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1. Introduction

Throughout this paper, Cm×n stands for the set of all m × n complex matrices. For B ∈ Cm×n, let
B∗, r(B), R(B) and N(B) stand for the conjugate transpose, the rank, the range and the null space,
respectively, of B. For B ∈ Cn×n, the determinant of B is denoted by detB. The index of B, denoted by
Ind(B), is the smallest nonnegative integer k such that r(Bk) = r(Bk+1). Cn×n

k stands for the set of all
n × n complex matrices with index k. We denote the identity matrix and the zero matrix in Cn×n by In

and O. If Cm is a direct sum of subspaces L andM, PL,M is a projector onto L alongM. Also, the
orthogonal projector onto L will be denoted by PL. Given B ∈ Cm×n and x ∈ Cm, if the i-th column of
B is replaced by x, then the resulted matrix is written as B(i→ x).

Next we recall the definitions of some generalized inverses. For B ∈ Cm×n, there exists the MP
inverse of B as the unique matrix B† ∈ Cn×m [13] such that BB†B = B, B†BB† = B†, (BB†)∗ = BB†,
(B†B)∗ = B†B. Moreover, PB = BB† and PB∗ = B†B represent the orthogonal projectors on R(B) and
R(B∗), respectively. If a matrix X fulfills BXB = B, X is called {1}-inverse of B and if XBX = X is
satisfied, X is {2}-inverse of B. Also, B{1} stands for the set of all {1}-inverses of B. Given B ∈ Cm×n,
suppose a matrix X fulfills XBX = X, R(X) = T and N(X) = S, then X is denoted as B(2)

T ,S
[2], where
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T , S are subspaces of Cn, Cm, respectively. When B(2)
T ,S

exists, it is unique.
The Drazin inverse of B ∈ Cn×n

k is denoted by BD introduced in [5]. If Ind(B) = 1, BD becomes B#,
which is the group inverse of B. In [1], the core inverse of B ∈ Cn×n

1 was proposed, written as B #©. BD,†

is the DMP inverse of B ∈ Cn×n
k introduced in [11]. Moreover, BD,† = BDBB†, B†,D = B†BBD, where

B†,D [11] is the dual DMP inverse of B ∈ Cn×n
k . Recently, several characterizations of DMP inverse

were investigated in [9, 22]. The core-EP inverse B †© of B ∈ Cn×n
k is unique matrix, which satisfies

B †©BB †© = B †© and R(B †©) = R((B †©)∗) = R(Bk). More research about core-EP inverse can be found
in [7, 10, 14, 16, 21]. The weak group inverse of B ∈ Cn×n

k is the uniquely determined matrix Bw© if
B(Bw©)2 = Bw©, BBw© = B †©B [12, 17, 19].

In 2020, the generalized Moore-Penrose inverse (in short, gMP inverse) was introduced by
Stojanović and Mosić [15]. More precisely, the gMP inverse of B ∈ Cn×n

k , defined as B
⊗

= (B †©B)†B †©,
is the unique solution to the matrix system

XBX = X, BX = B(B †©B)†B †©, XB = (B †©B)†B †©B.

Especially, if Ind(B) = 1, B
⊗

becomes B†. For different properties of generalized inverses please
see [3, 4].

Inspired by recent investigations about core-EP inverse and weak group inverse, continuing previous
work about the gMP inverse, our goal is to give certain new characterizations, representations and
properties of the gMP inverse and consider its applications in the restricted matrix equations.

This paper is organized as follows. Section 2 involves several lemmas. In Section 3, we use range
space, null space, matrix equations and projectors to characterize the gMP inverse. In Section 4,
limit representations of the gMP inverse are presented, as well as maximal classes of matrices such
that the general formula of the gMP inverse is satisfied. Section 5 contains several properties of the
gMP inverse. In Section 6, we consider the relationship between the gMP inverse and corresponding
nonsingular bordered matrix. Also, we apply the gMP inverse to solve restricted matrix equations.

2. Preliminaries

We begin with several lemmas which will be used in later.

Lemma 2.1. [7] Let B ∈ Cn×n
k . We have

(a) B †© = B(2)
R(Bk),N((Bk)∗),

(b) BB †© = PR(Bk),
(c) B †©B = PR(Bk),N((Bk)∗B).

Lemma 2.2. Suppose B ∈ Cn×n
k . Then

(a) B
⊗

= B(2)

R((B †©B)∗),N(B †©)
= B(2)

R(B∗Bk),N((Bk)∗),

(b) BB
⊗

= P
R(B(B †©B)∗),N(B †©)

= PR(BB∗Bk),N((Bk)∗),

(c) B
⊗

B = P
R((B †©B)∗)

= PR(B∗Bk).

