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1. Introduction

The idea of convexity is all around recognized in the theory of inequality, which is widely used in
mathematical analysis, probability theory, operations research, finance, decision making, and
numerical analysis. They are not only strictly related to continuity and differentiability but also play
significant roles in inequalities. The study of integral inequality is an interesting area for research in
mathematical analysis [1,2]. The fundamental integral inequalities can be instrumental in cultivating
the subjective properties of convexity. The existence of massive literature surrounding integral
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inequalities for convex functions [3-7] depicts the importance of this topic. The most beautiful fact
about convex function is that, it has a very elegant representation based on an inequality presented
when the functional value of a linear combination of two points in its domain does not exceed the
linear combination of the functional values at those two points.

A few researchers have studied the concept of convex functions in different directions with the help
of some innovative ideas in the field of mathematical analysis, for example (see [8—10]). In recent
times, many generalization have been introduced in the framework of convexity such as s-convex
function [11], quasi-convex function [12], strongly-convex function [13], m-convex function [14], and
(a, m)-convex function [15].

Now, we recall the notion of the convexity.

Definition 1.1. A mapping @ : [0,0,] € R — R is said to be convex, if

Dpx + (1 = p)y) < u®u) + (1 = )@(y) (1.1)

holds for all x,y € [0, 03], and i € [0, 1].
Now we recall the basic definition, so is said to be quasi-convex function.

Definition 1.2. [12] A mapping @ : [0,0>] € R — R is called to be quasi-convex on [0, 0], if

O(ux + (1 — p)y) < max{®(x), d(y)} (1.2)
holds for any x,y € [0, 0], u € [0, 1].

It is essential to note that, any convexity is a quasi-convexity but the reverse is not true in general
case. In the following example, we describe the reverse case:

Example 1.1. [16] A mapping ® : [-2,2] — ‘R, defined by

)1 for ue[-2,-1],
Du) = { u? for u € (-1,2],

is not convex on interval [-2,2] but it is easy to note that the function is quasi-convex on [—2,2].

It is noted that @ is quasi-convex if and only if all the level sets of @, are intervals (convex sets of
the line).

It’s a fact that the convexity theory may be the most key and significant theory in the speculation of
mathematical inequalities, it has many applications in pure and applied mathematics, statistics,
economics, and many more. Lately, the theories, expansions, varieties, and refinements for convexity
have attracted the attention of several researchers. Numerous fundamental inequalities so far are
created by various analysts in due time, the Hermite-Hadamard integral inequality plays an
exceptionally indispensable in the field of pure and applied Mathematics.

The Hermite-Hadamard (H-H) inequality emphasizes that, if a mapping @ : / ¢ R — ‘R is convex
in J for oy, 0, € J and 0 < 0, then

@(U“’Uz)s ! fwzq)(ﬂ)d,uﬁw. (1.3)

2 oy — 0] 2

AIMS Mathematics Volume 7, Issue 3, 3418-3439.



3420

Fractional calculus owes its starting point to whether or not the importance of a derivative to an
integer order could be generalized to a fractional order which is not an integer. Following this unique
conversation between L’Hopital and Leibniz, the concept of fractional calculus grabbed the eye of some
extraordinary researchers like Euler, Laplace, Fourier, Lacroix, Abel, Riemann, and Liouville. Over
time, fractional operators have been differentiated with their singularity, locality and having general
forms with the improvements made in their kernel structures. In this sense, based on the basic concepts
of fractional analysis, Riemann-Liouville (R-L) and Caputo operators, various new trends have been
successful. Fractional integral inequalities are marvelous tools for building up the qualitative and
quantitative properties of convex functions. There has been a ceaseless development of intrigue in
such a region of research so as to address the issues of different utilizations of these variants. Interested
readers can refer to [9, 19, 23, 26].

Suppose @ € L[o,0,]. Then the Riemann-Liouville (R-L) fractional integrals of order w > 0 with
o > 0 are defined as follows:

1

J:})T(D(Z) = m

f@—u)”—l@(u) Qi) 7> o
and
w — L 72 w1
Jggcb(z)—r(w)fz (-2 O du z< o,

In [25], Sarikaya et al. described the following fractional integral version of Hermite-Hadamard
inequality.

Theorem 1.1. Suppose a mapping @ : [01, 03] — R is positive with 0 < o7y < 0 and ® € L]0y, 05].
If the convexity of © on [0y, 03], then the following inequality

o+ 0 Nw+1) » » O (o) + D(0r)
o(T57) < e AL CO R ICOI I o

satisfies with w > 0.

