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1. Introduction

Throughout this paper, we denote the set of m×n complex matrices by Cm×n. And denote the identity
matrix of order n by In, the range space, the null space , the conjugate transpose and the rank of the
matrix A ∈ Cm×n by R(A), N(A), A∗ and r(A), respectively. The index of A ∈ Cn×n, denoted by Ind(A),
is the smallest nonnegative integer k such that r(Ak) = r(Ak+1). The subset of Cn×n with index k will be
denoted by Cn×n

k . PL,M stands for the projector (idempotent) on the subspace L along the subspace M.
For A ∈ Cn×n, PA and PA∗ represent the orthogonal projections onto R(A) and R(A∗) respectively, i.e.
PA = AA† and PA∗ = A†A.

For the readers’ convenience, we will first recall the definitions of some generalized inverses. For
A ∈ Cm×n, the Moore-Penrose inverse A† of A is the unique matrix X ∈ Cn×m satisfying the following
four Penrose equations [4,18]:

(1) AXA = A, (2) XAX = X, (3) (AX)∗ = AX, (4) (XA)∗ = XA.
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A matrix X ∈ Cn×m satisfying (2) is called an outer inverse of A and is denoted by A(2). For A ∈ Cm×n,
a matrix X ∈ Cn×m satisfying XAX = X, R(X) = T and N(X) = S , is denoted by A(2)

T,S [6], where T is a
subspace of Cn and S is a subspace of Cm. If A(2)

T,S exists then it is unique.
The Drazin inverse of A ∈ Cn×n

k , denoted by AD, is the unique matrix X ∈ Cn×n satisfying the
following three equations [4, 9]:

(5) AX2 = X, (6) AX = XA, (7) XAk+1 = Ak.

In particular, if Ind(A) = 1, then the Drazin inverse of A is called the group inverse of A and is
denoted by A#. The core-inverse of A ∈ Cn×n, denoted by A #© is defined in [2] as the unique matrix
X ∈ Cn×n satisfying AX = PA and R(X) ⊆ R(A). A #© exists if and only if Ind(A) = 1 [2, 20]. The
core-EP inverse of A ∈ Cn×n

k , denoted by A †© is defined in [19] as the unique matrix X ∈ Cn×n satisfying
XAX = X and R(X) = R(X∗) = R(Ak) [11, 19, 21, 30]. The BT-inverse of A ∈ Cn×n, denoted by A♦,
which is defined in [1] written by (APA)† [1, 13]. The DMP-inverse of A ∈ Cn×n

k , written by AD,† is
defined in [14] as the unique matrix X ∈ Cn×n satisfying XAX = X, XA = ADA and AkX = AkA†.
Moreover, it was proved that AD,† = ADAA†. Also, the dual DMP-inverse of A was introduced in [14],
namely A†,D = A†AAD [14, 31]. The CMP-inverse of A ∈ Cn×n

k , written by AC,† is defined in [15] as
the unique matrix X ∈ Cn×n satisfying XAX = X, AX = AADAA† and XA = A†AADA. Moreover, it was
proved that AC,† = A†AADAA† [15, 24]. The (B,C)-inverse of A ∈ Cm×n, denoted by A(B,C) [8], is the
unique matrix X ∈ Cn×m satisfying XAB = B,CAX = C, N(X) = N(C) and R(X) = R(B), where B,
C ∈ Cn×m [3, 8].

The weak group inverse of A ∈ Cn×n
k was defined for the first time by Wang and Chen [22]:

Definition 1.1 [22] Let A ∈ Cn×n
k . The weak group inverse Aw© of A is the unique matrix X ∈ Cn×n

satisfying
AX2 = X, AX = A †©A.

The weak group matrix was defined for the first time by Wang and Liu [23]:

Definition 1.2 [23] Let A ∈ Cn×n
k . We say a weak group matrix if A ∈ CWG

n , in which

CWG
n = {A|AAw© = Aw©A, A ∈ Cn×n

k }.

Recently, the study of the weak group inverse and the generalized weak group inverse has received
a lot of attention (see e.g. [16, 17, 26–28]).

In this paper, we discuss some new characterizations and properties of the weak group inverse
and the weak group matrix. First, we characterize the weak group inverse of a square matrix based
on its range space and null space. Several different characterizations of the weak group inverse are
presented by projection and the Bott-Duffin inverse. We also give the limit representations for the
weak group inverse. Then we study the relationships between Aw© and other generalized inverses such
as A#, A #©, A†, A †©, AD, AD,†. And some characterizations of the weak group matrix are obtained.

The research is arranged as follows. In Section 2, some indispensable matrix classes and lemmas
are given. In Section 3, some characterizations of Aw© are presented. In Section 4, we discuss the
relationships between Aw© and other generalized inverses by core-EP decomposition. Finally, we study
the characterizations of the weak group matrix.
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2. Preliminaries

For convenience, some matrix classes will be given as follows.
These symbols CCM

n ,CP
n ,C

OP
n ,CEP

n ,CU
n and CH

n will stand for the subsets of Cn×n consisting of core
matrices, projectors (idempotent matrices), orthogonal projectors (Hermitian idempotent matrices),
EP-matrices (Range-Hermitian matrices), unitary matrices and Hermitian matrices, respectively, i.e.,

CCM
n = {A|A ∈ Cn×n, r(A2) = r(A)},
CP

n = {A|A ∈ Cn×n, A2 = A},

COP
n = {A|A ∈ Cn×n, A2 = A = A∗},

CEP
n = {A|A ∈ Cn×n, AA† = A†A} = {A|A ∈ Cn×n,R(A) = R(A∗)},
CU

n = {A|A ∈ Cn×n, AA∗ = A∗A = In},

CH
n = {A|A ∈ Cn×n, A = A∗}.