Proof. Using [15], we get the first equality in (a), (b) and (c), respectively. Using Lemma 2.1, we
obtain R((B †©B)∗) = N(B †©B)⊥ = R(B∗Bk), N(B †©) = N((Bk)∗). The rest is clear. �
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Lemma 2.3. [16] Let B ∈ Cn×n
k and t = r(Bk). Then B is expressed by

B = U
[

T S
O N

]
U∗, (2.1)

where N is nilpotent with index k, T is t × t invertible matrix, U ∈ Cn×n is unitary. Furthermore,
from [6, 16, 17, 20], it is known that

B† = U
[

T ∗4 −T ∗4S N†

(In−t − N†N)S ∗4 N† − (In−t − N†N)S ∗4S N†

]
U∗, (2.2)

BD = U
[

T−1 T−k−1T̃
O O

]
U∗, (2.3)

BD,† = U
[

T−1 T−k−1T̃ NN†

O O

]
U∗, (2.4)

B†,D = U
[

T ∗4 T ∗4T−kT̃
(In−t − N†N)S ∗4 (In−t − N†N)S ∗4T−kT̃

]
U∗, (2.5)

B †© = U
[

T−1 O
O O

]
U∗, (2.6)

Bw© = U
[

T−1 T−2S
O O

]
U∗, (2.7)

where T̃ =
k−1∑
j=0

T jS Nk−1− j, 4 = [TT ∗ + S (In−t − N†N)S ∗]−1. In addition, T̃ = O if and only if S = O.

The decomposition in (2.1) is known as the core-EP decomposition [16].

Lemma 2.4. Let B ∈ Cn×n
k be given by (2.1). Then

r(B) = r(B2)⇔ N = O.

In which case, we have

B# = U
[

T−1 T−2S
O O

]
U∗, B #© = U

[
T−1 O
O O

]
U∗. (2.8)

Lemma 2.5. [15] Let B ∈ Cn×n
k be given by (2.1). Then

B
⊗

= (Bk(Bk)†B)† = U
[

T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
U∗. (2.9)
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3. Some characterizations of gMP inverse

Using the results of Lemma 2.2, we have R(B
⊗

) = R(B∗Bk), N(B
⊗

) = N((Bk)∗) and B
⊗

BB
⊗

=

B
⊗

. Now, we will give some necessary and sufficient conditions for a matrix X to be B
⊗

.

Theorem 3.1. Let B ∈ Cn×n
k and X ∈ Cn×n. Then the following statements are equivalent:

(a) X = B
⊗

;
(b) R(X) = R(B∗Bk), BX = B(B †©B)†B †©;
(c) R(X) = R(B∗Bk), B †©BX = B †©;
(d) R(X) = R(B∗Bk), (B †©B)†B †©BX = (B †©B)†B †©;
(e) R(X) = R(B∗Bk), (B †©B)∗B †©BX = (B †©B)∗B †©;
( f ) R(X) = R(B∗Bk), (Bk)∗BX = (Bk)∗.

Proof. (a)⇒ (b). It is obvious from Lemma 2.2 (a) and the definition of the B
⊗

.
(b)⇒ (c). It is evident that B †©BX = B †©B(B †©B)†B †©BB †© = B †©BB †© = B †©.
(c)⇒ (d). Obvious.
(d)⇒ (e). Consequently by

(B †©B)∗B †©BX = (B †©B)∗B †©B((B †©B)†B †©BX) = (B †©B)∗B †©B(B †©B)†B †© = (B †©B)∗B †©.

(e) ⇒ (a). By R(X) = R(B∗Bk) = R((B †©B)∗), we get X = (B †©B)∗L for some L ∈ Cn×n. Applying
((B †©B)∗B †©B)†(B †©B)∗ = (B †©B)†, we verify that

X = (B †©B)∗L = (B †©B)†B †©B(B †©B)∗L = (B †©B)†B †©BX = (B †©B)†B †© = B
⊗
.

(a)⇒ ( f ). By Lemma 2.2, we have R(X) = R(B∗Bk), (Bk)∗BX = (Bk)∗PR(BB∗Bk),N((Bk)∗) = (Bk)∗.
( f ) ⇒ (a). We have N(X) = N((Bk)∗) which gives X = L(Bk)∗ for some L ∈ Cn×n. Pre-multiplying

on (Bk)∗BX = (Bk)∗ by L, we obtain XBX = X. Hence, we have X = B(2)
R(B∗Bk),N((Bk)∗) = B

⊗
by Lemma

2.2 (a). �

Theorem 3.2. Let B ∈ Cn×n
k and X ∈ Cn×n. The following statements are equivalent:

(a) X = B
⊗

;
(b) N(X) = N((Bk)∗), XB = (B †©B)†B †©B;
(c) N(X) = N((Bk)∗), XBB †© = (B †©B)†B †©;
(d) N(X) = N((Bk)∗), XB(B †©B)∗ = (B †©B)∗;
(e) N(X) = N((Bk)∗), XB(B †©B)† = (B †©B)†;
( f ) N(X) = N((Bk)∗), XBB∗Bk = B∗Bk.

Proof. (a)⇒ (b). It is clear by Lemma 2.2 (a) and the definition of B
⊗

.
(b)⇒ (c). Notice that XBB †© = (B †©B)†B †©BB †© = (B †©B)†B †©.
(c) ⇒ (a). By Lemma 2.1 and N(X) = N((Bk)∗), we have X = KB †© for some K ∈ Cn×n. Thus,

X = KB †©BB †© = XBB †© = (B †©B)†B †© = B
⊗

.
(b)⇒ (d). It follows by (B †©B)∗ = (B †©B)†B †©B(B †©B)∗.
(d)⇒ (e). We observe that XB(B †©B)† = XB(B †©B)∗(B †©B(B †©B)∗)† = (B †©B)†.
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(e)⇒ (a). Since N(X) = N((Bk)∗) = N(BB †©), we have X = KBB †© for some K ∈ Cn×n. Hence,

X = KBB †© = KBB †©B(B †©B)†B †© = XB(B †©B)†B †© = (B †©B)†B †© = B
⊗
.