Owing to the aforementioned trend and inspired by the ongoing activities, the rest of this paper is
organized as follows: First, in Section 1, we discuss some preliminary concepts about convexity and
theory of inequality. Next, Sections 2 and 3 deal with our main results, where we have presented a
new fractional identity and employing this new identity, we have derived several results for convexity
and quasi convexity. In Sections 4 and 5 , we present some applications of our established result in the
form of special means and modified Bessel functions. Finally, in Section 6, we present the conclusion
of the paper.

In the sense of above indices, we generalize the results proved in [17] to develop some new
modifications Hermite-Hadamard (H-H) type inequalities for thrice differentiable convexity and
quasi-convexity. Throughout the article we assume that w > 0.

2. Main results
In order to establish our main results, firstly we need to prove the following equality.
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Lemma 2.1. Suppose a mapping ® : I € R — R is thrice differentiable on I° (the interior of I) with
o, > 0 and " € Loy, 03], then the following equality for fractional integral satisfies:

g1+ 02 (02— o) , (01 + 0
q)( 2 )+4(a)+1)(w+2)q)( 2 ) 2.1)
2T (w + 3) ) )
T G o 0'1)“{ Py O0) + sy, (02) |

(0‘2—0'1)3 {fl 2 (O‘1+0’2 )
w (D/I/ 1_ d
6@+l J, * p—y— (= jdu

1
" o +o
_ f (1 _Iu)w+2(I) (,Ll0'2 + (1 _'u) 1 2 Z)d/.l}
0
Proof. It is easy to write that

(02— 1)’ {fl " (0'1+0'2 )
W (I)III 1_ d
6@+ D@+l J, ¥ p—y t o fdu

1
” o1+ 0o
- [ - e (s (- T
0

(=)
T 16w+ D) (w+ 2){11 - b (2:2)

Where

1
+
I = f e L
0

Using integrating by parts

O (T (L -won)p 1 (R + (- o)
Il — #u)+2 — _ f — ((L) + 2),Uw+ld/l
2 0 0 2
2 + 2w+2) (! +
= [0 (O-l 0-2) - (w+2) uett o (,u—o-l g2 +(1-p al)du
07 — 0 2 O — 01 0 2
_ 2 (D,,(0'1+0'2)_ 2(w+2){ 2 @,(01+02)_ d(w+1) (D(0'1+(72)
oy — 0 2 oy —0oy Loy — 0 2 (05 — 01)? 2
2a)+2 +2
i Gt PR ey
(03 — )P (F772)
_ 2 (D,,(0'1+0'2)_ 4(a)+2)2q),(0'1+0'2)+8((u+1)(a);|-2)q)(0'1+0'2)
Oy — 0 2 (0’2—0'1) 2 (0-2_0-1) 2
298N (w + 3)

- —Jwrr +o *(I) o
(0_2_0_1)w+3 (%) ( l)

and similarly, we can get
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1
o +0o
b=tf(l—uV”®”wa+ﬂ—ﬂ)12 ®)
0
_ 2 q),,(m +0'2)_ 4(a)+2)2q),(0'1 +0'2)
oy =0y 2 (02— 01) 2
8(w+1)(w+2)®(0'1+0'2)
2

(2 —01)
L 2 Tw+3)

o1top N\t (I) g .
(05 — o) (F37) (72)

By using the value of 1, and /I, in (2.2), we can get (2.1).
This completes the proof. O
Remark 2.1. If we set w = 1, in Lemma 2.1, then we get Lemma 2.1 in [21].

Theorem 2.1. Suppose a mapping ® : 1 € R — R is thrice differentiable on I° (the interior of I)
with oy > oy and ©"" € L|oy,0,] such that |®"”| is convex function on [0y, 03], then the following
inequality satisfies:

‘q)(0'1+0'2)+ (0'2—0'1)2 (D,,(0'1+0'2)

2 ! 4(w+1)(w+2) 2
2w+ 1)2((5 Eer;L(?r)2 - 01)“’{ J?@)’ Clo) + Jz)m;rz ) q)(cfz)}'
~ 16 (((j-zr_l)g(ijl 2)[ 7 () (w+ 3)1(w +4) > (Ul er Uz) (w i 4)
ML sy 4)]' (2.3)

Proof. From (2.1), with the convexity of |®"”|, we obtain

o1t 0o (0-2_0-1)2 ” o1+ 0,
‘(D( 2 ) 4w+ (w+2) ( 2 )
2T (w + 3) " .
ST D@ Do ey OO0+ Tagmy 2
(0'2—0'1)3

<
16(w+1)(w+2)

1
+

XLfMMQWQm ®+u—mJJ@

0

1

+
+~f(1—m“2®”0wa+a—uf“207)w§
0

(0'2—0'1)3 : w+2
= 16(a)+1)(w+2){ j; K {“

1
+ fo (1—u)”+2{u|<1>”’(az)l+(1—ﬂ)

o1+ 0>
@/’/( )
2

+aﬂmv%mﬂ@

Jo
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3
- 1 2
< (0-2 0—1) [ |®//I (0_1)| + '(D/I/ (0-1 + 0-2)
16(w+ 1) (w+2) (w+3)(w+4) 2 (w+4)
1
@l// .
e sy 4)]
This completes the proof. O