In order to study the characterizations and properties of the weak group inverse and the weak group
matrix, we need to recall the core-EP decomposition of A, which plays an important role in this paper.

According to Theorem 2.2 in [21], every matrix A ∈ Cn×n
k can be represented in the form:

A = A1 + A2 = U
(

T S
0 N

)
U∗, A1 := U

(
T S
0 0

)
U∗, A2 := U

(
0 0
0 N

)
U∗, (2.1)

where T ∈ Cp×p is nonsingular with p := r(T ) = r(Ak), N is nilpotent of index k, and U ∈ Cn×n is
unitary. The representation of A given in (2.1) satisfies Ind(A1) ≤ 1, Ak

2 = 0, and A∗1A2 = A2A1 = 0
[21, Theorem 2.1]. Moreover, it is unique [21, Theorem 2.4] and is called the core-EP decomposition
of A.

Lemma 2.1 Let A ∈ Cn×n
k be as in (2.1). Then

r(A) = r(A2)⇐⇒ N = 0.

In which case, we have

A# = U
(

T−1 T−2S
0 0

)
U∗, A #© = U

(
T−1 0
0 0

)
U∗. (2.2)

Proof. The proof is easy.
In [7, 10, 13, 21, 29], some generalized inverses such as A†, AD, A †©, A♦, AD,†, A†,D, AC,† can be

represented by the core-EP decomposition of A. We list these results in the lemmas below.

Lemma 2.2 [7, 10, 13, 21, 29] Let A ∈ Cn×n
k be as in (2.1). Then

(a) A† = U
(

T ∗∆ − T ∗∆S N†

(In−p − N†N)S ∗∆ N† − (In−p − N†N)S ∗∆S N†

)
U∗; (2.3)

(b) AD = U
(

T−1 (T k+1)−1T̃
0 0

)
U∗; (2.4)
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(c) A †© = U
(

T−1 0
0 0

)
U∗; (2.5)

(d) A♦ = U
(

T ∗∆1 − T ∗∆1S N♦

(PN − PN♦)S ∗∆1 N♦ − (PN − PN♦)S ∗∆1S N♦

)
U∗,

where ∆1 = [TT ∗ + S (PN − PN♦)S ∗]−1; (2.6)

(e) AD,† = U
(

T−1 (T k+1)−1T̃ NN†

0 0

)
U∗; (2.7)

( f ) A†,D = U
(

T ∗∆ T ∗∆T−kT̃
(In−p − N†N)S ∗∆ (In−p − N†N)S ∗∆T−kT̃

)
U∗; (2.8)

(g) AC,† = U
(

T ∗∆ T ∗∆T−kT̃ NN†

(In−p − N†N)S ∗∆ (In−p − N†N)S ∗∆T−kT̃ NN†

)
U∗, (2.9)

where T̃ =

k−1∑
j=0

T jS Nk−1− j and ∆ = [TT ∗ + S (In−p − N†N)S ∗]−1. (2.10)

The notation T̃ and ∆ are often used as follows.

Lemma 2.3 [10, 21, 22] Let A ∈ Cn×n
k be as in (2.1). Then

(a) AA† = U
(

Ip 0
0 NN†

)
U∗; (2.11)

(b) AA †© = PAk = U
(

Ip 0
0 0

)
U∗; (2.12)

(c) Aw© = (A †©)2A = U
(

T−1 T−2S
0 0

)
U∗. (2.13)

Lemma 2.4 [25] Let A ∈ Cm×n, X ∈ Cn×l and Y ∈ Cl×m. Then the following conditions are
equivalent:

(a) lim
λ→0

X(λIl + YAX)−1Y exists;
(b) r(XYAXY) = r(XY);
(c) A(2)

R(XY),N(XY) exists,
in which case,

lim
λ→0

X(λIl + YAX)−1Y = A(2)
R(XY),N(XY).

Lemma 2.5 [16] Let A ∈ Cn×n
k . Then

Aw© = A(2)
R(Ak),N((Ak)∗A) = A(2)

R(Ak(Ak)∗A),N(Ak(Ak)∗A).

Lemma 2.6 [17] Let A ∈ Cn×n
k . Then the following statements hold:

(a) AAw© = PR(Ak),N((Ak)∗A);
(b) Aw©A = PR(Ak),N((Ak)∗A2).

AIMS Mathematics Volume 6, Issue 9, 9322–9341.
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3. Some characterizations of the weak group inverse

Using the results of Lemma 2.5, we have R(Aw©) = R(Ak) and N(Aw©) = N((Ak)∗A). Now, we will
give several different characterizations of the weak group inverse for a matrix A.

Theorem 3.1 Let A ∈ Cn×n
k and X ∈ Cn×n. Then the following conditions are equivalent:

(a) X = Aw©;
(b) R(X) = R(Ak),N(X) = N((Ak)∗A) and AX2 = X;
(c) R(X) = R(Ak),N(X) = N((Ak)∗A) and XAk+1 = Ak;
(d) R(X) = R(Ak) and AX = A †©A;
(e) R(X) = R(Ak) and A2X = PAk A;
(f) R(X) = R(Ak) and (Ak)∗A2X = (Ak)∗A.

Proof. (a)⇒ (b). The assertion follows directly from Lemma 2.5 and the definition of Aw©.
(b)⇒ (c). From (2.1), we can calculate that

Ak = U
(

T k T̃
0 0

)
U∗,

where T̃ =

k−1∑
j=0

T jS Nk−1− j.