(a)⇒ ( f ). We obtain N(X) = N((Bk)∗), XBB∗Bk = PR(B∗Bk)B∗Bk = B∗Bk directly from Lemma 2.2.
( f ) ⇒ (a). From XBB∗Bk = B∗Bk and N(X) = N((Bk)∗), we get R(X) = R(B∗Bk) implying

X = B∗BkK for some K ∈ Cn×n. Post-multiplying by K on XBB∗Bk = B∗Bk, we get XBX = X. Thus,
from Lemma 2.2 (a) , X = B

⊗
. �

Theorem 3.3. Let B ∈ Cn×n
k and X ∈ Cn×n. Then the following are equivalent:

(a) X = B
⊗

;
(b) XBX = X, R(X) = R(B∗Bk), N(X) = N((Bk)∗);
(c) XBX = X, XBB∗Bk = B∗Bk, BX = B(B †©B)†B †©;
(d) XBX = X, XB = (B †©B)†B †©B, (Bk)∗BX = (Bk)∗.

Proof. (a)⇒ (b). This implication is clear by Lemma 2.2 (a).
(b) ⇒ (c). From R(X) = R(B∗Bk), we get R(BX) = BR(X) = R(BB∗Bk) = R(B(B †©B)†B †©). Since

N(X) = N((Bk)∗) and XBX = X, we get N(BX) = N((Bk)∗) = N(B(B †©B)†B †©). Further, since BX
and B(B †©B)†B †© are idempotents, we have BX = B(B †©B)†B †©.

From R(X) = R(B∗Bk) and XBX = X, we get R(XB) = R(B∗Bk) which gives XBB∗Bk =

PR(B∗Bk),N(XB)B∗Bk = B∗Bk.
(c)⇒ (a). By XBB∗Bk = B∗Bk, we get R(B∗Bk) = R((B †©B)†) ⊆ R(XB). Then we have

X = XB(B †©B)†B †© = PR(XB),N(XB)(B †©B)†B †© = (B †©B)†B †© = B
⊗
.

(a)⇒ (d). We have the assertion from the definition of B
⊗

and Lemma 2.2 (b).
(d) ⇒ (a). The equalities XBX = X and XB = (B †©B)†B †©B give r(X) = r(XB) = r(B∗Bk) =

r((Bk)∗). Since (Bk)∗BX = (Bk)∗, we get N(BX) = N((Bk)∗). By N(B †©) = N((Bk)∗), we get

X = (B †©B)†B †©BX = (B †©B)†B †©PR(BX),N((Bk)∗) = (B †©B)†B †© = B
⊗
.

�

In [15], B
⊗

is characterized by the condition BB
⊗

= PR(BB∗Bk),N((Bk)∗). Similarly, we characterize
the B

⊗
by the condition B

⊗
B = PR(B∗Bk).

Theorem 3.4. Let B ∈ Cn×n
k and X ∈ Cn×n. X = B

⊗
is the unique solution of equations

XB = PR(B∗Bk), N(X) ⊇ N((Bk)∗). (3.1)

Proof. Obviously, X = B
⊗

satisfies equations (3.1) by Lemma 2.2. It remains to prove the uniqueness.
Assume that X, X1 satisfy (3.1). By N(X) ⊇ N((Bk)∗) and N(X1) ⊇ N((Bk)∗), we get R(X∗ − X∗1) ⊆

R(Bk). Since XB − X1B = 0, we get B∗(X∗ − X∗1) = 0 which implies R(X∗ − X∗1) ⊆ N(B∗) ⊆ N((Bk)∗).
Further, since Ind(B) = k, we get R(X∗ − X∗1) ⊆ N((Bk)∗) ∩ R(Bk) = {0}. Thus, X∗ = X∗1 and X1 = X =

B
⊗

. �
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It is interesting to remark that BX = PR(BB∗Bk),N((Bk)∗) and XB = PR(B∗Bk) when X = B
⊗

by
Lemma 2.2. However, the reverse is invalid which will be shown in the next example.

Example 3.5. Let

B =


1 0 0
0 0 2
0 0 0

 , X =


1 0 0
0 0 −3
0 0 0

 , B
⊗

=


1 0 0
0 0 0
0 0 0

 .
We can easy check that Ind(B) = 2. Also, X satisfies BX = PR(BB∗B2),N((B2)∗) and XB = PR(B∗B2). But,
X , B

⊗
.

In the following results, some necessary conditions for the converse implication are presented.

Theorem 3.6. If B ∈ Cn×n
k and X ∈ Cn×n, then the following assertions are equivalent:

(a) X = B
⊗

;
(b) BX = PR(BB∗Bk),N((Bk)∗), XB = PR(B∗Bk), XBX = X;
(c) BX = PR(BB∗Bk),N((Bk)∗), XB = PR(B∗Bk), r(X) = r(Bk);
(d) BX = PR(BB∗Bk),N((Bk)∗), XB = PR(B∗Bk), XPR(Bk) = X;
(e) BX = PR(BB∗Bk),N((Bk)∗), XB = PR(B∗Bk), PR(B∗Bk)X = X.