Corollary 2.1. Under the same suppositions as defined in Theorem 2.1, if we choose w = 1, we get

o(7272) s O g (2L M aga

2 24 2 02— 0]

< (02— 0'1)3{@'" (o)l
- 96 20

N % 'cp’” (0‘1 + 0'2)

D" (o)
> )|t }

20

Theorem 2.2. Suppose a mapping ® : I C R — R is thrice differentiable on I° (the interior of I)
with oy > o and @' € L]0, 0] such that |®"'|" is convex function on [0y, 03] for r > 1, then the
following inequality satisfies:

'(D(m + 0'2)+ (02— 1) (D,,(m +0'2)

2 4w+ 1D (w+2) 2
24T (w + 3) ) )
T2+ D@+2)(os - 0'1)“’{ Ty @@+ Ty (D(O'z)}'

(02— 0)’ ( 1 )’1
T 16w+ D)(w+2D)\(w+2)p+1

1 " O'1+O'2)
X = [ | ———=
{(2 (
1

2
where p~' =1 —r71.

1
| r 1 1
+ — (DIN r +|= (DNI r + —
5 107 ()l ) (2 @7 ()" + 5

+
cD”’((TI 0'2)

2

)

Proof. From (2.1), with the convexity of |®"’|" and the well-known Holder’s Rogers integral inequality,
we obtain

‘ } 2.4)

Y
'(D(m er 02) * 4(5)? 1)((701))+ Y (01 er 02)

20T (w + 3) . )
T 2@+ D) (w+2) (02 - 0'1)“’{ Jozmy PO+ Jiny @D(az)}'
(02 —0'1)3

16w+ 1) (w+2)

1
X{ f Iuw+2
0
1
+ f (1 _ /l)w+2
0

< (02— 1)’
T 16(w+ 1) (w+2)

o1+ o
o (,U 1 2

+ (=)o)

+
@ (pors + (1= P22

2

d,u}
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1 5/l
A
0 0
1 1
+(fa—mwmw)uﬁ
0 0
m (01 F 02 '
o (F57)

(o2 — 1)’
T 16(w+ 1) (w+2)
L) ([ ' r
wp g 1= 00" (@) Vd
XHL# uHL@ - +<un<m@ﬁ
1 3 1
+ (f (1—/J)(w+2)pdﬂ) (f {,U|(DW(0'2)|r+(1—,U)
0 0
e (1Y
T 16w+ D (w+2)\(w+2)p+1

(IEs
2

2
This completes the proof.

1
+ r r
q)lll (/.l 0-1 0-2 d/.l)

ron \
<1>"’(Wz+(1—u) Z 202) du) }

+(1 —M)O'l)

==

1

o))

)

Corollary 2.2. Under the same supposition as defined in Theorem 2.2, if we choose w = 1, we get

o1 +0, (0'2—0'1)2 ,,(0'1+0'2) 1 fo—z
@ o - ®
’ ( 2 )+ 24 2 o ), P
(o) (1)
=706 \3p+l
1 (01 + 02 r ]
- o (ZLZ 20|,
X[(z ( 2 ))

Theorem 2.3. Suppose a mapping ® : 1 € R — R is thrice differentiable on I° (the interior of I)

with oy > oy and ®"” € Loy, 03] such that |®"'|" is convex function on [0, 0] for r > 1, then the
following inequality satisfies:

o1+ 0
@///( )
2

S

1
| r 1 1
+ E | (0'1)|r) + (E D" ()" + E

(D,,,(O'l +0'2)
2

o1+ 0>
@///( )
2

1
| r 1 1
+ =@ i B B T+ =
> D™ (o)) ) (2 D™ (02| >

o1+ 0> (0'2—0'1)2 , (01102
'(D( 2 )+4(w+1)(w+2)®( 2 )
_ 2¢T (w + 3) {
2w+ 1) (w+2)(oy — o)

(752)

Py o) + T (I)(O'g)}‘

(02— ) 1Y1
*T6@+ Dw+2)\wr3

1 124 0-1+0-2 s 1 1244 r;
X[(w+4‘® ( 2 ) MY (‘TIN)

+ 1 |CI)'" ( )Ir + 1 '(D/// (O-l + 0-2) g
(@ +3)(w+4) Tt i 2

~ =

], 2.5)

AIMS Mathematics

Volume 7, Issue 3, 3418-3439.



3425

where p™' =1 —r7\.

