A new class of fuzzy constrained multi-objective games with fuzzy payoffs (FCMGFPs) is considered in this paper. First, Berge's maximum theorem for the fuzzy-vector-valued function is obtained. Based on this theorem and the Fan-Glicksberg fixed point theorem, the existence theorem of the fuzzy Pareto-Nash equilibrium for the FCMGFP is established. Second, the abstract rationality function for the FCMGFP is given by using a nonlinear scalarization function of interval vectors. Finally, a series of results, such as structural stability ($ (\gamma, \epsilon) $-stability) and robustness to $ \epsilon $-equilibrium ($ (\gamma, \epsilon) $-robustness), are obtained.
Citation: Wen Li, Deyi Li, Yuqiang Feng, Du Zou. Existence and stability of fuzzy Pareto-Nash equilibria for fuzzy constrained multi-objective games with fuzzy payoffs[J]. AIMS Mathematics, 2023, 8(7): 15907-15931. doi: 10.3934/math.2023812
A new class of fuzzy constrained multi-objective games with fuzzy payoffs (FCMGFPs) is considered in this paper. First, Berge's maximum theorem for the fuzzy-vector-valued function is obtained. Based on this theorem and the Fan-Glicksberg fixed point theorem, the existence theorem of the fuzzy Pareto-Nash equilibrium for the FCMGFP is established. Second, the abstract rationality function for the FCMGFP is given by using a nonlinear scalarization function of interval vectors. Finally, a series of results, such as structural stability ($ (\gamma, \epsilon) $-stability) and robustness to $ \epsilon $-equilibrium ($ (\gamma, \epsilon) $-robustness), are obtained.
[1] | G. Alefeld, G. Mayer, Interval analysis: Theory and applications, J. Comput. Appl. Math., 121 (2000), 421–464. |
[2] | L. Anderlini, D. Canning, Structural stability implies robustness to bound rationality, J. Econ. Theory, 101 (2001), 395–322. |
[3] | J. P. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley and Sons Inc., 1984. |
[4] | R. E. Bellman, L. A. Zadeh, Decision making in a fuzzy environment, Manage. Sci., 17 (1970), 141–164. |
[5] | C. Berge, Topological spaces, New York: Dover Publications, 1997. |
[6] | H. Bigdeli, H. Hassanpour, A satisfactory strategy of multiobjective two person matrix games with fuzzy payoffs, Iran. J. Fuzzy Syst., 13 (2016), 17–33. |
[7] | J. J. Buckley, Multiple goals non cooperative conflict under uncertainty: A fuzzy set approach, Fuzzy Set. Syst., 13 (1984), 107–124. |
[8] | D. Butnariu, Fuzzy games: A description of the concept, Fuzzy Set. Syst., 1 (1978), 181–192. |
[9] | L. Campos, Fuzzy linear programming models to solve fuzzy matrix games, Fuzzy Set. Syst., 32 (1989), 275–289. |
[10] | Y. Chalco-Cano, A. Rufián-Lizana, H. Román-Flores, M. D. Jiménez-Gamero, Calculus for interval-valued functions using generalized Hukuhara derivative and applications, Fuzzy Set. Syst., 219 (2013), 49–67. http://dx.doi.org/10.1016/j.fss.2012.12.004 doi: 10.1016/j.fss.2012.12.004 |
[11] | S. S. Chang, Y. G. Zhu, On variational inequalities for fuzzy mappings, Fuzzy Set. Syst., 32 (1989), 359–367. |
[12] | M. Clemente, F. R. Fernández, J. Puerto, Pareto-optimal security strategies in matrix games with fuzzy payoffs, Fuzzy Set. Syst., 176 (2011), 36–45. http://dx.doi.org/10.1016/j.fss.2011.03.006 doi: 10.1016/j.fss.2011.03.006 |
[13] | W. D. Collins, C. Hu, Studying interval valued matrix games with fuzzy logic, Soft Comput., 12 (2008), 147–155. http://dx.doi.org/10.1007/s00500-007-0207-6 doi: 10.1007/s00500-007-0207-6 |
[14] | X. P. Ding, Constrained multiobjective games in general topological spaces, Comput. Math. Appl., 39 (2000), 23–30. https://doi.org/10.1016/S0898-1221(99)00330-2 doi: 10.1016/S0898-1221(99)00330-2 |
[15] | X. P. Ding, Existence of Pareto equilibria for constrained multiobjective games in $H$-space, Comput. Math. Appl., 39 (2000), 125–134. |