Proof. (a)⇒ (b). It is obvious by Lemma 2.2.
(b)⇒ (c). By XB = PR(B∗Bk) and XBX = X, we get r(X) = r(XB) = r(B∗Bk) = r(Bk).
(c) ⇒ (d). From BX = PR(BB∗Bk),N((Bk)∗) and r(X) = r(Bk), we obtain N(X) = N((Bk)∗), which gives

XPR(Bk) = X.
(d) ⇒ (e). Since BX = PR(BB∗Bk),N((Bk)∗) and XPR(Bk) = X, we get N(X) = N((Bk)∗). Since XB =

PR(B∗Bk), we get R(X) = R(B∗Bk) which implies PR(B∗Bk)X = X.
(e) ⇒ (a). Similar as (d) ⇒ (e), we have R(X) = R(B∗Bk) and N(X) = N((Bk)∗). Then XBX =

XPR(BB∗Bk),N((Bk)∗) = X. Thus, we obtain X = B
⊗

directly from Lemma 2.2 (a). �

The inverse B−1 of a invertible matrix B is the unique matrix, which satisfies

r
([

B In

In B−1

])
= r(B).

The similar characterizations for some generalized inverses can be found in [9, 10, 12]. We have
analogous characterization for the gMP inverse.

Theorem 3.7. Let B ∈ Cn×n
k with r(Bk) = t. Then there exists a unique matrix P which satisfies

(Bk)∗P = O, PBB∗Bk = O, P2 = P, r(P) = n − t, (3.2)

a unique matrix Q that satisfies

(Bk)∗BQ = O, QB∗Bk = O, Q2 = Q, r(Q) = n − t, (3.3)

and a unique matrix K that satisfies

r
([

B In − P
In − Q K

])
= r(B). (3.4)

Moreover, the matrix K is the gMP inverse B
⊗

of B and

P = PN((Bk)∗),R(BB∗Bk), Q = PN((Bk)∗B). (3.5)

AIMS Mathematics Volume 7, Issue 3, 4359–4375.



4365

Proof. We can verify that

the condition (3.2) holds ⇔ (Bk)∗(In − P) = (Bk)∗, (In − P)BB∗Bk = BB∗Bk,

(In − P)2 = In − P and r(In − P) = t

⇔ In − P = PR(BB∗Bk),N((Bk)∗)

⇔ P = PN((Bk)∗),R(BB∗Bk).

Similarly, we verify that Q = PN((Bk)∗B) is a unique matrix which satisfies (3.3).
Using (3.5), Lemma 2.2 and elementary computations, we get

r
([

B In − P
In − Q K

])
= r

([
B PR(BB∗Bk),N((Bk)∗)

PR(B∗Bk) K

])
= r(B) + r(K − B

⊗
).

Now
the condition (3.4) holds⇔ r(K − B

⊗
) = 0⇔ K = B

⊗
.

�

Example 3.8. (see [15, Example 2.1]) Let

B =


2 0 1 1
0 2 0 0
0 0 0 3
0 0 0 0


with Ind(B) = 2. From (2.9), we get

B
⊗

= (B2(B2)†B)† =


1
3 0 0 0
0 1

2 0 0
1
6 0 0 0
1
6 0 0 0

 .
The block matrix

L =

[
B I4 − P

I4 − Q K

]
=

[
B PR(BB∗B2),N((B2)∗)

PR(B∗B2) B
⊗ ]

=



2 0 1 1 1 0 0 0
0 2 0 0 0 1 0 0
0 0 0 3 1

2 0 0 0
0 0 0 0 0 0 0 0
2
3 0 1

3
1
3

1
3 0 0 0

0 1 0 0 0 1
2 0 0

1
3 0 1

6
1
6

1
6 0 0 0

1
3 0 1

6
1
6

1
6 0 0 0


AIMS Mathematics Volume 7, Issue 3, 4359–4375.
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satisfies r(L) = r(B) = 3. In addition, the matrix

P = PN((B2)∗),R(BB∗B2) =


0 0 0 0
0 0 0 0
−1

2 0 1 0
0 0 0 1


satisfies (3.2). Further, we can check that

Q = PN((B2)∗B) =


1
3 0 −1

3 −1
3

0 0 0 0
−1

3 0 5
6 −1

6
−1

3 0 −1
6

5
6


satisfies (3.3). Therefore, Theorem 3.7 is valid in this example.

4. Representations of gMP inverse

For a nonsingular matrix B, B−1 can be characterized in term of a well-known limit process

B−1 = lim
λ→0

(λIn + B)−1
, (4.1)

when λ < σ(−B). Limit representations for several generalized inverses, such as DMP inverse, core-EP
inverse and the weak group inverse were studied in [9, 10, 12, 19, 22]. At the beginning of this section,
we present limit expressions of the gMP inverse.

Theorem 4.1. Let B ∈ Cn×n
k . We have

B
⊗

= lim
λ→0

B∗(λIn + Bk(Bk)∗BB∗)−1Bk(Bk)∗ (4.2)

= lim
λ→0

B∗Bk(Bk)∗(λIn + BB∗Bk(Bk)∗)−1
. (4.3)

Proof. We denote M = B∗(λIn + Bk(Bk)∗BB∗)−1Bk(Bk)∗. Let B be given by (2.1), L = T k(T k)∗ + T̃ (T̃ )∗

and T̃ =
k−1∑
j=0

T jS Nk−1− j. A straightforward calculation gives that

M = B∗(λIn + Bk(Bk)∗BB∗)−1Bk(Bk)∗

= U
[

T ∗ O
S ∗ N∗

] [
λIt + L(TT ∗ + S S ∗) LS N∗)

O λIn−t

]−1 [
L O
O O

]
U∗

= U
[

T ∗ O
S ∗ N∗

] [
(λIt + L(TT ∗ + S S ∗))−1 − 1

λ
(λIt + L(TT ∗ + S S ∗))−1LS N∗)

O 1
λ
In−t

] [
L O
O O

]
U∗

= U
[

T ∗(λIt + L(TT ∗ + S S ∗))−1L O
S ∗(λIt + L(TT ∗ + S S ∗))−1L O

]
U∗.

