. In addition, there are many related studies [49, 50].

It is worth noting that (1.3) studied in this paper and (2.1) are different, even though they look
similar. More importantly than γ equals 1, the two types of noise in (1.3) are correlated, i.e. δ0 = δ1. In
the next section, the noise estimation method in [48] will be modified to fit our model and theoretical
proof of the method will be given.

3. Noise estimation in the CMOS image

In (1.3), the noise image x is known and s, k0, k1 are unknown. We need to estimate k0, k1 from x.
Similar to [48], the noise estimation algorithm proposed in this paper is mainly divided into four steps:
1. Determine the expression of its variance according to the noise model; 2. Select weak textured
blocks, and use their information to estimate the mean and variance; 3. Determine likelihood function;
4. Find the energy functional and the values of these parameters when the functional reaches the
minimum.

First, the image variance expression is determined. According to the image noise model (1.3), we
have

σ2 = (k0 + k1s)2. (3.1)

where s is the pixel value at any position in the image. Note the difference between (2.2) and (3.1).
In the second step, according to the gradient information of the noise image blocks, M weak textured

blocks of
√

N ×
√

N are selected and noted as {wi}, i = 1, 2, · · · ,M. For the i-th block wi, we use the
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mean values to approximate the noise-free pixel values and estimate the noise variance of the patches
with the power of the noisy block along to the eigenvector associated to the minimum eigenvalue

s̄i = 1
N

N∑
j=1

x j,

σ̂2
i = ‖uT

min · x‖
2,

(3.2)

where s̄i is the noise-free signal estimate of wi, x j is the j-th pixel value in the observed block, σ̂2
i

is the estimation of the noise variance, x is the vector representation of wi, and umin is the minimum
eigenvector of the covariance matrix of the weak textured blocks.

Then the likelihood of the weak textured blocks requires knowledge of statistics. We think of wi

as a set in which any element obeys a normal distribution with s̄i as the mean and (k0 + k1 s̄i)2 as the
variance. The square of the difference between the element in wi and s̄i is σ̂2

i . The probability function
of wi is

P(wi) =
1√

2π(k0 + k1 s̄i)2
exp

{
−

σ̂2
i

2(k0 + k1 s̄i)2

}
. (3.3)

Since k0 and k1 are unknown, (3.3) should actually be written as P(wi|k0, k1), which is the likelihood
function of k0 and k1. There is

(k0, k1) = arg max
k0,k1

P(wi|k0, k1). (3.4)

For {wi}, i = 1, 2, · · · ,M, the likelihood function is

L =

M∏
i=1

1√
2π(k0 + k1 s̄i)2

exp
{
−

σ̂2
i

2(k0 + k1 s̄i)2

}
. (3.5)

Finally, for ease of solution, we have subjected (3.5) to negative logarithmic operations and noted it
as the energy functional E(k0, k1), which is

E(k0, k1) = − log{
M∏

i=1

1√
2π(k0+k1 s̄i)2

exp
{
−

σ̂2
i

2(k0+k1 s̄i)2

}
}

=
M∑

i=1

[
1
2 log 2π(k0 + k1 s̄i)2 +

σ̂2
i

2(k0+k1 s̄i)2

] (3.6)

The objective becomes to find the values of the parameters when E(k0, k1) is minimized. Since the
constant coefficients in (3.6) have no effect on the final result, E(k0, k1) is updated to

E(k0, k1) =

M∑
i=1

[
log(k0 + k1 s̄i)2 +

σ̂2
i

(k0 + k1 s̄i)2

]
. (3.7)

We use the gradient-descent algorithm to solve the energy functional, from which the estimated results
of the two parameters k̂0 and k̂1 are obtained.

The estimation of noise parameters is an iterative process. Because of the presence of noise,
the selection of weak texture blocks is inaccurate and multiple iterations can lead to more accurate
estimates. The flowchart of the algorithm is shown in Figure 1.
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Figure 1. Flowchart of the iterative noise level estimation algorithm.