[16] | X. P. Ding, Pareto equilibria of multicriteria games without compactness, continuity and concavity, Appl. Math. Mech., 17 (1996), 847–854. https://doi.org/10.1007/BF00127184 doi: 10.1007/BF00127184 |
[17] | D. Dubois, H. Prade, Operations on fuzzy numbers, Int. J. Syst. Sci., 9 (1978), 613–626. https://doi.org/10.1080/00207727808941724 doi: 10.1080/00207727808941724 |
[18] | K. Fan, Fixed point and minimax theorems in locally convex topological linear spaces, Proc. Natl. Acad. Sci. USA, 38 (1952), 121–126. http://dx.doi.org/10.1073/pnas.38.2.121 doi: 10.1073/pnas.38.2.121 |
[19] | D. Garagic, J. B. Cruz, An approach to fuzzy non-cooperative Nash games, J. Optim. Theory Appl., 118 (2003), 475–491. |
[20] | D. Ghosh, Newton method to obtain efficient solutions of the optimization problems with interval-valued objective functions, J. Appl. Math. Comput., 53 (2017), 709–731. http://dx.doi.org/10.1007/s12190-016-0990-2 doi: 10.1007/s12190-016-0990-2 |
[21] | D. Ghosh, R. S. Chauhan, R. Mesiar, A. K. Debnath, Generalized Hukuhara G$\hat{a}$teaux and Fr$\acute{e}$chet derivatives of interval-valued functions and their application in optimization with interval-valued functions, Inform. Sci., 510 (2020), 317–340. http://dx.doi.org/10.1016/j.ins.2019.09.023 doi: 10.1016/j.ins.2019.09.023 |
[22] | I. L. Glicksberg, A further generalization of the Kakutani fixed point theorem with applications to Nash equilibrium points, Proc. Amer. Math. Soc., 3 (1952), 170–174. |
[23] | A. González, M. A. Vila, A discrete method for studying indifference and order relations between fuzzy numbers, Inform. Sci., 56 (1991), 245–258. |
[24] | N. V. Hung, V. M. Tam, D. O'Regan, Y. J. Cho, A new class of generalized multiobjective games in bounded rationality with fuzzy mappings: Structural $(\lambda, \epsilon)$-stability and $(\lambda, \epsilon)$-robustness to $\epsilon$-equilibria, J. Comput. Appl. Math., 372 (2020), 112735. http://dx.doi.org/10.1016/j.cam.2020.112735 doi: 10.1016/j.cam.2020.112735 |
[25] | W. K. Kim, K. H. Lee, Generalized fuzzy games and fuzzy equilibria, Fuzzy Set. Syst., 122 (2001), 293–301. |
[26] | M. Larbani, Solving bi-matrix games with fuzzy payoffs by introducing nature as a third player, Fuzzy Set. Syst., 160 (2009), 657–666. |
[27] | D. F. Li, Linear programming approach to solve interval-valued matrix games, Omega, 39 (2011), 655–666. http://dx.doi.org/10.1016/j.omega.2011.01.007 doi: 10.1016/j.omega.2011.01.007 |
[28] | W. Li, D. Y. Li, Y. Q. Feng, D. Zou, Weak Pareto-Nash equilibria of generalized interval-valued multiobjective games with fuzzy mappings, unpublished work. |
[29] | Z. Lin, Essential components of the set of weakly Pareto-Nash equilibrium points for multiobjective generalized games in two different topological spaces, J. Optim. Theory Appl., 124 (2005), 387–405. |
[30] | S. T. Liu, C. Kao, Matrix games with interval data, Comput. Ind. Eng., 56 (2009), 1697–1700. http://dx.doi.org/10.1016/j.cie.2008.06.002 doi: 10.1016/j.cie.2008.06.002 |
[31] | V. Lupulescu, Hukuhara differentiability of interval-valued functions and interval differential equations on time scales, Inform. Sci., 248 (2013), 50–67. http://dx.doi.org/10.1016/j.ins.2013.06.004 doi: 10.1016/j.ins.2013.06.004 |
[32] | T. Maeda, On characterization of equilibrium strategy of two-person zero-sum games with fuzzy payoffs, Fuzzy Set. Syst., 139 (2003), 283–296. |
[33] | Y. Miyazaki, A remark on topological robustness to bounded rationality in semialgebraic models, J. Math. Econom., 55 (2014), 33–35. http://dx.doi.org/10.1016/j.jmateco.2014.09.008 doi: 10.1016/j.jmateco.2014.09.008 |
[34] | Y. Miyazaki, H. Azuma, $(\lambda, \epsilon)$-stable model and essential equilibria, Math. Soc. Sci., 65 (2013), 85–91. http://dx.doi.org/10.1016/j.mathsocsci.2012.08.002 doi: 10.1016/j.mathsocsci.2012.08.002 |
[35] | R. E. Moore, Interval analysis, Englewood Cliffs: Prentice-Hall, 1966. |