Applying (4.1), we get

lim
λ→0

M = lim
λ→0

U
[

T ∗(λIt + L(TT ∗ + S S ∗))−1L 0
S ∗(λIt + L(TT ∗ + S S ∗))−1L 0

]
U∗
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= U
[

T ∗(TT ∗ + S S ∗)−1L−1L O
S ∗(TT ∗ + S S ∗)−1L−1L O

]
U∗

= U
[

T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
U∗ = B

⊗
.

Similarly, (4.3) can be verified. �

The purpose of the following example is to illustrate the equation (4.2) of Theorem 4.1. The
equation (4.3) can be verified similarly.

Example 4.2. Let

B =


1 0 2 3
0 1 −1 1
0 0 2 4
0 0 −1 −2


with Ind(B) = 2. By (2.9), we get

B
⊗

= (B2(B2)†B)† =


3
41 − 1

41 0 0
− 1

41
14
41 0 0

7
41 −16

41 0 0
8
41

11
41 0 0

 .
On the other hand,

B∗(λI4 + B2(B2)∗BB∗)−1B2(B2)∗ =


35λ+303

λ2+542λ+4141
−37λ−101

λ2+542λ+4141 0 0
−37λ−101

λ2+542λ+4141
42λ+1414

λ2+542λ+4141 0 0
107λ+707

λ2+542λ+4141
−116λ−1616
λ2+542λ+4141 0 0

68λ+808
λ2+542λ+4141

−69λ+1111
λ2+542λ+4141 0 0

 .
After simplification, it follows that lim

λ→0
B∗(λI4 + B2(B2)∗BB∗)−1B2(B2)∗ = B

⊗
.

In [15], the authors established maximal classes of operators for which the representations of the
gMP inverse are still valid. Two operator matrix forms for the gMP inverse were given. From (2.9),
we have that B

⊗
= (Bk(Bk)†B)†. We study maximal classes of complex matrices such that this form of

expression for gMP inverse is still valid.

Theorem 4.3. Let B ∈ Cn×n
k be given by (2.1) and r(Bk) = t. The following are equivalent:

(a) B
⊗

= (BkXB)†;
(b) BkXB = PBk B;
(c) X = (Bk)†PB + Y − P(Bk)∗YPB, where Y ∈ Cn×n is arbitrary;
(d) X is given by

X = U
[

Y1 + (T k)∗L−1(It − T kY1 − T̃Y3) Y2 − (T k)∗L−1(T kY2 + T̃Y4)NN†

Y3 + (T̃ )∗L−1(It − T kY1 − T̃Y3) Y4 − (T̃ )∗L−1(T kY2 + T̃Y4)NN†

]
U∗,

where L = T k(T k)∗+ T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j, Y1 ∈ C
t×t, Y2 ∈ C

t×(n−t), Y3 ∈ C
(n−t)×t and Y4 ∈ C

(n−t)×(n−t)

are arbitrary.
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Proof. (a)⇒ (b). We have BkXB = PBk B since B
⊗

= (Bk(Bk)†B)†.
(b)⇒ (c). Obviously, (Bk)†PB satisfies the equation

BkXB = PBk B. (4.4)

Applying [2, Ch.2 Theorem 1] to (4.4), X = (Bk)†PB + Y − P(Bk)∗YPB is the general solution of (4.4),
where Y ∈ Cn×n is arbitrary.

(c)⇒ (a). By computation, we get BkXB = Bk(Bk)†B. Therefore, (BkXB)† = (Bk(Bk)†B)† = B
⊗
.

(c)⇔ (d). Using (2.1), we have

Bk = U
[

T k T̃
O O

]
U∗. (4.5)

Applying [8, Lemma 1] to (4.5), we get

(Bk)† = U
[

(T k)∗(T k(T k)∗ + T̃ (T̃ )∗)−1 O
(T̃ )∗(T k(T k)∗ + T̃ (T̃ )∗)−1 O

]
U∗. (4.6)

Next,

Y = U
[

Y1 Y2

Y3 Y4

]
U∗,

where Y1 ∈ C
t×t, Y2 ∈ C

t×(n−t), Y3 ∈ C
(n−t)×t and Y4 ∈ C

(n−t)×(n−t) are arbitrary. By direct calculation, we
get that X = (Bk)†PB + Y − P(Bk)∗YPB is equivalent with

X = U
[

Y1 + (T k)∗L−1(It − T kY1 − T̃Y3) Y2 − (T k)∗L−1(T kY2 + T̃Y4)NN†

Y3 + (T̃ )∗L−1(It − T kY1 − T̃Y3) Y4 − (T̃ )∗L−1(T kY2 + T̃Y4)NN†

]
U∗,

where L = T k(T k)∗ + T̃ (T̃ )∗, T̃ =
k−1∑
j=0

T jS Nk−1− j, Y1, Y2, Y3, Y4 are arbitrary. �

Theorem 4.4. Let B ∈ Cn×n
k , a , 0. Suppose that P and Q∗ are full column rank matrices which satisfy