4. Error analysis of noise parameters

The error analysis is given below using the Fisher information.
Let X = (X1, X2, . . . , Xn)T ∼ f (x, θ), θ ∈ Θ ⊂ Rp be a Cramer-Rao regularity distribution family,

X1, X2, . . . , Xn be i.i.d, and X1 ∼ f (x1, θ). The logarithm of the density function is l(θ, x1) = log f (x1, θ),
and its derivative with respect to the variable θ is S (x1, θ) = l̇(θ, x1) =

∂ log f (x1,θ)
∂θ

. Then the expectation
and variance of θ are

Eθ[l̇(θ, x1)] = 0,
Varθ[l̇(θ, x1)] = Eθ[−l̈(θ, x1)] = i(θ).

Further, since X ∼ f (x, θ) =
n∏

i=1
f (xi, θ), we have

L(θ) = L(θ, x) = log f (x, θ) =

n∑
i=1

l(θ, xi).

The derivative of the above equation to θ has the expectation and variance

Eθ[L̇(θ)] = Eθ[S (X, θ)] = 0,
Varθ[L̇(θ)] = Eθ[−L̈(θ)] = I(θ) = ni(θ).

Definition 1 (Fisher Information). i(θ) is the Fisher information of X1, and I(θ) is the Fisher
information of X.

We can derive the relevant properties of the maximum likelihood estimator from Fisher information.
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Proposition 1 (Strong Consistency). Let X = (X1, X2, . . . , Xn)T ∼ f (x, θ), θ ∈ Θ ⊂ Rp be a Cramer-Rao
regularity distribution family, X1, X2, . . . , Xn be i.i.d, and Θ ⊂ Rp be an open set. Then the likelihood
function L̇(θ) = 0 must have a strongly consistent solution θ̂n(X) = θ̂(X1, X2, . . . , Xn) when n → +∞.
That is, for θ0 ∈ Θ there is

Pθ0{X : lim
n→+∞

θ̂n(X) = θ0} = 1, θ0 ∈ Θ.

Proposition 2 (asymptotic normality). Let X = (X1, X2, . . . , Xn)T ∼ f (x, θ), θ ∈ Θ ⊂ Rp be a Cramer-
Rao regularity distribution family, X1, X2, . . . , Xn be i.i.d, and Θ ⊂ Rp be an open set. Assume that the
likelihood function L̇(θ) = 0 has a consistent solution θ̂n(X) = θ̂(X1, X2, . . . , Xn) when n → +∞, and
L(3)(θ) exists and is continuous in Θ. Then θ̂n(X) is the best asymptotic normal estimate of θ, and

√
n(θ̂n − θ0)

L
−→ N(0, i−1(θ0)).

Using the above propositions, we can derive the variance of the maximum likelihood estimator.

Corollary 1. The asymptotic normality holds for ∀θ ∈ Θ, i.e.
√

n(θ̂n−θ)
L
−→ N(0, i−1(θ)),

√
n(θ̂n−θ) =

Op(1) and Varθ[
√

nθ̂n(X)]→ i−1(θ), ∀θ ∈ Θ.

It is worth noting that ∀θ ∈ Θ, Varθ[
√

nθ̂n(X)]→ i−1(θ), and I(θ) = ni(θ), so Varθ[θ̂n(X)]→ I−1(θ).
The parameters obtained by the maximum likelihood estimation all satisfy asymptotic normality,

which means that the parameters converge uniformly to normal distributions. The error increases as
the standard deviation increases. According to the above propositions and corollary, we can obtain that
the variances of k̂0 and k̂1 estimated with (3.7) satisfy the following asymptotic convergence.

Theorem 3. Let ai = 2( 1
(k0+k1 s̄i)2 −

3σ̂2
i

(k0+k1 s̄i)4 ). When the number of samples n → ∞, k0 and k1 estimated
using (3.7) satisfy

Var[k0] →

M∑
i=1

ai s̄2
i

(
M∑

i=1
ai)(

M∑
i=1

ai s̄2
i )−(

M∑
i=1

ai s̄i)2
,

Var[k1] →

M∑
i=1

ai

(
M∑

i=1
ai)(

M∑
i=1

ai s̄2
i )−(

M∑
i=1

ai s̄i)2
.

Proof. The Fisher information of the sample is I(k) = Ek[−Ë(k0, k1)], and

Ë(k0, k1) =

[
Ëk0k0 Ëk0k1

Ëk1k0 Ëk1k1

]
.

It is necessary to find second order partial derivatives of E(k0, k1)

Ëk0k0 = 2
M∑

i=1
( −1

(k0+k1 s̄i)2 +
3σ̂2

i
(k0+k1 s̄i)4 ),

Ëk0k1 = Ëk1k0 = 2
M∑

i=1
( −s̄i

(k0+k1 s̄i)2 +
3σ̂2

i s̄i

(k0+k1 s̄i)4 ),

Ëk1k1 = 2
M∑

i=1
( −s̄2

i
(k0+k1 s̄i)2 +

3σ̂2
i s̄2

i
(k0+k1 s̄i)4 ).
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So the Hessian matrix is

Ë(k0, k1) =

[
Ëk0k0 Ëk0k1

Ëk1k0 Ëk1k1

]
=


2

M∑
i=1

( −1
(k0+k1 s̄i)2 +

3σ̂2
i

(k0+k1 s̄i)4 ) 2
M∑

i=1
( −s̄i

(k0+k1 s̄i)2 +
3σ̂2

i s̄i

(k0+k1 s̄i)4 )

2
M∑

i=1
( −s̄i

(k0+k1 s̄i)2 +
3σ̂2

i s̄i

(k0+k1 s̄i)4 ) 2
M∑

i=1
( −s̄2

i
(k0+k1 s̄i)2 +

3σ̂2
i s̄2

i
(k0+k1 s̄i)4 )

 .
We can get the Fisher information of samples as

I(k) =


2

M∑
i=1

( 1
(k0+k1 s̄i)2 −

3σ̂2
i

(k0+k1 s̄i)4 ) 2
M∑

i=1
( s̄i

(k0+k1 s̄i)2 −
3σ̂2

i s̄i

(k0+k1 s̄i)4 )

2
M∑

i=1
( s̄i

(k0+k1 s̄i)2 −
3σ̂2

i s̄i

(k0+k1 s̄i)4 ) 2
M∑

i=1
( s̄2

i
(k0+k1 s̄i)2 −

3σ̂2
i s̄2

i
(k0+k1 s̄i)4 )

 .
Because ai = 2( 1

(k0+k1 s̄i)2 −
3σ̂2

i
(k0+k1 s̄i)4 ),

I(k) =


M∑

i=1
ai

M∑
i=1

ai s̄i

M∑
i=1

ai s̄i

M∑
i=1

ai s̄2
i

 .
The inverse of I(k) is

I−1(k) =


M∑

i=1
ai s̄2

i −
M∑

i=1
ai s̄i

−
M∑

i=1
ai s̄i

M∑
i=1

ai


(

M∑
i=1

ai)(
M∑

i=1
ai s̄2

i ) − (
M∑

i=1
ai s̄i)2

.

When n→ ∞, there is

Var[k0] →

M∑
i=1

ai s̄2
i

(
M∑

i=1
ai)(

M∑
i=1

ai s̄2
i )−(

M∑
i=1

ai s̄i)2
,

Var[k1] →

M∑
i=1

ai

(
M∑

i=1
ai)(

M∑
i=1

ai s̄2
i )−(

M∑
i=1

ai s̄i)2
.

�

The difference between the above two is s̄2
i on the numerator. Theorem 3 has very important

implications for our study.

5. Application of Theorem 3

Theorem 3 shows that the precision of the parameters obtained differs for different estimation
objects and has different effects on the results. Therefore the precision of the parameters obtained
from Theorem 3 is an important guide to our work. This section focuses on the application of the
Theorem 3.
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5.1. Guidance for image representation

Popular image processing software usually represents a pixel in 8 bits, so this pixel depth allows
256 different intensities to be recorded. In a greyscale or colour image, a pixel can take on any value
between 0 and 255, with each value representing a different brightness. This is known as the standard
representation of an image. To facilitate the representation, there is a normalisation of the image
pixels. The intensity of a pixel is expressed within a given range between a minimum and a maximum,
inclusive. This range is represented in an abstract way as a range from 0 and 1, with any fractional
values in between. We use each of these two images as an example to analyse the effect of the image
pixel interval on the noise estimation results.