Let X = U
(

X1 X2

X3 X4

)
U∗, from R(X) = R(Ak) and AX2 = X, we have

X = U
(

T−1 X2

0 0

)
U∗,

where X2 ∈ C
p×(n−p), p = r(Ak).

Hence, XAk+1 = U
(

T−1 X2

0 0

)
U∗ · U

(
T k+1 TT̃

0 0

)
U∗ = U

(
T k T̃
0 0

)
U∗ = Ak.

(c) ⇒ (a). By R(X) = R(Ak), we have X = AkL for some L ∈ Cn×n. Then we get that XAX = X
since XAk+1 = Ak. Hence, X = A(2)

R(Ak),N((Ak)∗A) = Aw© by Lemma 2.5.
(a)⇒ (d). It can be obtained directly from Lemma 2.5 and the definition of Aw©.
(d)⇒ (e). Notice that AA †© = PAk , which is obvious.
(e)⇒ ( f ). From the condition, it follows that (Ak)∗A2X = (Ak)∗PAk A = (Ak)∗A.

( f ) ⇒ (a). From (2.1) and R(X) = R(Ak), we can let X = U
(

X1 X2

0 0

)
U∗, where X1 ∈ C

p×p and

X2 ∈ C
p×(n−p), p = r(Ak). And by (Ak)∗A2X = (Ak)∗A, we have X1 = T−1, X2 = T−2S .

Hence, X = U
(

T−1 T−2S
0 0

)
U∗ = Aw©. �

In the following theorem, we show the other characterizations of weak group inverse by
Aw©AAw© = Aw©.
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Theorem 3.2 Let A ∈ Cn×n
k and X ∈ Cn×n. Then the following conditions are equivalent:

(a) X = Aw©;
(b) XAX = X,R(X) = R(Ak) and N(X) = N((Ak)∗A);
(c) XAX = X,R(XA) = R(Ak) and AX = A †©A;
(d) XAX = X,R(X) = R(Ak) and A∗A2X ∈ CH

n .

Proof. (a)⇒ (b). We can obtain the assertion from Lemma 2.5.
(b) ⇒ (c). By XAX = X and R(X) = R(Ak), we can obtain that R(AX) = AR(X) = AR(Ak) =

R(Ak+1) = R(Ak) = R(A †©A) and N(AX) = N(X) = N((Ak)∗A) = N(A †©A). Hence AX = A †©A, since
AX, A †©A ∈ CP

n .
From R(X) = R(Ak) we get Ak = PXAk. Hence

Ak = PXAk = XX†Ak = XAXX†Ak = XAk+1.

Thus, we have R(Ak) = R(XAk+1) ⊆ R(XA) ⊆ R(X) = R(Ak), we get R(XA) = R(Ak).
(c) ⇒ (d). Notice that AA †© = PAk ∈ CH

n , then A∗A2X = A∗(AA †©)A ∈ CH
n . From XAX = X and

R(XA) = R(Ak), we obtain R(X) = R(Ak).
(d)⇒ (a). Using the core-EP decomposition of A ∈ Cn×n

k (2.1), we partition X as follows:

X = U
(

X1 X2

X3 X4

)
U∗,

where X1 ∈ C
p×p, X2 ∈ C

p×(n−p), X3 ∈ C
(n−p)×p, X4 ∈ C

(n−p)×(n−p) and p = r(Ak).

By R(X) = R(Ak), we get that X = U
(

X1 X2

0 0

)
U∗ and r(X1, X2) = p, the matrix (X1, X2) is full

row rank. Thus, we have X1T = Ip by XAX = X. Hence X1 = T−1. Again note that A∗A2X ∈ CH
n ,

moreover

A∗A2X = U
(

T S
0 N

)∗ (
T S
0 N

)2 (
T−1 X2

0 0

)
U∗ = U

(
T ∗T T ∗T 2X2

S ∗T S ∗T 2X2

)
U∗,

we have S ∗T = (T ∗T 2X2)∗ and X2 = T−2S . Hence X = U
(

T−1 T−2S
0 0

)
U∗ = Aw©. �

From Theorem 3.2, by R(Aw©) = R(Ak) we know that Aw© also satisfies the condition (7) in the
definition of Drazin inverse. In the following theorem, we show some characterizations of Aw© by
Aw©Ak+1 = Ak.

Theorem 3.3 Let A ∈ Cn×n
k and X ∈ Cn×n. Then the following conditions are equivalent:

(a) X = Aw©;
(b) XAk+1 = Ak, AX2 = X and A2X = PAk A;
(c) XAk+1 = Ak, AX = A †©A and r(X) = r(Ak).
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Proof. (a)⇒ (b). By (2.13) and simple calculation, it is obvious.
(b) ⇒ (c). Since AX2 = X, by induction it then follows that X = AX2 = AXX = A(AX2)X =

A2X3 = · · · = AkXk+1. Thus, by Ak = U
(

T k T̃
0 0

)
U∗, where T̃ =

∑k−1
j=0 T jS Nk−1− j, we can let

X = U
(

X1 X2

0 0

)
U∗, where X1 ∈ C

p×p, X2 ∈ C
p×(n−p) and p = r(Ak).

