Research article

Collectively fixed point theorems in noncompact abstract convex spaces with applications

  • Received: 29 March 2021 Accepted: 24 August 2021 Published: 30 August 2021
  • MSC : 47H04, 47H10, 91A10

  • In this paper, by using the KKM theory and the properties of $ \Gamma $-convexity and $ {\frak{RC}} $-mapping, we investigate the existence of collectively fixed points for a family with a finite number of set-valued mappings on the product space of noncompact abstract convex spaces. Consequently, as applications, some existence theorems of generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some nonempty intersection theorems with applications to the Fan analytic alternative formulation and the existence of Nash equilibria, and some existence theorems of solutions for generalized weak implicit inclusion problems in noncompact abstract convex spaces are given. The results obtained in this paper extend and generalize many corresponding results of the existing literature.

    Citation: Haishu Lu, Kai Zhang, Rong Li. Collectively fixed point theorems in noncompact abstract convex spaces with applications[J]. AIMS Mathematics, 2021, 6(11): 12422-12459. doi: 10.3934/math.2021718

    Related Papers:

  • In this paper, by using the KKM theory and the properties of $ \Gamma $-convexity and $ {\frak{RC}} $-mapping, we investigate the existence of collectively fixed points for a family with a finite number of set-valued mappings on the product space of noncompact abstract convex spaces. Consequently, as applications, some existence theorems of generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some nonempty intersection theorems with applications to the Fan analytic alternative formulation and the existence of Nash equilibria, and some existence theorems of solutions for generalized weak implicit inclusion problems in noncompact abstract convex spaces are given. The results obtained in this paper extend and generalize many corresponding results of the existing literature.



    加载中


    [1] E. Tarafdar, A fixed point theorem and equilibrium point of an abstract economy, J. Math. Econ., 20 (1991), 211–218. doi: 10.1016/0304-4068(91)90010-Q
    [2] K. Lan, J. Webb, New fixed point theorems for a family of mappings and applications to problems on sets with convex sections, Proc. Amer. Math. Soc., 126 (1998), 1127–1132. doi: 10.1090/S0002-9939-98-04347-0
    [3] Q. H. Ansari, J. C. Yao, A fixed point theorem and its applications to the system of variational inequalities, B. Aust. Math. Soc., 54 (1999), 433–442.
    [4] Q. H. Ansari, A. Idzik, J. C. Yao, Coincidence and fixed point theorems with applications, Topol. Method. Nonl. An., 15 (2000), 191–202.
    [5] S. P. Singh, E. Tarafdar, B. Watson, A generalized fixed point theorem and equilibrium point of an abstract economy, J. Comput. Appl. Math., 113 (2000), 65–71. doi: 10.1016/S0377-0427(99)00244-7
    [6] L. J. Lin, Z. T. Yu, Q. H. Ansari, L. P. Lai, Fixed point and maximal element theorems with applications to abstract economies and minimax inequalities, J. Math. Anal. Appl., 284 (2003), 656–671. doi: 10.1016/S0022-247X(03)00385-8
    [7] M. Balaj, L. J. Lin, Selecting families and their applications, Comput. Math. Appl., 55 (2008), 1257–1261. doi: 10.1016/j.camwa.2007.06.011
    [8] E. Tarafdar, Fixed point theorems in H-spaces and equilibrium point of abstract economies, J. Aust. Math. Soc., 53 (1992), 252–260. doi: 10.1017/S1446788700035825
    [9] S. Park, Continuous selection theorems in generalized convex spaces, Numer. Funct. Anal. Opt., 20 (1999), 567–583. doi: 10.1080/01630569908816911
    [10] Z. T. Yu, L. J. Lin, Continuous selections and fixed point theorems, Nonlinear Anal. Theor., 52 (2003), 445–455. doi: 10.1016/S0362-546X(02)00107-4
    [11] X. P. Ding, Collectively fixed points and a system of coincidence theorems in product FC-spaces and applications, Nonlinear Anal. Theor., 66 (2007), 2604–2617. doi: 10.1016/j.na.2006.03.043
    [12] Q. B. Zhang, C. Z. Cheng, Some fixed-point theorems and minimax inequalities in FC-space, J. Math. Anal. Appl., 328 (2007), 1369–1377. doi: 10.1016/j.jmaa.2006.06.027
    [13] S. Al-Homidan, Q. H. Ansari, J. C. Yao, Collectively fixed point and maximal element theorems in topological semilattice spaces, Appl. Anal., 90 (2010), 865–888.
    [14] P. Q. Khanh, V. S. T. Long, N. H. Quan, Continuous selections, collectively fixed points and weak Knaster-Kuratowski-Mazurkiewicz mappings in optimization, J. Optimiz. Theory Appl., 151 (2011), 552–572. doi: 10.1007/s10957-011-9889-0
    [15] P.Q. Khanh, N.H. Quan, A fixed-component point theorem and applications, B. Malays. Math. Sci. Soc., 42 (2019), 503–520. doi: 10.1007/s40840-017-0496-6
    [16] S. Park, On generalizations of the KKM principle on abstract convex spaces, Nonlinear Anal. Forum, 11 (2006), 67–77.
    [17] S. Park, New foundations of the KKM theory, J. Nonlinear Convex Anal., 9 (2008), 331–350.
    [18] S. Park, Generalizations of the Nash equilibrium theorem in the KKM theory, Fixed Point Theory A., 2010 (2010), 1–23.
    [19] H. S. Lu, Q. W. Hu, A collectively fixed point theorem in abstract convex spaces and its applications, J. Funct. Space. Appl., 2013 (2013), 1–10.
    [20] J. P. Aubin, I. Ekeland, Applied nonlinear analysis, New York: John Wiley & Sons, 1984.
    [21] C. D. Aliprantis, K. C. Border, