Citation: Vishal Gupta, Gerald Jungck, Naveen Mani. Some novel fixed point theorems in partially ordered metric spaces[J]. AIMS Mathematics, 2020, 5(5): 4444-4452. doi: 10.3934/math.2020284
[1] | P. Borisut, K. Khammahawong, P. Kumam, Fixed point theory approach to existence of solutions with differential equations, In: Differential Equations: Theory and Current Research, Intech Open, London, UK, 2018. |
[2] | P. Borisut, P. Kumam, V. Gupta, et al. Generalized (ψ, α, β)-weak contractions for initial value problems, Mathematics, 7 (2019), 1-14. |
[3] | L. A. Alnaser, J. Ahmad, D. Lateef, et al. New fixed point theorems with applications to non-linear neutral differential equations, Symmetry, 11 (2019), 1-11. |
[4] | N. Mani, Generalized $C^\psi_\beta$-rational contraction and fixed point theorem with application to second order differential equation, Math. Morav., 22 (2018), 43-54. doi: 10.5937/MatMor1801043M |
[5] | E. Karapinar, T. Abdeljawad, F. Jarad, Applying new fixed point theorems on fractional and ordinary differential equations, Adv. Differ. Equ., 2019 (2019), 1-25. doi: 10.1186/s13662-018-1939-6 |
[6] | V. Gupta, N. Mani, N. Sharma, Fixed-point theorems for weak (ψ, β)-mappings satisfying generalized C-condition and its application to boundary value problem, Comput. Math. Method., 1 (2019), 1-12. |
[7] | S. Banach, Sur les oprations dans les ensembles abstraits et leur application aux quations intgrales, Fund. Math., 3 (1922), 133-181. doi: 10.4064/fm-3-1-133-181 |
[8] | V. Gupta, N. Mani, A. K. Tripathi, A fixed point theorem satisfying a generalized weak contractive condition of integral type, Int. J. Math. Anal., 6 (2012), 1883-1889. |
[9] | V. gupta, N. Mani, Existence and uniqueness of fixed point for contractive mapping of integral type, Int. J. Comput. Sci. Math., 4 (2013), 72-83. doi: 10.1504/IJCSM.2013.054685 |
[10] | M. S. Khan, M. Swalesh, S. Sessa, Fixed point theorems by altering distances between the points, B. Aust. Math. Soc., 30 (1984), 1-9. doi: 10.1017/S0004972700001659 |
[11] | B. K. Dass, S. Gupta, An extension of Banach contraction principle through rational expression, Indian J. Pure Appl. Math., 12 (1975), 1455-1458. |
[12] | B. G. Pachpatte, Common fixed point theorems for mappings satisfying rational inequalities, Indian J. Pure Appl. Math., 10 (1979), 1362-1368. |
[13] | L. B. Ciric, A certain class of maps and fixed point theorems, Publ. Inst. Math., 20 (1976), 73-77. |
[14] | B. Fisher, Common fixed point and constant mapping satisfying rational inequality, Math. Sem. Notes, Kobe Univ., 5 (1977), 319-326. |
[15] | G. Jungck, Commuting mappings and fixed points, Am. Math. Mon., 83 (1976), 261-263. doi: 10.1080/00029890.1976.11994093 |
[16] | S. Sessa, On a weak commutativity condition of mappings in fixed point considerations, Publ. I. Math., 32 (1982), 149-153. |
[17] | G. Jungck, Compatible mappings and common fixed points, Int. J. Math. Math. Sci., 9 (1986), 771-779. doi: 10.1155/S0161171286000935 |
[18] | V. Gupta, N. Mani Common fixed point for two self-maps satisfying a generalized $^\psi \int_\varphi$-weakly contractive condition of integral type, Int. J. Nonlinear Sci., 16 (2013), 64-71. |
[19] | A. A. Harandi, H. Emami, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Nonlinear Anal., 72 (2010), 2238-2242. doi: 10.1016/j.na.2009.10.023 |
[20] | M. E. Gordji, H. Baghani, G. H. Kim, A fixed point theorem for contraction type maps in partially ordered metric spaces and application to ordinary differential equations, Discrete Dyn. Nat. Soc., 2012 (2012), 1-8. |
[21] | J. J. Nieto, R. Rodriguez-lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica., 23 (2007), 2205-2212. doi: 10.1007/s10114-005-0769-0 |
[22] | J. J. Nieto, R. L. Pouso, R. Rodriguez-lopez, Fixed point theorems in ordered abstract spaces, P. Am. Math. Soc., 135 (2007), 2505-2517. doi: 10.1090/S0002-9939-07-08729-1 |
[23] | A. C. M. Ran, M. C. B. Reurings, A fixed point theorem in partially ordered sets and some applications to matrix equations, P. Am. Math. Soc., 132 (2004), 1435-1443. doi: 10.1090/S0002-9939-03-07220-4 |
[24] | J. J. Nieto, R. Rodriguez-lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order, 22 (2008), 223-239. |
[25] | L. B. Ciric, N. Cakic, M. Rajovic, et al. Monotone generalized nonlinear contractions in partially ordered metric spaces, Fixed Point Theory A., 2008 (2008), 1-11. |
[26] | H. K. Nashine, Z. Kadelburg, S. Radenovic, Common fixed point theorems for weakly isotone increasing mappings in ordered partial metric spaces, Math. Comput. Model., 57 (2013), 2355-2365. doi: 10.1016/j.mcm.2011.12.019 |
[27] | R. P. Agarwal, M. A. El-Gebeily, D. O. Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal., 87 (2008), 109-116. doi: 10.1080/00036810701556151 |
[28] | I. Altun, H. Simsek, Some fixed point theorems on ordered metric spaces and application, Fixed Point Theory A., 2010 (2010), 1-17. |
[29] | H. K. Nashine, B. Samet, Fixed point result mappings satisfying $(\psi, \varphi)$-weakly contractive condition in partially ordered metric spaces, Nonlinear Anal., 74 (2011), 2201-2209. doi: 10.1016/j.na.2010.11.024 |
[30] | V. Gupta, N. M. Ramandeep, A. K. Tripathi, Some fixed point result involving generalized altering distance function, Procedia Comput. Sci., 79 (2016), 112-117. doi: 10.1016/j.procs.2016.03.015 |
[31] | V. Gupta, W. Shatanawi, N. Mani, Fixed point theorems for (ψ, β) - Geraghty contraction type maps in ordered metric spaces and some applications to integral and ordinary differential equations, J. Fix. Point Theory A., 19 (2017), 1251-1267. doi: 10.1007/s11784-016-0303-2 |