Proof. From (2.1), with the convexity of |®”’|" and the well-known power mean integral inequality, we
obtain

(") e (757

2T (w + 3)
_2(w+1)(a)+2)(0'2—0'1)‘”{ (lez),(D(O']) " J(lez) (D(O-Z)}'
(0-2_0-1)3 : w+2| w77 o1 t02
= 16(w+1)(w+2)[f’u ® (“ 2 +(1_“)‘71) dp
+ f (1= |0 (s + (1= 0 T2
< (0-2_0-1) [(fl w+2d )l_i(fl w+2(Dm( 0-1+0-_2+(1— )O')rd )l
= 16(w+ D) (w+2) e . H a war) at
| !
+ (f (1—;1)‘“*2du) (f (1 — )+ d)”’(,u0'2+(l—/,t) U“"”) a’,u) ]
0

(0'2_0'1)3 ! 2 -
= 16(a)+1)(w+2)[ (fo K d”)

1 r

w+2 (D/// M

x(fo“ {“‘ ( 2 )

1 1-3
+(f (l—u)“’+2dﬂ)

0

1
X ( fo (1-pe {,u 10 (oI + (1 — p)
(02— 0) ( 1 )1_3‘

£ (1= @)D" (o) }dﬂ),

1
r

o |

o1+ 0>
@///( )
2

T 16w+ D(w+2)\w+3
1
1 o+ o\ 1 G
X @///( ) + @/li r
[(w+4 2 @)D (al)l)
1
1 1 o1+ o0\ G
+ @/Il r + I/I( ) :|.
((w+3)(w+4)| S 2 )
This completes the proof. O

Corollary 2.3. Under the same suppositions as defined in Theorem 2.3, if we choose w = 1, we get

'q)(0'1+0'2)+(02_0-1)2@//(0-1+0-2)_ ! fmq)(u)du
o

2 24 2 02— 0

(02 — 1) 1“1[ 1‘ ,,,(0'1+0'2 S Y
<= 7 | — - c -
=7 9% (4) o ) MET R
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1
Theorem 2.4. Suppose a mapping ® : I C R — R is thrice differentiable on I° (the interior of I)

with o5 > o and @ € L[o1, 03] such that |®"'|" is concave function on [0y, 0] with p € R, p > 1,
then the following inequality satisfies:

(D,,,(O'l +0'2)

2

1 1
— D" r,o-
+ (20| (o)l + 5

‘(D(O'H‘O'z)_'_ (0'2—(71)2 (D,,(0'1+02)

2 4w+ 1D (w+2) >
24T (w + 3) ., o
T e T D@ Do m)‘”{ J(C,M)f @ (o) + ((,M) @(0’2)}‘

|

4

" 30'1+O'2 +
4

Proof. From (2.1), with the concavity of |®”’|" and the well-known Holder’s Rogers integral inequality,
we obtain

o (0'1 + 30'2)

(0 —01)’ ( 1 )’[
T 16w+ D) (w+2D)\(w+2)p+1

where p™' =1 —r7\.

() e (25

2T (w + 3) . o
_2W+D@HQN®—GW{%WQ)®WO4_(W%)®WﬁH
(0-2 _0-1)3 : w2 R/ o1 to
S16(w+1)(w+2)[f” ® (ﬂTHl—u)m)du
f (1 #)w+2 D" (/J(Tz n (1 —,Ll) o1+ 0'2) dﬂ]

o1+ o
(Dm(’u 1 2

. du) (2.6)

(0-2_0-1)3 ! (w+2) % !
S16(w+1)(w+2)[(f“ pd“) (fo +(1_“)“1)

1 5 ;
+ ( f (1 —u)“’*””dﬂ) ( f dﬂ) ]
0

Since |®””'|" is concave on [0, 02], we can use the Jensen’s integral inequality to find that

1 r 1
I w- [
0 0

ool o
0

1
Jy medu
|(D,H(30'1 +O'2)r
4

1444 0-
O (s + (1 = 0 T2

o1+ 0> o1+ 0,

du

q)/ll (/,L

@/U (ﬂ

+(1-pa) +(1 =)

@III

IA

IA
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and similarly

r

du <

" 0'1+30'2r
(I) - -
[

r

then Eq (2.6), becomes

+
O (pors + (1 - P2

2

4

,,,(30'1+0'2) +

(03 —0y)’ 1 » [
T 16w+ D)(w+2D)\(w+2)p+1
This completes the proof. m|

Corollary 2.4. Under the same suppositions as defined in Theorem 2.4, if we choose w = 1, we get

o1 +0, (0'2—0'1)2 /,(0'1+O'2) 1 f‘n
() ()] — D (u)d
' ( 2 )+ 24 2 o ), P

. (a—o)*( 1 ”[ o 37+ 0\ | | (1t 32
% \3p+1 1

4
Theorem 2.5. Suppose a mapping ® : I C R — R is thrice differentiable on I° (the interior of 1)
with oy > o and ®"" € L]o, 03] such that |®'|" is convex function on [0, 03] for r > 1, then the
following inequality satisfies:

N2
‘@(01202) 4(cio-i 1)?(11))+ 2) ”(0-142_0-2)

2T (w + 3) w )
2w+ 1) (w+2) (s - m)w{ J(%)‘ ®lo) + J(%)*

(0'2—0'1)3 1 1 " o1+ 0>
S16(w+1)(w+2)[{p((w+2)p+1)+Z((D( 2 )

+ { ! + 1 (|cD”’ ()| + r) }]

plw+2)p+1) 2r

-

rHGWmW”

+
@//l (0-1 0-2)

2

where p~' =1 - 71,

Proof. From (2.1), we obtain

'(D(0'1+0'2)+ (02— 01)? (D,,(0'1+0'2)

2 4w+ 1) (w+2) 2
2T (w + 3) " .

ST D@ Do ey OO0+ Tamy 2
< (0'2—0'1)3
16w+ D(w+2)

1
X[fﬂ“’”q""(ﬂalJr(Tz+(1—u)m)'dﬂ

0

1
+xfa—mmz |
0
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By using the Young’s inequality as
1 1

uy < —uf + -
p r
‘(D(O'l+0'z) (07— )’ ,,(0'1+0'2)
2 d(w+1)(w+2) 2
2T (w + 3) { }'
- Crprryy- @ Criroyn: D
@t D(@+2) (o —one | () @)+ Sy P 02)
(2 — 1) [{lfl (@12) 1f1 ( o+ 0 )’ }
< — w pd +_ @/// + 1_ d
"6+ Dw+llp )y ¥ HT py Hmwan ) du
1 1 .
+{_f (l_ﬂ)(w+2)pdﬂ+_f (DN,(/«L0-2+(1—,L£) 0'1+0'2) d/l}]
P Jo r Jo 2

(0'2—0'1)3
T 16(w+ D) (w+2)

1 1
X[{lf,u(‘”z)’)du+1f {'u'@m(ffﬁrﬁz)
P Jo rJo 2
0'1+0'2)

1 ! 1 (!
+{ f (1= )™ 4+ = f {ul@"'(az)h(l—u)]@"'(
P Jo r Jo 2

(=@ (o) )

o

< (o) [{ ! + L (|o (—01 * 0-2) +]0" (o)l }
16w+ D+l lp(w+2)p+1) 2r 2
1 1 " r m (01 F 0-2) ' }]
— D () .
+{p((w+2)p+1)+2r(| (@2) +' ( 2 )
This completes the proof. O

Corollary 2.5. Under the same supposition as defined in Theorem 2.5, if we choose w = 1, we get

— o) 1 72
'(I)(O'1+O-2)+(O-2 0-1) (D//(0-1+O-2)_ f (D(Lt)du
a1

2 24 2 O — 01

(05— ) 1 1
=" 9 [{p(3p+1) +2_r(q)

e (aor) }

)

(01072
(57
o1+ 0
=57

{ 1 1
=
p@Bp+1) 2r

(lq)/// (0_2)|r + '(D/I/(
3. Results related to quasi-convexity

In this section, we will present some results related to quasi-convex function.

Theorem 3.1. Suppose a mapping ® C [0,+00) — ‘R is thrice differentiable on I° (the interior of
I) with oy > oy and ®"" € Lo, 03] such that |®"'| is quasi-convex function on [0y, 0], then the
following inequality satisfies:
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'(D(m +0'2) G o)’ (D,,(O-l + 0'2)

2 ! 4w+ 1) (w+2) 2
2w+ 1)2(01: g-wZ-;(?z - 0'1)‘”{ JEJ%)_ Clo) + J?@y ® (02) }‘
= 16 +(;2(; Tz)j (w+ 3)[max{ @ ()], | @ (01 ; 02) } 3.1)
emax o (252 o )]

Proof. From (2.1) and the quasi-convexity of |®"”|, we obtain

o("37) s (75

2¢T (w + 3) . .
I @ Do sy OO0+ Sy )
. (-’
T 16w+ D) (w+2)
1
X[fMw+2q)///(ﬂo_l+o_2+(l_lu)o_l) le
0
1
w+2 | w217 o1+ 0>
+f0(1—ﬂ) () (,uaz+(1—,u) 5 )dﬂ]

(0—2_0-1)3 : w+2 177
= 16(w+1)(w+2)[ fo H max{lq) (ol

1
f (1 - p)~*? max{
0

Q)”'(O-] +O'2)

2

o

+

q),/,(O'l +O'2)

107 @) b

(0-2_0_1)3 [ { ’" //;(0_1 +0—2) }
: © o (=2
STo@+ D@+ (@+3) % D™ (o) >
+ max { (I)/l/ (%) , |q)l// (0_2)| }]
This completes the proof. ]

Remark 3.1. If we prefer w = 1, in Theorem 3.1, then we obtain the Theorem 2.1 in [21].