For a standard pixel image, most of the pixel values are greater than 1. This means that the mean s̄i

of any image block in the image is greater than 1. There must be s̄2
i > 1, so the variance of k0 is greater

than the variance of k1, i.e. the accuracy of the multiplicative noise parameter is greater than that of the
additive noise at this point.

For normalized images with pixel values less than or equal to 1, the mean value of most of the image
blocks in the image s̄i < 1. There must be s̄2

i < 1, so the variance of k0 is less than the variance of k1,
and the corresponding parameter accuracy is the opposite.

In order to verify the theoretical results, this paper uses different image patterns to represent the
images in the standard test set separately. The noise with different parameters is also added and
estimated with (3.7).

For images at standard pixels, several sets of noise with different parameters are selected in this
paper to analyse the estimation accuracy of the parameters k0 and k1 when the image pixel values are
between 0 and 255. Figure 2 shows the results. It can be seen that the error of the estimation result of
additive noise gets larger as the noise level increases. In other words, the estimated signal-dependent
noise parameter k1 is more accurate, while the additive noise parameter k0 has a larger error.
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Figure 2. Standard image noise estimation results. ∗ denotes the actual input parameters, ◦
denotes the estimated parameters, and the color indicates the correspondence between input
and output.

For the images after normalisation, the ratio of the parameter to 255 in the above experiments is
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used as the noise parameter in this paper to analyse the estimation accuracy of the parameters k0 and
k1 when the image pixel values are between 0 and 1, respectively. The results are shown in Figure 3.
As can be seen from the graph, the accuracy of the two noise parameters of the normalised image is
the opposite of that of the standard image.
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Figure 3. Normalised image noise estimation results. ∗ denotes the actual input parameters,
◦ denotes the estimated parameters, and the color indicates the correspondence between input
and output.

The above results enlighten us that different representations are taken to estimate image parameters
for different images. For example, the additive noise in the image dominates in the case of relatively
large additive noise parameters. In order to make the denoising better, we want it to be estimated more
accurately. In this case, the normalised image should be selected to estimate the noise parameters.
Similarly, when the multiplicative noise parameter is relatively large, the standard image is chosen to
estimate the noise parameter.

In this paper, two types of experiments are conducted on randomly selected images from the
standard test image set. In one category, the additive noise level is relatively small while the
multiplicative noise is large; in the other category, appropriate parameters are set to make the additive
noise level relatively large while the multiplicative noise is small. The denoising experiments were
carried out using the method in [36], and the PSNR values were used to measure the effectiveness of
the denoising. The experimental results are shown in Table 1.

Table 1. Comparison of PSNR with different noise parameters and different image
representations.

Parameter setting Noisy Standard Normalised
k0 = 5, k1 = 1 5.556 20.621 14.961

k0 = 5, k1 = 0.5 11.560 24.822 24.652
k0 = 25, k1 = 0.05 19.903 28.299 28.332
k0 = 25, k1 = 0.1 19.107 27.924 28.331

The above experimental results are in line with our expectations and prove our conclusions correct.
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5.2. Guidance for algorithm design

The two parameters of the standard image have different accuracies. Removing both types of noise
at the same time may have a negative impact on the results of the image. Therefore, we propose
a divide-and-conquer hybird total least squares algorithm (HTLS). Since image noise is mixed, we
suggest to remove the signal-dependent noise first and then the additive noise.

5.2.1. HTLS

1. Signal-Dependent Noise Removal

Let an intermediate variable y be

y(i, j) = s(i, j) + k0δ(i, j), (i, j) ∈ Ω. (5.1)

We estimate the image y containing only additive noise from the noisy image x by TLS.
According to (5.1), we know s(i, j) = y(i, j) − k0δ(i, j), then (1.3) can be rewritten as

x(i, j) = y(i, j) + k1(y(i, j) − k0δ(i, j))δ(i, j), (i, j) ∈ Ω. (5.2)

We need to estimate y from x.
Select the top n image blocks that are most similar to the target blocks in the noisy image, pull these

matrices into column vectors, and reconstitute the matrix X with X = [x1, . . . , xn], where xi ∈ R
m, i =

1, 2, . . . , n are the column vectors of the image blocks. The total least square problem is

min
α
‖E, e0‖

2
F ,

s.t. y0 + e0 = (X + E)α,
(5.3)

where e0 and E are the perturbations of y0 and X, respectively, and y0 is a vector arranged according
to the corresponding block of the target block x0 in y.