By conditions XAk+1 = Ak and A2X = PAk A, we get

X = U
(

T−1 T−2S
0 0

)
U∗

Thus AX = A †© and r(X) = r(Ak).
(c) ⇒ (a). From XAk+1 = Ak and r(X) = r(Ak), we have R(X) = R(Ak). XAX = X and

R(XA) = R(Ak). Thus, by (c) of Theorem 3.2, we obtain that X = Aw©. �

Remark 3.4 Notice that the condition XAk+1 = Ak in items (b) and (c) of Theorem 3.3 can be
replaced by XAl+1 = Al(l ≥ k). Also the condition AX2 = X in items (b) of Theorem 3.3 can be
replaced by X = AtXt+1(t ≥ 1).

By Lemma 2.6, it is clear that AX = PR(Ak),N((Ak)∗A) and XA = PR(Ak),N((Ak)∗A2) when X = Aw©.
However, the conditions AX = PR(Ak),N((Ak)∗A) and XA = PR(Ak),N((Ak)∗A2) can not deduce that X = Aw©.
We will present the following example to illustrate that.

Example 3.5 Let

A =


1 0 0
0 0 1
0 0 0

 , X =


1 0 0
0 0 2
0 0 0

 , then Aw© =


1 0 0
0 0 0
0 0 0

 .
It is easy to check that k = Ind(A) = 2, AX = PR(Ak),N((Ak)∗A) and XA = PR(Ak),N((Ak)∗A2). However,
X , Aw©.

But we have the following result.

Theorem 3.6 Let A ∈ Cn×n
k and X ∈ Cn×n. Then X = Aw© if and only if X satisfies the following:

AX = PR(Ak),N((Ak)∗A), XA = PR(Ak),N((Ak)∗A2) and r(X) = r(Ak).

Proof. If X = Aw©, we can obtain the assertion directly by Lemma 2.6 and Theorem 3.3.
Conversely, by conditions R(XA) = R(Ak) and r(X) = r(Ak), we get R(X) = R(Ak) and XAX = X.

Thus, N(X) = N(AX) = N((Ak)∗A). Therefore, X = Aw© by Lemma 2.5. �

The definition of Aw© has been introduced from an algebraic approach. In [17], Dijana Mosic and
Daochang Zhang characterized Aw© by AX = PR(Ak),N((Ak)∗A),R(X) ⊆ R(Ak). In the following, we
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characterize Aw© by the condition XA = PR(Ak),N((Ak)∗A2).

Theorem 3.7 Let A ∈ Cn×n
k . Then Aw© is the unique matrix X that satisfies:

XA = PR(Ak),N((Ak)∗A2), N(X) ⊇ N((Ak)∗A). (3.1)

Proof. Aw© satisfies the two equations in (3.1) by Lemma 2.5 and Lemma 2.6. It remains to prove
the uniqueness.

Suppose that X1, X2 satisfy (3.1). Then X1A = X2A, N(X1) ⊇ N((Ak)∗A) and N(X2) ⊇ N((Ak)∗A),
we first show that N((Ak)∗) ∩ R(A∗Ak) = {0}. For any η ∈ N((Ak)∗) ∩ R(A∗Ak), we get (Ak)∗η = 0,
η = A∗Akξ for some ξ ∈ Cn. Since Ind(A) = k, then Akξ = Ak+1ξ0 for some ξ0 ∈ C

n. Since 0 = (Ak)∗η =

(Ak+1)∗Ak+1ξ0, we get Ak+1ξ0 = 0, that is η = A∗Akξ = A∗Ak+1ξ0 = 0. Hence,N((Ak)∗)∩R(A∗Ak) = {0}.
From (X1 − X2)A = 0, we get R(X∗1 − X∗2) ⊆ N(A∗) ⊆ N((Ak)∗). From N(X1) ⊇ N((Ak)∗A) and

N(X2) ⊇ N((Ak)∗A), we get R(X∗1 − X∗2) ⊆ R(A∗Ak), that is R(X∗1 − X∗2) ⊆ N((Ak)∗) ∩ R(A∗Ak) = {0}.
Hence, X∗1 = X∗2 and X1 = X2. �

Bott-Duffin defined the B-D inverse of A ∈ Cn×n by A(−1)
(L) = PL(APL + PL⊥)−1 = PL(APL + I − PL)−1

when APL + PL⊥ is nonsingular (see [5]). In [12], A †© is expressed by the B-D inverse. In the
following, we use a special B-D inverse of A2 to express the weak group inverse of A.

Theorem 3.8 Let A ∈ Cn×n
k . Then

Aw© = (A2)(−1)
(R(Ak))A = (PAk A2PAk)+A.

Proof. By (2.1), we have Ak = U
(

T k T̃
0 0

)
U∗, where T̃ =

∑k−1
j=0 T jS Nk−1− j. Then

PAk = Ak(Ak)+ = U
(

I 0
0 0

)
U∗. Thus

(A2)(−1)
(R(Ak))A = PAk(A2PAk + I − PAk)−1A

= U
(

I 0
0 0

) (
T 2 0
0 I

)−1

·

(
T S
0 N

)
U∗

= U
(

T−1 T−2S
0 0

)
U∗ = Aw©.

By direct calculation, we can get Aw© = (PAk A2PAk)+A. �

Example 3.9 (see [16], Example 3.1) Let A =



5 5 4 3 2 1
4 4 4 3 2 1
3 3 3 3 2 1
2 2 2 2 1 0
1 1 1 1 0 − 1
0 0 0 0 − 1 − 2


.
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Since Ind(A) = 2, by Theorem 2.1 of [16] the error-free weak group inverse of A is

Aw© = A2(A4)+A =



205
338

205
338 − 705

1352 − 895
676 − 645

1352
125
338

− 23
338 − 23

338
10501
104104

11351
52052

10873
104104 − 239

26026
− 4

13 − 4
13

313
1001

1501
2002

332
1001 − 173

2002
− 5

26 − 5
26

21
104

25
52

17
104 − 2

13
− 1

13 − 1
13

365
4004

212
1001 − 19

4004 − 443
2002

1
26

1
26 − 157

8008 − 229
4004 − 1385

8008 − 289
1001


.