Corollary 3.1. Let us consider the assumptions as defined in Theorem 3.1, be valid and let

(Tt (02— 01)’ , (01 + 02
K'_|®( 2 )4(w+1><w+2> (=57)

2T (w + 3) " .
ST Do ey VOV + Sy 00 |

(i) If |@""'| is increasing, then we have

K < (o2 — 1)’ [
16(w+1)(w+2)(w+3)

/,,(0'1 +O'2)
2

10" @) |
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(ii) If |®""'| is decreasing, then we have

< (0'2—0'1)3
T 16w+ D) (w+2)(w+3)

+
[|c1>”’ (o) + 'cl)”’ (u)

2

(iii) If @ (%) =0, then we have

B (02— 1)
T 16w+ D(w+2)(w+3)

(iv) If @ (01) = @ (0) = 0, then we have

[l @l + 107 @)l |

(0'2—(71) ,,,(0'1+0'2)
16(w+1)(a)+2)(w+3) 2 '

Theorem 3.2. Suppose a mapping ® C [0, +c0) — R is thrice differentiable on I° (the interior of I)
with oy > o and ®"" € Loy, 0] such that |®""|" is quasi-convex function on [0y, 03] and r > 1 with
r~' =1~ p7!, then the following inequality satisfies:

o\
'(D (m er 02) " 4(0()(12 1)((};1))+ Y (al er 02)

2T (w + 3) o
T 0'1)‘”{ Gy PO+ T (D(O'z)}‘
(0 —0) ( 1 ),‘7
*T6@+ D@+ @+H\@+2)p+1
| s o (752 )

oo (252w )

Proof. Suppose p > 1. Then from (2.1), with the quasi-convexity of |®"”’|" and using the Holder’s
Rogers inequality, we obtain

Y
'(D (a1 er 02) * 4(:)(12 1)((::)+ Y ((rl er 02)

29T (w + 3) .
ST D Do iy BO) * Ty 00
(03 —01)’

16w+ 1) (w+2)

1
X[ L Iuw+2
f (1 ﬂ)w+2

(02— 1)’

16w+ 1) (w+2)

o1+ 0>

@ (1 (=) 'du

+
O (pors + (1 - P2

d,u]
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| oAl N
X [(f ﬂ(w+2)pd/.l) (f D" (,Llo-l + 0 4 (1 _#) 0_1) d,Ll)
0 0
1 (w+2) % : " o+ 0o\ %
o[ a-pera o (s + (1= ) P22 ) |
0 0

The quasi-convexity of |®"’|" on [0, 0] implies that

r
r

then we obtain

r

\

” g1+ 0o
o (u%+(1—u>m)

dy < max { " (I

o1+ 0>
@I’/( )
2

and

r r

+
@ (ors + (1 -y P2

5 du < max{

o1 +0,
(Dm( )
2

10" (o) }

'(D(m ;Gz) " 4(0()(12 1_)2))1 2)(1)”(01 eraz)

2T (w + 3) ) )
T e 0'1)‘“{ ooy @@+ Sy - cp(az)}‘

(o2 — ) ( 1 )‘1’

= 16w+ D (w+2)(w+3)\(w+2)p+1

r }),
10 (@) }) |

Remark 3.2. If we prefer w = 1, in Theorem 3.2, then we obtain the Theorem 2.2 in [21].

x [(max {1l @,

o]

This completes the proof.

+
q)///(o-l 02)

2

(I),,,(O'l +O'2)

2

Corollary 3.2. Let us consider the assumptions as defined in Theorem 3.2, be valid and let

= o1t 0os (0-2_0-1)2 (01 + 0
K'_‘(D( ) T+ Dwr2) (=37)
2¢T (w + 3) . .
B 2(w+ D(w+2) (02— Gl)w{ J(%)f (o) + J("l’;"z)* q)(O'z)}‘.