N((Bk)∗) = R(P) and R(B∗Bk) = N(Q). Let EP = In − PP†, FQ = In − Q†Q. Then,

B
⊗

= (B∗EPB + aQ∗Q)−1B∗EP (4.7)
= FQB∗(BFQB∗ + aPP∗)−1. (4.8)

Proof. We show that B∗EPB + aQ∗Q is nonsingular. Assume that (B∗EPB + aQ∗Q)x = 0 for some
x ∈ Cn. Then, we have aQ∗Qx = −B∗EPBx,

x ∈ R(Q∗Q) ∩ R(B∗EPB) = R(Q∗) ∩ R(B∗EP) = R(B∗Bk)⊥ ∩ R(B∗Bk) = {0},

which implies Q∗Qx = 0 and B∗EPBx = 0. Hence Qx = 0, EPBx = 0 yield

x ∈ N(Q) ∩ N(EPB) = R(B∗Bk) ∩ R(B∗Bk)⊥ = {0}.

Thus x = 0 and B∗EPB + aQ∗Q is nonsingular. Hence, since R(B
⊗

) = R(B∗Bk) = N(Q), we get
QB

⊗
= O. By Lemma 2.2 (b) and N(EP) = R(P) = N((Bk)∗), we obtain EPBB

⊗
= EP. Therefore,

B
⊗

= (B∗EPB + aQ∗Q)−1B∗EP.
Similarly, (4.8) can be verified. �
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5. Some properties of gMP inverse

In [15], the authors discussed equivalent conditions for B
⊗
∈ B{1}, B

⊗
= B †©. We now

consider the relationships between the gMP inverse and other generalized inverses using core-EP
decomposition.

For convenience, we introduce several matrix classes. Symbols CCM
n , CEP

n and COP
n stand for the sets

of all core matrices, EP-matrices and orthogonal projectors, respectively, i.e.,

CCM
n = {B | B ∈ Cn×n, r(B) = r(B2)},
CEP

n = {B | B ∈ Cn×n,R(B) = R(B∗)},
COP

n = {B | B ∈ Cn×n, B2 = B = B∗}.

Theorem 5.1. Let B ∈ Cn×n. Then the following conditions are equivalent:

(a) B
⊗
∈ B{1};

(c) B
⊗

= B†;
(e) B

⊗
B = PB∗ .

(b) B ∈ CCM
n ;

(d) BB
⊗

= PB;

Proof. Assume that B is given by (2.1) and 4 = [TT ∗ + S (In−t − N†N)S ∗]−1.
(a)⇔ (b). Using (2.1) and (2.9), we get

BB
⊗

B = B⇔
[

T S
NS ∗(TT ∗ + S S ∗)−1T NS ∗(TT ∗ + S S ∗)−1S

]
=

[
T S
O N

]
⇔ NS ∗(TT ∗ + S S ∗)−1T = O, NS ∗(TT ∗ + S S ∗)−1S = N

⇔ NS ∗ = O, N = O

⇔ N = O

⇔ B ∈ CCM
n .

(b)⇔ (c). Using (2.2) and (2.9), we obtain

B
⊗

= B† ⇔
[

T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
=

[
T ∗4 −T ∗4S N†

(In−t − N†N)S ∗4 N† − (In−t − N†N)S ∗4S N†

]
⇔ T ∗(TT ∗ + S S ∗)−1 = T ∗4, S N† = O,N† = O, S ∗(TT ∗ + S S ∗)−1 = (In−t − N†N)S ∗4
⇔ N = O

⇔ B ∈ CCM
n .

(c)⇒ (d). It is obvious.
(d)⇒ (a). It follows by multiplying BB

⊗
= PB from the right side by B.

(c)⇒ (e)⇒ (a). It is similar to (c)⇒ (d)⇒ (a). �

Theorem 5.2. Let B ∈ Cn×n. The following statements are equivalent:
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(a) B ∈ CEP
n ;

(c) B
⊗

= B#;
(e) BB

⊗
= PB∗ .

(b) B
⊗

= B #©;
(d) B

⊗
B = PB;

Proof. Assume that B is given by (2.1) and 4 = [TT ∗ + S (In−t − N†N)S ∗]−1.
(a)⇔ (b). Using (2.8) and (2.9), we get

B
⊗

= B #© ⇔

[
T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
=

[
T−1 O
O O

]
and N = O

⇔ N = O, S = O

⇔ B ∈ CEP
n .

(a)⇔ (c). We can verify that B
⊗

= B# is equivalent with N = O, S = O, that is B ∈ CEP
n .