For solving the optimization problem (5.3), we need to know the singular value decomposition of
[X, y0], i.e. [X, y0] = UΣVT . But y0 is unknown. Since x and y have the same expectation, it is
necessary to use their statistical information. We define ε{·} as the expectation operator and define

P = [X, y0]T [X, y0] = (UΣVT )T (UΣVT ) = VΣ2VT .

When m � n + 1, P ≈ ε{P}, so

P = ε{[X, y0]T [X, y0]}

=

[
ε{XT X} ε{XT y0}

ε{yT
0 X} ε{yT

0 y0}

]
.

Let yi be a column vector arranged by the image block in y at the same position as xi, and Y =

[y1, . . . , yn], where yi ∈ R
m, i = 1, 2, . . . , n, and let PXX = ε{XT X}, so

P =

[
PXX YT y0

yT
0 Y yT

0 y0

]
, (5.4)
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and

PXX = YT Y − {k0k1

m∑
a=1

(ya,i + ya, j)}i, j + k2
1

m∑
a=1

diag(y2
a,1, . . . , y

2
a,n) + 2mk2

0k2
1 I + mk2

0k2
11n, (5.5)

where 1n is a matrix of ones.
When m � n + 1, we approximate

∑
a ya,i as

∑
a xa,i, which can be computable. It is a fact that the

i-th diagonal entry of YT Y is
∑

a y2
a,i. According to (5.5), YT Y can be estimated using the following

procedure.

• Compute PXX = XT X;

• Compute PXX + {k0k1

m∑
a=1

(ya,i + ya, j)}i, j − 2mk2
0k2

1 I − mk2
0k2

1;

• Divide diagonal elements of the above matrix by (1 + k2
1).

YT y0, yT
0 Y and yT

0 y0 in (5.4) can be estimated from YT Y. The new αTLS is computed from αTLS =

−[v1,n+1, . . . , vn,n+1]T v−1
n+1,n+1, where [v1,n+1, . . . , vn+1,n+1]T is the right singular vector corresponding to

the minimum singular value σn+1 of [X, y0] and given by the eigen decomposition of P in (5.4).

2. Additive Noise Removal

Additive noise estimation algorithms usually achieve better results. The above process removes the
signal-dependent noise from the image to get y, and

y(i, j) = s(i, j) + k′0δ
′(i, j), (i, j) ∈ Ω,

where k′0 is the noise parameter of the new image, which can be estimated directly with [47].
We can use the existing algorithms to remove the additive noise. BM3D, which is more classical

and has a better denoising effect, is one of them and can be used in the second step of HTLS.

3. HTLS

The proceeds of HTLS are summarized as follows:
Step 1. Signal-dependent noise removal.

a) Signal-dependent noise estimation. We use the noise estimation algorithm based on weak
textured blocks to estimate the noise parameters. We need to determine the noise variance expression
of the image and ML estimator, and then find k0 and k1.

b) Signal-dependent noise removal. The original image and the additive noise are viewed as a unit
y, and the noise parameters estimated earlier are used to solve y.
Step 2. Additive noise removal.

a) Additive noise estimation. k0 is directly estimated by PCA using selected weak textured blocks.
b) Additive noise removal. BM3D is used to remove the additive noise and the noise-free image s

is obtained.
The algorithm is illustrated in Figure 4.
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Figure 4. Folwchart of HTLS.

5.2.2. Experimental results

We show the experimental results of HTLS. All experiments were implemented on a 64-bit
Windows 10 operating system. We measure the quality of the restored images by computing the peak
signal-to-noise ratio (PSNR) value.

We randomly select four images from the standard test image set for simulation experiments. They
are shown in Figure 5. The first two images are 256 × 256 and the next two images are 512 × 512.

(a) House (b) Peppers (c) Jetplane (d) Livingroom

Figure 5. Test images.