On the other hand,

A2 =



65 65 60 50 30 10
56 56 52 44 26 8
44 44 41 35 20 5
29 29 27 23 14 5
14 14 13 11 8 5
−1 − 1 − 1 − 1 2 5


,

(A2)+ =



6003/21868 − 421/5467 − 323/1735 − 329/2482 − 376/4763 − 802/31663
6003/21868 − 421/5467 − 323/1735 − 329/2482 − 376/4763 − 802/31663
−117/21868 41/10934 169/19880 69/31240 − 17/4163 − 167/16095
−508/899 275/1664 1030/2589 697/2565 772/5301 179/9165
−235/994 67/994 305/1988 35/284 185/1988 125/1988
196/2125 − 109/3579 − 476/5231 − 143/5662 164/4051 227/2137


,

PA2 = A2(A2)+ =



145/154 15/77 − 3/28 − 3/44 − 9/308
15/77 27/77 5/14 5/22 15/154
−3/28 5/14 141/280 11/40 13/280
−3/44 5/22 11/40 97/440 73/440
−9/308 15/154 13/280 73/440 502/1759

3/308 − 5/154 − 51/280 49/440 1247/3080


,

(A2PA2 + I − PA2)−1

=



1483/1250 − 167/321 − 1068/1565 − 1304/2775 − 1271/4938 − 179/3989
−383/1053 197/281 − 393/1691 − 554/3763 − 185/2982 107/4623
−601/1171 − 174/1001 687/728 19/1144 160/1787 380/2339
−373/1144 − 16/143 1/1040 1601/1649 − 157/2653 − 298/3339
−139/1001 − 50/1001 53/910 − 107/1430 823/1039 − 775/2273

387/8008 12/1001 291/2519 − 774/6421 − 332/931 389/955


,
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(PA2 A2PA2)+

=



1525/1352 − 55/169 − 424/537 − 671/1247 − 456/1591 − 95/2704
−888/5257 − 134/2591 59/473 193/2411 317/8964 − 190/20381
−621/1001 367/2002 407/910 417/1430 665/4891 − 197/10010
−41/104 3/26 287/1040 199/1040 111/1040 23/1040

−673/4004 95/2002 381/3640 521/5720 467/6026 184/2879
158/2721 − 41/2002 − 97/1456 − 21/2288 773/16016 163/1542


.

After simplification, it follows that A(2)
(R(A2))A = Aw© and (PA2 A2PA2)+A = Aw©.

In Theorem 2.2 of [16] the authors proved that Aw© = (A + P)−1(I −Q) = (A− P)−1(I −Q) by using
P = I − Aw©A and Q = I − AAw©. Now we generalize this equation by other ways.

Theorem 3.10 Let A ∈ Cn×n
k , a , 0, P = I − Aw©A and Q = I − AAw©. Then the matrices A + aP

and A + aQ are invertible. In addition, the following identities hold:
(a) Aw© = (A + aP)−1(I − Q);
(b) Aw© = (I − P)(A + aQ)−1.

Proof. (a) Firstly, we show that A + aP is invertible by (2.1) and (2.13).

Let α = U
(
α1

α2

)
∈ Cn, where α1 ∈ C

p, α ∈ N(A + aP), then

(
T S
0 N

) (
α1

α2

)
= −a

(
0 − T−1S − T−2S N
0 I

) (
α1

α2

)
Thus, α2 = 0 and α1 = 0 as a , 0, N is nilpotent and T is nonsingular.
By (A + aP)Aw© = [A + a(I − Aw©A)]Aw© = AAw© = I − Q, we get Aw© = (A + aP)−1(I − Q).
(b) It is similar to the proof of (a).

Remark 3.11 In the part (a) of Theorem 3.10, let a = ±1, we have Theorem 2.2 of [16].

Example 3.12 Let A, Aw© be the same as in example 3.9, P = I − Aw©A and Q = I − AAw©. Then

(A +
1
2

P)−1

=



361/338 − 315/338 938/2279 − 1544/1713 − 2419/8788 3083/8788
−179/338 497/338 − 1031/701 742/1147 117/1013 − 868/2087
−4/13 − 4/13 511/338 − 287/338 − 23/338 241/338
−5/26 − 5/26 − 203/676 1003/676 − 227/676 − 105/676
−1/13 − 1/13 − 19/169 − 31/169 236/169 − 173/169

1/26 1/26 51/676 101/676 − 589/676 73/676


,
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(A −
1
3

Q)−1

=



−29/338 985/338 2763/1352 − 4897/676 − 788/375 514/169
211/338 − 803/338 − 4896/4535 485/113 1015/801 − 1255/714
−4/13 − 4/13 − 1766/1001 7045/2002 1025/1001 − 787/535
−5/26 − 5/26 81/104 − 41/52 101/104 − 7/26
−1/13 − 1/13 1289/4004 905/1001 − 1147/551 650/697

1/26 1/26 − 201/1489 − 699/1733 399/461 − 1733/2002


,

By direct calculation, we have (A + 1
2 P)−1(I − Q) = Aw© and (I − P)(A − 1

3 Q)−1 = Aw©.
In the following theorem we present a connection between (B,C)-inverse and weak group inverse,

it shows that a weak group inverse of a matrix A ∈ Cn×n
k is its (Ak, (Ak)∗A)-inverse.

Theorem 3.13 Let A ∈ Cn×n
k . Then Aw© = A(Ak ,(Ak)∗A).

Proof. From the properties of weak group inverse (Lemma 2.5, Lemma 2.6 and Theorem 3.3), it
follows that

Aw©A · Ak = Aw©Ak+1 = Ak, (Ak)∗AAAw© = (Ak)∗A, R(Aw©) = R(Ak), N(Aw©) = N((Ak)∗A).

Hence Aw© = A(Ak ,(Ak)∗A). �

In Theorem 3.1 of [16], the limit representation for the weak group inverse is derived using the
limit representation of MP-inverse. In the following, the weak group inverse can also be characterized
by Lemma 2.4.

Theorem 3.14 Let A ∈ Cn×n
k . Then

(a) Aw© = lim
λ→0

Ak[λIn + (Ak)∗Ak+2]−1(Ak)∗A;

(b) Aw© = lim
λ→0

Ak(Ak)∗A[λIn + Ak+1(Ak)∗A]−1;

(c) Aw© = lim
λ→0

[λIn + Ak(Ak)∗A2]−1Ak(Ak)∗A;

(d) Aw© = lim
λ→0

Ak(Ak)∗[λIn + Ak+2(Ak)∗]−1A.

Proof. In the proof of the theorem, the results of Lemma 2.4 and Lemma 2.5 are used frequently.
(a). Let X = Ak,Y = (Ak)∗A. We have

Aw© = A(2)
R(Ak(Ak)∗A),N(Ak(Ak)∗A) = lim

λ→0
Ak[λIn + (Ak)∗Ak+2]−1(Ak)∗A.

(b). Let X = Ak(Ak)∗A,Y = In. Then

Aw© = A(2)
R(Ak(Ak)∗A),N(Ak(Ak)∗A) = lim

λ→0
Ak(Ak)∗A[λIn + Ak+1(Ak)∗A]−1.

(c). Let X = In,Y = Ak(Ak)∗A. Then

Aw© = A(2)
R(Ak(Ak)∗A),N(Ak(Ak)∗A) = lim

λ→0
[λIn + Ak(Ak)∗A2]−1Ak(Ak)∗A.
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(d). Let X = Ak(Ak)∗, Y = A. Then

Aw© = A(2)
R(Ak(Ak)∗A),N(Ak(Ak)∗A) = lim

λ→0
Ak(Ak)∗[λIn + Ak+2(Ak)∗]−1A.

�

Example 3.15 Let A, Aw© be the same as in example 3.9, M = A2[λI6+(A2)∗A4]−1(A2)∗A = (mi j)6×6,
where

m11 = (10 · (18079λ2 + 5552072λ + 71727040))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m12 = (10 · (18079λ2 + 5552072λ + 71727040))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m13 = (40 · (4131λ2 + 1170248λ − 15416940)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m14 = (10 · (13623λ2 + 3506196λ − 156574880)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m15 = (80 · (1079λ2 + 406501λ − 7052430)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m16 = (10 · (3641λ2 + 2997820λ + 43736000))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);

m21 = (4 · (39125λ2 + 10701612λ − 20118560))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m22 = (4 · (39125λ2 + 10701612λ − 20118560))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m23 = (16 · (8940λ2 + 2590793λ + 7455710))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m24 = (8 · (14741λ2 + 4352547λ + 32236840))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m25 = (8 · (9341λ2 + 8242848λ + 15439660))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m26 = (8 · (3941λ2 + 12133149λ − 1357520))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);

m31 = (2 · (61511λ2 + 13065592λ − 181941760))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m32 = (2 · (61511λ2 + 13065592λ − 181941760))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m33 = (2 · (56221λ2 + 15339222λ + 184895360)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m34 = (2 · (46351λ2 + 13767572λ + 443335360))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m35 = (2 · (29377λ2 + 66532814λ + 196119040))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m36 = (2 · (12403λ2 + 119298056λ − 51097280))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);

m41 = (32 · (2547λ2 + 817790λ − 7107100)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m42 = (32 · (2547λ2 + 817790λ − 7107100)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m43 = (2 · (37247λ2 + 12070490λ + 119399280))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m44 = (8 · (7677λ2 + 2633554λ + 71071000)) / (λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m45 = (2 · (19455λ2 − 10346054λ + 96656560))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m46 = −(4 · (−4101λ2 + 15613162λ + 45485440))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);
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m51 = (2 · (19993λ2 + 13103688λ − 45485440))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m52 = (2 · (19993λ2 + 13103688λ − 45485440))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m53 = (2 · (18273λ2 + 8801758λ + 53903200))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m54 = (10 · (3013λ2 + 1460172λ + 25046528))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m55 = −(2 · (−9533λ2 + 87224922λ + 2805920))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m56 = −(2 · (−4001λ2 + 181750704λ + 130844480))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);

m61 = (4 · (−383λ2 + 6561368λ + 11371360))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m62 = (4 · (−383λ2 + 6561368λ + 11371360))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m63 = −(2 · (701λ2 − 5533026λ + 11592880))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m64 = −(4 · (289λ2 − 2033752λ + 16909360))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m65 = −(2 · (389λ2 + 164103790λ + 102268400))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440),
m66 = −(8 · (50λ2 + 83068771λ + 42679520))/(λ3 + 7321998λ2 + 2183534272λ + 1182621440);

By direct calculation, we get

lim
λ→0

M = lim
λ→0

A2[λI6 + (A2)∗A4]−1(A2)∗A = Aw©.