By (2.1) and (2.2), we have

BB† = U
[

It O
O NN†

]
U∗, (5.1)

B†B = U
[

T ∗4T T ∗4S (In−t − N†N)
(In−t − N†N)S ∗4T NN† + (In−t − N†N)S ∗4S (In−t − N†N)

]
U∗. (5.2)

Using (2.1) and (2.9), we get

BB
⊗

= U
[

It O
NS ∗(TT ∗ + S S ∗)−1 O

]
U∗, (5.3)

B
⊗

B = U
[

T ∗(TT ∗ + S S ∗)−1T T ∗(TT ∗ + S S ∗)−1S
S ∗(TT ∗ + S S ∗)−1T S ∗(TT ∗ + S S ∗)−1S

]
U∗. (5.4)

(a)⇔ (d). Compared (5.1) with (5.4), we get that B
⊗

B = PB is equivalent with S = O and N = O,
that is B ∈ CEP

n .
(a)⇔ (e). Using (5.2) and (5.3), it can be verified that BB

⊗
= PB∗ if and only if B ∈ CEP

n . �

Theorem 5.3. Let B ∈ Cn×n. The following are equivalent:

(a) B ∈ COP
n ;

(c) B
⊗

= PB∗;
(e) BB# = B

⊗
;

(b) B
⊗

= PB;
(d) BB #© = B

⊗
;

( f ) B #©B = B
⊗

.

Proof. Assume that B is given by (2.1).
(a)⇔ (b). By (2.9) and (5.1),

B
⊗

= PB ⇔

[
T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
=

[
It O
O NN†

]
⇔ N = O, S = O, T = It

⇔ B ∈ COP
n .

(a) ⇔ (c). Using (2.9) and (5.2), we have that B
⊗

= PB∗ is equivalent with S = O, N = O and
T = It, that is B ∈ COP

n .
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(a)⇔ (d). Using (2.1), (2.8) and (2.9), we get

B
⊗

= BB #© ⇔

[
T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
=

[
It O
O O

]
and N = O

⇔ N = O, S = O, T = It

⇔ B ∈ COP
n .

(a)⇔ (e). By (2.1), (2.8) and (2.9), we get

B
⊗

= BB# ⇔

[
T ∗(TT ∗ + S S ∗)−1 O
S ∗(TT ∗ + S S ∗)−1 O

]
=

[
It T−1S
O O

]
and N = O

⇔ S = O, N = O, T = It

⇔ B ∈ COP
n .

(e)⇔ ( f ). We observe that B #©B = B#BB†B = B#B = BB#. �

In [18, Definition 4.1], Wang and Liu defined the weak group matrices using the commutability:
BBw© = Bw©B. Inspired by that, we introduce the generalized Moore-Penrose matrices using gMP
inverse.

Definition 1. A matrix B ∈ Cn×n is called a generalized Moore-Penrose matrix ( in short, gMP matrix)
if BB

⊗
= B

⊗
B.

The set of all n × n gMP matrices is denoted by C
⊗
n , that is C

⊗
n = {B | B ∈ Cn×n, BB

⊗
= B

⊗
B}.

It is widely known that B ∈ CEP
n if and only if B# = B†. In order to get similar characterizations of

the gMP matrices, we state the next lemma.

Lemma 5.4. Let B ∈ Cn×n
k be given by (2.1). The following conditions are equivalent:

(a) B ∈ C
⊗
n ;

(c) R(Bk) = R(B∗Bk);

(b) S = O;
(d) B

⊗
∈ CEP

n .

Proof. (a)⇔ (b). It can be directly verified using (5.3) and (5.4).
(a)⇔ (c). By Lemma 2.2, we obtain

B ∈ C
⊗
n ⇔ R(BB∗Bk) = R(B∗Bk) and N((Bk)∗) = N((Bk)∗B)
⇔ R(Bk) = R(B∗Bk).

(d)⇔ (c). Notice that B
⊗
∈ CEP

n is equivalent with R(B
⊗

) = R((B
⊗

)∗). Using Lemma 2.2 (a), we
can verify that R(B

⊗
) = R((B

⊗
)∗) if and only if R(Bk) = R(B∗Bk). �

Remark 5.5. Let B ∈ Cn×n
k be given by (2.1). Using [6, Theorem 4.4], we know that B is a k-core EP

matrix (that is, BkB †© = B †©Bk) if and only if S = O. In [18, Theorem 2.4], the authors presented
that B is i-EP matrix (that is, BB †© = B †©B) if and only if S = O. Thus, generalized Moore-Penrose
matrices are the same as the k-core EP matrices and i-EP matrices.

Theorem 5.6. Let B ∈ Cn×n. The following conditions are equivalent:
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(a) B ∈ C
⊗
n ;

(c) B
⊗

= BD,†;
(e) B

⊗
= B†,D;

(b) B
⊗

= BD;
(d) B

⊗
= B †©;

( f ) B
⊗

= Bw©.

Proof. Let B ∈ Cn×n be given by (2.1).
If B ∈ C

⊗
n , by Lemma 5.4 (b), we have that (b) − ( f ) hold.

On the contrary, we only need to prove that each of the conditions (b)−( f ) is equivalent with S = O.
(b)⇒ (a). If B

⊗
= BD, by (2.3) and (2.9), we obtain S = O.

(c)⇒ (a). If B
⊗

= BD,†, it follows from (2.4) and (2.9) that S = O.
(d)⇒ (a). If B

⊗
= B †©, from (2.6) and (2.9), it is obvious that S = O.

(e)⇒ (a). If B
⊗

= B†,D, using (2.5) and (2.9), we obtain T̃ = O, which leads to S = O.
( f )⇒ (a). If B

⊗
= Bw©, it is obtained by (2.7) and (2.9) that S = O. �

6. Applications of gMP inverse

In present section, we consider the relationship between the gMP inverse and nonsingular bordered
matrix, which is applied to the Cramer’s rule of the restricted matrix equation.