Adding mixed noise with different noise levels, we can obtain 20 noise images. In this paper, the
proposed algorithm is compared with two different algorithms: TLS [36] and Y. Qiu’s algorithm [37].
The noise parameters required by the algorithms in [36] are estimated based on the ML estimator. The
noise levels set in this paper are (k0, k1) = (5, 0.05), (15, 0.05), (25, 0.05), (15, 0.01), (15, 0.1), and the
experimental results are shown in Table 2.

From Table 2, we can obtain that for different types of images, the denoising effect of HTLS
proposed in this paper is improved compared to TLS. It is worth noting that the adaptive image
denoising model proposed by Y. Qiu et al. in [37] has a better denoising effect when the image has
obvious bright and dark divisions, but the denoising effect becomes worse when the image brightness
division is not obvious. We conducted a large number of experiments and the results are consistent
with the above findings.

Figure 6 gives an example denoising results for image jetplane corrupted by signal-dependent noise

AIMS Mathematics Volume 8, Issue 6, 14522–14540.



14535

Table 2. Denoising performance (PSNR) of different algorithms with different noise
parameters.

(5,0.05) (15,0.05) (25,0.05) (15,0.01) (15,0.1)

[36] [37] HTLS [36] [37] HTLS [36] [37] HTLS [36] [37] HTLS [36] [37] HTLS

house 36.17 36.49 36.39 32.99 33.92 33.84 31.07 32.22 32.09 34.33 35.30 35.32 31.64 32.35 32.13

peppers 34.23 34.66 34.44 30.88 31.55 31.49 28.91 29.56 29.53 32.20 33.08 33.13 29.61 29.96 29.80

jetplane 34.49 34.61 34.67 31.60 31.95 31.97 29.83 30.24 30.25 33.18 33.60 33.65 30.18 30.34 30.39

livingroom 32.82 33.24 33.17 29.67 30.37 30.39 27.93 28.60 28.63 30.91 31.60 31.69 28.50 29.12 29.41

with k0 = 25 and k1 = 0.05. It shows that the proposed method is visually better than other methods
used for comparison: the ability of detail representation is better, the edges of the image are clearer,
and there are fewer artifacts in the flat regions.

(a) noise image (b) TLS [36] (c) Y. Qiu [37] (d) the proposed
HTLS

Figure 6. Denoising results.

We conducted a large number of experiments and the results are consistent with the above findings.

6. Conclusions

For the problem of noise estimation of CMOS images, a noise estimation model based on maximum
likelihood is given in this paper. The error of the model is given using Fisher information and the
results are formed into a theorem. We present two applications of the theorem: one is a guide to image
representation. Images represented by standard pixels have higher accuracy for signal-dependent noise
and higher error for additive noise. The pixel-normalised image, on the other hand, has the opposite
accuracy of its parameters. Therefore, the normalised image is generally chosen for noise estimation
when the additive noise is large, and the standard image when the multiplicative noise is dominant.
The second application of the theorem is a guide to algorithm design. Based on the results of the
theoretical analysis, we propose a divide-and-conquer hybrid total least square (HTLS) algorithm for
CMOS image restoration. The method has two steps. In the first step, the estimated noise parameters
and TLS are used to remove the signal-dependent noise of the image. In the second step, the additive
noise parameter is updated by PCA, and the remaining noise is removed using BM3D. Theoretical
analysis and experiments show that this hybrid algorithm can preserve the edge and other details of
the image while removing the mixed noise. Compared with the state-of-the-art methods, the new
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method shows superiority in subjective visual quality, objective image reconstruction metrics, and
other aspects.

Not only traditional denoising algorithms but also most neural network-based denoising methods
require that the noise parameters are known. The theory of noise estimation and accuracy analysis can
be applied to AI-based image processing to increase the generalizability and robustness of the models.

In our future research, we will focus on the optimisation of the proposed blind denoising algorithm.
In fact, the algorithm needs to traverse all the blocks to find similar blocks. Compared with TLS, HTLS
adds a new step BM3D. All these operations increase the running time. To obtain better performance,
BM3D can also be replaced by other methods such as WNNM [19], deep network-based denoising
method [24] and so on. We will study these issues in the future.
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