4. Some properties of weak group inverse

In this section, we first give some properties of weak group inverse by core-EP decomposition.

Theorem 4.1 Let A ∈ Cn×n
k be as in (2.1). Then the following statements hold:

(a) Aw© = 0⇐⇒ A is nilpotent;
(b) Aw© = A⇐⇒ A3 = A;
(c) Aw© = A∗ ⇐⇒ T ∈ CU

p and A ∈ CEP
n ;

(d) Aw© = PA ⇐⇒ A ∈ COP
n .

(e) Aw© = PA∗ ⇐⇒ A ∈ COP
n .

Proof. Using the core-EP decomposition of A and (2.13).

(a). Aw© = 0 ⇐⇒ r(Ak) = p = 0
⇐⇒ A is nilpotent.

(b). Aw© = A ⇐⇒

(
T−1 T−2S
0 0

)
=

(
T S
0 N

)
⇐⇒ T 2 = Ip and N = 0
⇐⇒ A3 = A.

(c). Aw© = A∗ ⇐⇒
(

T−1 T−2S
0 0

)
=

(
T ∗ 0
S ∗ N∗

)
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⇐⇒ T−1 = T ∗, S = 0 and N = 0
⇐⇒ T ∈ CU

p and A ∈ CEP
n .

(d). Aw© = PA ⇐⇒ Aw© = AA†

⇐⇒

(
T−1 T−2S
0 0

)
=

(
Ip 0
0 NN†

)
⇐⇒ T = Ip, S = 0 and N = 0
⇐⇒ A ∈ COP

n .

(e). Aw© = PA∗ ⇐⇒ Aw© = A†A

⇐⇒

(
T−1 T−2S
0 0

)
=

(
T ∗∆T T ∗∆S − T ∗∆S N†N

(In−p−N†N)S ∗∆T N†N+(In−p−N†N)S ∗∆S (In−p−N†N)

)
⇐⇒ S = S N†N,N†N = 0,T−1 = T ∗∆T and T−2S = T ∗∆S

⇐⇒ N = 0, S = 0 and T = Ip

⇐⇒ A ∈ COP
n .

where ∆ = [TT ∗ + S (In−p − N†N)S ∗]−1. �

It is well-known that A† = A# if and only if A is EP matrix. By the core-EP decomposition we will
give the conditions which ensure that Aw© = X, where X is one of A#, A #©, A†, A †©, AD, A♦, AD,†, AC,†

and A†,D.

Theorem 4.2 Let A ∈ Cn×n
k . Then the following statements hold:

(a) Aw© = A# ⇐⇒ A ∈ CCM
n ;

(b) Aw© = A #© ⇐⇒ A ∈ CEP
n ;

(c) Aw© = A† ⇐⇒ A ∈ CEP
n .

Proof. The proof is based on the core-EP decomposition of A.
(a). From (2.2) and (2.13), we have

Aw© = A# ⇐⇒

(
T−1 T−2S
0 0

)
=

(
T−1 T−2S
0 0

)
and N = 0

⇐⇒ A ∈ CCM
n .

(b). From (2.2) and (2.13), we get that

Aw© = A #© ⇐⇒

(
T−1 T−2S
0 0

)
=

(
T−1 0
0 0

)
and N = 0

⇐⇒ N = 0 and S = 0
⇐⇒ A ∈ CEP

n .

(c). From (2.3) and (2.13), we have
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Aw©=A† ⇐⇒ U
(

T−1 T−2S
0 0

)
U∗=U

(
T ∗∆ −T ∗∆S N†

(In−p − N†N)S ∗∆ N† − (In−p − N†N)S ∗∆S N†

)
U∗

⇐⇒ T ∗∆ = T−1,−T ∗∆S N† = T−2S , S = S N†N and N† = 0
⇐⇒ N = 0 and S = 0
⇐⇒ A ∈ CEP

n ,

where ∆ = [TT ∗ + S (In−p − N†N)S ∗]−1. �

Theorem 4.3 Let A ∈ Cn×n
k be as in (2.1). Then the following statements hold:

(a) Aw© = A †© ⇐⇒ S = 0;
(b) Aw© = AD ⇐⇒ S N = 0;
(c) Aw© = A♦ ⇐⇒ S = 0 and N2 = 0;
(d) Aw© = AD,† ⇐⇒ S N2 = 0 and S = S NN†;
(e) Aw© = A†,D ⇐⇒ S = S N†N and S N = 0;
(f) Aw© = AC,† ⇐⇒ S = S N†N, S N2 = 0 and S = S NN†.

Proof. The core-EP decomposition of A is still our main tool.
(a). From (2.5) and (2.13), the result is obvious.
(b). See [10, Lemma 4.2, Theorem 4.3].
(c). By (2.3), (2.11) and (2.13), we have

Aw© = A♦ ⇐⇒ (A †©)2A = (APA)†

⇐⇒ ((A †©)2A)† = APA

⇐⇒

(
T−1 T−2S

0 0

)†
=

(
T S
0 N

) (
Ip 0
0 NN†

)
⇐⇒

(
(T−1)∗∆2 0

(T−2S )∗∆2 0

)
=

(
T S NN†

0 N2N†

)
⇐⇒ S = 0 and N2N† = 0
⇐⇒ S = 0 and N2 = 0,

where ∆2 = [T−1(T−1)∗ + T−2S (T−2S )∗]−1.
(d). By (2.7) and (2.13), we get that

Aw© = AD,† ⇐⇒ U
(

T−1 T−2S
0 0

)
U∗ = U

(
T−1 (T k+1)−1T̃ NN†

0 0

)
U∗

⇐⇒ T−2S = (T k+1)−1T̃ NN†

⇐⇒ S N2 = 0 and S = S NN†,

where T̃ =

k−1∑
j=0

T jS Nk−1− j.
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(e). By (2.8) and (2.13), we have