Theorem 6.1. Let B ∈ Cn×n
k with r(Bk) = t. Assume that P ∈ Cn×(n−t) and Q ∈ C(n−t)×n satisfy r(P) =

r(Q) = n − t, N((Bk)∗) = R(P) and R(B∗Bk) = N(Q). Then the bordered matrix

B1 =

[
B P
Q O

]
is invertible with

B−1
1 =

[
B

⊗
(In − B

⊗
B)Q†

P†(In − BB
⊗

) P†(BB
⊗

B − B)Q†

]
.

Proof. Let Z =

[
B

⊗
(In − B

⊗
B)Q†

P†(In − BB
⊗

) P†(BB
⊗

B − B)Q†

]
. We only need to verify that B1Z = I2n−t.

Since R(B
⊗

) = R(B∗Bk) = N(Q), we get QB
⊗

= O. Since Q is full row rank matrix, we get
QQ† = In−t. Using

R(In − BB
⊗

) = N(BB
⊗

) = N((Bk)∗) = R(P) = R(PP†),

we get PP†(In − BB
⊗

) = In − BB
⊗
. Then, we have

B1Z =

[
BB

⊗
+ PP†(In − BB

⊗
) B(In − B

⊗
B)Q† + PP†(BB

⊗
B − B)Q†

QB
⊗

Q(In − B
⊗

B)Q†

]
=

[
BB

⊗
+ In − BB

⊗
B(In − B

⊗
B)Q† − (In − BB

⊗
)BQ†

O QQ†

]
=

[
In O
O In−t

]
.

Thus, Z = B−1
1 . The proof is completed. �
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Using the gMP inverse, we will solve the restricted matrix equation.

Theorem 6.2. Let B ∈ Cn×n
k , X ∈ Cn×m, D ∈ Cn×m. If R(D) ⊆ R(BB∗Bk), then the restricted matrix

equation
BX = D, R(X) ⊆ R(B∗Bk) (6.1)

has unique solution X = B
⊗

D.

Proof. If R(D) ⊆ R(BB∗Bk), then BB
⊗

D = PR(BB∗Bk),N((Bk)∗)D = D. Clearly, X = B
⊗

D is a solution of
(6.1). X = B

⊗
D also satisfies the restricted condition because R(X) ⊆ R(B

⊗
) = R(B∗Bk). Finally, we

show the uniqueness. If X1 also satisfies (6.1), then

X = B
⊗

D = B
⊗

BX1 = PR(B∗Bk)X1 = X1,

since R(X1) ⊆ R(B∗Bk). �

Next, we show a Cramer’s rule for solving the restricted matrix equation (6.1).

Theorem 6.3. Let B ∈ Cn×n
k , X,D ∈ Cn×m. Suppose that P and Q∗ are full column rank matrices which

satisfy N((Bk)∗) = R(P) and R(B∗Bk) = N(Q). Then the elements of the unique solution X = [xi j] of
the restricted matrix equation (6.1) are given by

xi j =

det
[

B(i→ d j) P
Q(i→ 0) O

]
det

[
B P
Q O

] , i = 1, 2, ..., n, j = 1, 2, ...,m, (6.2)

where d j denotes the j-th column of D.

Proof. Since X is the solution of the restricted matrix equation (6.1), we haveR(X) ⊆ R(B∗Bk) = N(Q).
It follows that QX = O and[

B P
Q O

] [
X O
O O

]
=

[
BX O
O O

]
=

[
D O
O O

]
.

By Theorem 6.1, we have X = B
⊗

D. Now, (6.2) follows by the Cramer’s rule. �

Example 6.4. Let B and B
⊗

as in Example 3.8. Let

D =


18 12 −36
0 16 32
9 6 −18
0 0 0

 , P =


0 0
0 0
1 0
0 1

 , Q =

[
1 0 −2 0
0 0 −1 1

]
.

We get

B∗B2 =


8 0 4 10
0 8 0 0
4 0 2 5
4 0 2 5

 , BB∗B2 =


24 0 12 30
0 16 0 0
12 0 6 15
0 0 0 0

 .
AIMS Mathematics Volume 7, Issue 3, 4359–4375.
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It is easy to check R(D) ⊆ R(BB∗B2). Also, the matrix

X = B
⊗

D =


6 4 −12
0 8 16
3 2 −6
3 2 −6


satisfies matrix equation BX = D and restricted condition R(X) ⊆ R(B∗B2). After simple calculations,
we observe that results of (6.2) are the same as the matrix X.

7. Conclusions

In this paper, new characteristics of the gMP inverse are derived by using rang space, null space,
matrix equations and projectors. Some representations for the gMP inverse of matrices are obtained.
Several properties of the gMP inverse are discussed. Additionally, applications of the gMP inverse in
solving restricted matrix equation are presented.

The future perspectives for research are proposed:
1). Iterative algorithms and splitting methods to compute the gMP inverse.
2). Perturbations and continuity of the gMP inverse could be studied.
3). Considering the gMP inverse of tensors.
4). Studying relation of the gMP inverse and some partial order.
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3. D. Cvetković-Ilić, C. Deng, Some results on the Drazin invertibility and idempotents, J. Math.
Anal. Appl., 359 (2009), 731–738. http://dx.doi.org/10.1016/j.jmaa.2009.05.062
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