(i) If |®"'| is increasing, then we have

1

10 @] |

(2 — 1) 1 o (O1+ 02
_16(w+1)(w+2)((w+2)p+1) [(D( 2 )

(ii) If |®""'| is decreasing, then we have

(o2 —0)’ ( 1

= 16 (w+ 1) (w+2) (w+2)p+1) [|q)"’(gl)|+

+
cD”’(Ul 0'2)

2

|
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(iii) If ©" (%) =0, then we have

(02— )’ ( 1
T 16w+ D(w+2)\(w+2)p+1

(iv) If @ (01) = @ (0) =0, then we have

)ﬁ@”wm+@”wm}

(02— 1)’ ( 1 ); '(DH,(O'I"'O'z)
16w+ Dw+2)\(w+2)p+1 2 )

Theorem 3.3. Suppose a mapping ® C [0, +c0) — R is thrice differentiable on I° (the interior of I)
with oy > o and ©"" € Loy, 0] such that |®""|" is quasi-convex function on [0y, 03] and r > 1 with
r~' =1 - p7!, then the following inequality satisfies:

'q)(0'1+0'2)+ (0'2—0'1)2 q),,(0'1+0'2)

2 4(w+1)(w+2) 2
2°T (w + 3) ) )
2w+ D (w+2) (s - 0-1)‘”{ gy @O0+ Jininy (D(O-Z)}‘
- (0 =)’
T 16w+ D (w+2)(w+3)
o o222 )

+ (max { ' LD (o) })l ]

Proof. From (2.1), with the quasi-convexity of |®"”|" and using the power-mean inequality, we obtain

+
@/// (0-1 0-2)

2

‘q)(0'1+0'2)+ (0'2—0'1)2 (D,,(0'1+0'2)

2 d(w+ 1) (w+2) 2
29T (w + 3) . )
ST Do ey POV + Sagay 00
. (=)’
T 16w+ D) (w+2)
1
X [ f /Ja)+2 ®" (,Llo—l + 0 n (1 —/J)O'l) d’u
0
1
w2 | /17 o1+ 0>
+j(;(1—#) o (p0'2+(1—,u) > )dﬂ]
(02 —0'1)3
T 16w+ 1) (w+2)
! o r oV
o] (Lt en-ne) o
: l_lr ! r T
+ (f (1 ‘ﬂ)w+2d#) (f (1 - | (/10'2+(1 —w +02) d,u) ] 3.3)
0 0 2
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The quasi-convexity of |®"’|" on [o7|, 07, ] implies that

1
f /la)+2
0

1
< max{ld)”’ (o),
w+3

1
f (1 _ ﬂ)w+2
0

1
<

o1+ 0> r
du

" (u +(1 =)

(D,,,(O'l +0'2) }
2

r

du

and

+
@ (ors + (1 -y 222

2

J@%mw}

+
cI)”’(Ul 0'2)

Therefore, (3.3) becomes

< (0'2—0'1)3
T 16w+ D (w+2)(w+3)

~l=

+
cI)”’(Ul 0'2)

2

)

X[(HMX{VD”(GOV,
+ (max{ " (M) ' LD (o) })l ]

2
Remark 3.3. If we set w = 1, in Theorem 3.3, then we get the Theorem 2.3 in [21].

This completes the proof.

Corollary 3.3. Let us consider the assumptions as defined in Theorem 3.3, be valid and let

| (102 (a =), (01 +0
K'_‘(D( 2 ) 4w+ D (w+2) ( 2 )
2¢T (w + 3) y .
‘2w+nmﬁax@—am{ﬁwﬂ>®w”*'QTPYQW”H
(i) If |@""'| is increasing, then we have
(02— )’ (01 + 0 )
Smw+nw+mw+a[ ( 2_)”®(®ﬂ-

(ii) If |®""'| is decreasing, then we have

K < (02— 1)’
16(w+ 1) (w+2)(w+3)

(iii) If ©" (%) =0, then we have

|10 @l +

(I),/,(O'l +O'2)

2

|

K < (02— 0)
16(w+1)(w+2)(w+3)
(iv) If " (1) = D" (02) = 0, then we have

[l @1+ 107 @)l |

< (0-2 - 0-1)3 " (0-1 + 0-2)
16w+ 1) (w+2)(w+3) 2 '
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4. Applications

Let’s consider the following special means for real numbers oy, 0, such that o # o7.

The arithmetic mean:
o1+ 0>
A(oy,07) = .

2

The logarithmic mean:
L(oy,05) = _279
logo, — logo,

The generalized logarithmic mean:

Loy, 0) = oy — o ] ceR\({-1,0}
A e e o
The identric mean:
(o] 1 lf g1 =03
](0-]’0'2):{ %(%)M lf o1 2 o 0'1,0'26%,0'1,0'2>0.

Proposition 4.1. Suppose k € Z\{-1,0} and 01,0 € R such that 0 < o < 0, then the following
inequality

k(k—1) .
'Ak(0'1,0'2)+ 7 (02 — ) A2 (0, 00) = L (01, 02)
k(k—1)(k -2
< K= DX )((T2—0'1)3[A(|(Tl|k_3,|02|k_3)+4Ak_3(01,02)],

- 960
satisfies.