Aw© = A†,D ⇐⇒ U
(

T−1 T−2S
0 0

)
U∗ = U

(
T ∗∆ T ∗∆T−kT̃

(In−p − N†N)S ∗∆ (In−p − N†N)S ∗∆T−kT̃

)
U∗

⇐⇒ T−1 = T ∗∆, S = S N†N and T−2S = T ∗∆T−kT̃

⇐⇒ S = S N†N and T k−1S = T̃

⇐⇒ S = S N†N and S N = 0,

where ∆ = [TT ∗ + S (In−p − N†N)S ∗]−1 and T̃ =

k−1∑
j=0

T jS Nk−1− j.

( f ). By (2.9) and (2.13), we get that

Aw©= AC,† ⇐⇒ U
(

T−1 T−2S
0 0

)
U∗ = U

(
T ∗∆ T ∗∆(T k)−1T̃ NN†

(In−p − N†N)S ∗∆ (In−p − N†N)S ∗∆(T k)−1T̃ NN†

)
U∗

⇐⇒ S = S N†N and T k−1S = T̃ NN†

⇐⇒ S = S N†N, S N2 = 0 and S = S NN†,

where ∆ and T̃ are the same as in (e). �

5. Different characterizations of weak group matrix

In [23], Wang and Liu introduced the weak group matrix defined by the commutability: AAw© =

Aw©A. In this section we shall give different characterizations of weak group matrix by using the
core-EP decomposition.

For convenience, we introduce a necessary lemma.

Lemma 5.1 [23] Let A ∈ Cn×n
k be as in (2.1). Then the following statements are equivalent:

(a) A ∈ CWG
n ;

(b) S N = 0;
(c) (A2)w© = (Aw©)2;
(d) A †©A commutes with A †©A2;
(e) r(A∗Ak, (A∗)2Ak) = r(Ak).

Remark 5.2 For (e) of Lemma 5.1, we give a short proof by using the properties of the weak
group inverse.

Since r(A∗Ak) = r((A∗)2Ak) = r(Ak), we get that r(A∗Ak, (A∗)2Ak) = r(Ak) can be equivalently
expressed as R(A∗Ak) = R((A∗)2Ak), that is: N((Ak)∗A) = N((Ak)∗A2).

Hence, AAw© = Aw©A if and only if r(A∗Ak, (A∗)2Ak) = r(Ak) by Lemma 2.6.

Theorem 5.3 Let A ∈ Cn×n
k . Then the following conditions are equivalent:

(a) A ∈ CWG
n ;

(b) (A †©)tA = (A †©)t+1A2 (t ≥ 1);

AIMS Mathematics Volume 6, Issue 9, 9322–9341.



9338

(c) (A †©)tA commutes with (A †©)tA2 (t ≥ 1).

Proof. By the core-EP decomposition of A, we have

A2 =U
(

T 2 TS + S N
0 N2

)
U∗ and A †© = U

(
T−1 0
0 0

)
U∗.

Then, it is easy to prove these conclusions. �

Remark 5.4 Let t = 1 in (c) of Theorem 5.3, we get (d) of Lemma 5.1.

Theorem 5.5 Let A ∈ Cn×n
k . Then the following conditions are equivalent:

(a) A ∈ CWG
n ;

(b) AkA† = AkA †©;
(c) AkA †© = AkAD,†;
(d) A †©Ak = AkAw©;
(e) AAD = A †©A;
(f) AAD = AAw©;
(g) A †©A = AD,†A.

Proof. (a)⇐⇒ (c). By (2.5) and (2.7), we get that

AkA †© = AkAD,† ⇐⇒

(
T k T̃
0 0

) (
T−1 0
0 0

)
=

(
T k T̃
0 0

) (
T−1 (T k+1)−1T̃ NN+

0 0

)
⇐⇒

(
T k−1 0

0 0

)
=

(
T k−1 T−1T̃ NN+

0 0

)
⇐⇒ T̃ NN+ = 0
⇐⇒ S N = 0
⇐⇒ A ∈ CWG

n ,

where T̃ =

k−1∑
j=0

T jS Nk−1− j.

(a)⇐⇒ ( f ). By (2.4) and (2.13), we have

AAD = AAw© ⇐⇒

(
T S
0 N

) (
T−1 (T k+1)−1T̃
0 0

)
=

(
T S
0 N

) (
T−1 T−2S
0 0

)
⇐⇒

(
I T−kT̃
0 0

)
=

(
I T−1S
0 0

)
⇐⇒ T−kT̃ = T−1S

⇐⇒ S N = 0
⇐⇒ A ∈ CWG

n ,
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where T̃ =

k−1∑
j=0

T jS Nk−1− j.

The rest of the proof is similar. �

6. Conclusions

Our goal is to provide some new characterizations and properties of the weak group inverse and
the weak group matrix by range space, null space, projection and the Bott-Duffin inverse. We also
study the relationships between the weak group inverse and other generalized inverses such as
A#, A #©, A†, AD, AD,†.

We believe that research about the weak group inverse will be very popular in the next years. Some
further investigations are proposed as follows:

1. Considering the weak group inverse of finite potent endomorphisms.
2. The applications of the weak group inverse in linear equations and matrix equations.
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