[36] | R. E. Moore, Method and applications of interval analysis, Philadelphia: Society for Industrial and Applied Mathematics, 1987. |
[37] | I. Nishizaki, M. Sakawa, Equilibrium solutions in multiobjective bimatrix games with fuzzy payoffs and fuzzy goals, Fuzzy Set. Syst., 111 (2000), 99–116. |
[38] | R. Osuna-Gómez, Y. Chalco, B. Hernández-Jiménez, G. Ruiz-Garzón, New efficiency conditions for multiobjective interval-valued programming problems, Inform. Sci., 420 (2017), 235–248. http://dx.doi.org/10.1016/j.ins.2017.08.022 doi: 10.1016/j.ins.2017.08.022 |
[39] | J. Ramík, J. Rímánek, Inequality relation between fuzzy numbers and its use in fuzzy optimization, Fuzzy Set. Syst., 16 (1985), 123–150. |
[40] | V. Scalzo, On the existence of maximal elements, fixed points and equilibria of generalized games in a fuzzy environment, Fuzzy Set. Syst., 272 (2015), 126–133. http://dx.doi.org/10.1016/j.fss.2015.02.006 doi: 10.1016/j.fss.2015.02.006 |
[41] | Q. Q. Song, L. S. Wang, On the stability of the solution for multiobjective generalized games with the payoffs perturbed, Nonlinear Anal., 73 (2010), 2680–2685. http://dx.doi.org/10.1016/j.na.2010.06.048 doi: 10.1016/j.na.2010.06.048 |
[42] | L. Stefanini, B. Bede, Generalized Hukuhara differentiability of interval-valued functions and interval differential equations, Nonlinear Anal., 71 (2009), 1311–1328. http://dx.doi.org/10.1016/j.na.2008.12.005 doi: 10.1016/j.na.2008.12.005 |
[43] | J. Tao, Z. Zhang, Properties of interval-valued function space under the gH-difference and their application to semi-linear interval differential equations, Adv. Differ. Equ., 2016 (2016), 45–72. http://dx.doi.org/10.1186/s13662-016-0759-9 doi: 10.1186/s13662-016-0759-9 |
[44] | S. Y. Wang, Existence of a Pareto equilibrium, J. Optim. Theory Appl., 79 (1993), 373–384. |
[45] | C. Wang, R. P. Agarwal, D. O'Regan, Calculus of fuzzy vector-valued functions and almost periodic fuzzy vector-valued functions on time scales, Fuzzy Set. Syst., 375 (2019), 1–52. http://dx.doi.org/10.1016/j.fss.2018.12.008 doi: 10.1016/j.fss.2018.12.008 |
[46] | H. C. Wu, The Karush-Kuhn-Tucker optimality conditions in an optimization problem with interval-valued objective function, Eur. J. Oper. Res., 176 (2007), 46–59. http://dx.doi.org/10.1016/j.ejor.2005.09.007 doi: 10.1016/j.ejor.2005.09.007 |
[47] | Z. Yang, A coalitional extension of generalized fuzzy games, Fuzzy Set. Syst., 383 (2019), 68–79. http://dx.doi.org/10.1016/j.fss.2019.06.010 doi: 10.1016/j.fss.2019.06.010 |
[48] | C. Yu, J. Yu, Bounded rationality in multiobjective games, Nonlinear Anal.-Theor., 67 (2007), 930–937. http://dx.doi.org/10.1016/j.na.2006.06.050 doi: 10.1016/j.na.2006.06.050 |
[49] | C. Yu, J. Yu, On structural stability and robustness to bounded rationality, Nonlinear Anal.-Theor., 65 (2006), 583–529. http://dx.doi.org/10.1016/j.na.2005.09.039 doi: 10.1016/j.na.2005.09.039 |
[50] | J. Yu, Game theory and nonlinear analysis, Beijing: Science Press, 2011. |
[51] | J. Yu, H. Yang, C. Yu, Structural stability and robustness to bounded rationality for non-compact cases, J. Global Optim., 44 (2009), 149–157. http://dx.doi.org/10.1007/s10898-008-9316-8 doi: 10.1007/s10898-008-9316-8 |
[52] | J. Yu, X. Z. Yuan, The study of Pareto equilibria for multiobjective games by fixed point and ky fan minimax inequality methods, Comput. Math. Appl., 35 (1998), 17–24. |
[53] | J. Yu, Z. Yang, N. F. Wang, Further results on structural stability and robustness to bounded rationality, J. Math. Econ., 67 (2016), 49–53. http://dx.doi.org/10.1016/j.jmateco.2016.09.009 doi: 10.1016/j.jmateco.2016.09.009 |
[54] | X. Z. Yuan, E. Tarafdar, Non-compact Pareto equilibria for multiobjective games, J. Math. Anal. Appl., 204 (1996), 156–163. |
[55] | L. A. Zadeh, Fuzzy sets, Inform. Control, 8 (1965), 338–353. |
[56] | M. Zeleny, Game with multiple payoffs, Int. J. Game Theory, 4 (1976), 179–191. |