Proof. The assertion follows from Corollary 2.1 for the function ®(x) = x* and k as specified above.
O

Proposition 4.2. Suppose r > 1 and 01,0 € R such that 0 < oy < 03, then the following inequality

(07— 1)
24

_ (o) (1)“1

= 96 \4

A (01,00) = L (01, 07)

‘A_l (1,02) +

1 1

2 1 r 1 2 ¥

satisfies.

1

X

Proof. The assertion follows from Corollary 2.3 for the function ®(x) = O
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Proposition 4.3. Suppose r > 1 and o1, 0, € R such that 0 < oy < 05, then the following inequality

(-0 _
‘%A > (01,02) = In[A (01, 0%) X I (071, 07)]
(- (1)
96 4
1 1
2 1 v 1 2 ’
X [(g A (o1, o)l + 10 oy |_3r) + (1—0 ol + 5 |A (o1, 0'2)|_3r) ],
satisfies.
Proof. The assertion follows from Corollary 2.3 for the function ®(x) = —Inx . O

5. Modified Bessel function

We recall the first kind modified Bessel function J,,, which has the series representation (see [30],
p.77)

( I )m+2n
2

T (m+n+1)

where £ € R and m > —1, while the second kind modified Bessel function ®,, (see [30], p.78) is
usually defined as

In) =%

2 sin mr

D, ({) =

Consider the function Q,, (¢) : R — [1, o) defined by

Q, () =2"T'(m+ 1) ", (0),

where I is the gamma function.
The first order derivative formula of €, ({) is given by [30]:

’ _ §
Q0,0 =5-""7 mt 1)Qm+1 (9, 6.1

and the second derivative can be easily calculated from (5.1) as

2 1
£ Qs (O) + ———— Q1 (D) (5.2)

Q',’;({):4(m+1)(m+2) 2(m+ 1)

and the third derivative can be easily calculated from (5.2) as

1" _ §3 3{
Q, () = Tms Dms ot 3)Qm+3 )+ Tmr Dt 2)Qm+2 ). (5.3)
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Proposition 5.1. Suppose that m > —1 and 0 < oy < 0. Then we have

0 (0'1+0'2) (0'2—0'1)2{ (0'1+0'2)2 (0'1+0'2)
"\ 2 24 16(m+Dm+2) "\ 2

1 o1+ 0, 1 72
+m Qm+1( > )}—0_2_0_1 f;l Q;n(g)dg‘
(2 - 1 o 30
< 96 [%{za(lm1)(m+2)(m+3)Q 4(m+1)(m+2)Q’"+2(‘71)}
+%{ (O’]+0'2)3 (0’1+0'2) 3(0’1+0’2) (O’]‘l‘O’z)}
564 (m+1)(m+2)(m+3) "\ 2 Sm+DHm+2) "=\ 2
1{ o3 30,

by R R R T e LS

Proof. The assertion follows immediately from Corollary 2.1 using ® (¢) = Q,({), { > 0 and the
identities (5.2) and (5.3). O

m+3 (O_l) +

Proposition 5.2. Suppose thatm > —1 and 0 < oy < 0, r > 1. Then we have

0 (0'1+0'2)+(0'2—0'1)2{ (0'1"'0'2)2 (0'1+0'2)
"\ 2 24 16(m+Dm+2) "= 2

1 o1+ 0, 1 72
T m+ 1) Q’"”( 2 )}_az—alfg Q’"(()dg’

<(0'2—0'1)3 1 %l%
=" \3p+1) 2

3
X [{{64 (m +(;1(1:1: (—J0—-22)) (m+ 3)Qer3 (0-1 ; 0-2)

3(0’1+O’2) (O'1+O'2)}r
m+2

T Smt)m+2) 2
3

~ =

30'1

o .
' {8(’” + D (m+2)(m+ 3)Qm+3 () + 4(m+ 1)(m+2)Qm+2 (01)} }

3

30'2

o .
+ {{8(m+ 1)(m+2)(m+3)9m+3 (02) + YEn 1)(m+2)Qm+2(O'z)}

3
{64 (m +(f>l(,; (122)) (m + 3)9’”+3 (%)
T3 (:1(;‘11;(:121 2) b (#)}}]

Proof. The assertion follows immediately from Corollary 2.2 using ® ({) = Q,,({), { > 0 and the
identities (5.2) and (5.3). O

6. Conclusions

In this article, we have presented some basic Hermite-Hadamard type integral inequlaities.
Moreover, a new integral equality for Riemann-Liouville fractional integral operator have been
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established. Employing this equality, some related generalizations of Hermite-Hadamard inequality
for convex function and quasi-convex function with ® € C3([o7;, 0,]) such that " € L([o}, 0»]) via
Riemann-Liouville fractional integrals are deduced. Finally, we give some applications for special
mean and modified bessel function. The results, which we have presented in this article, will
potentially motivate researchers to study analogous and more general integral inequalities for various
other kinds of fractional integral operators.
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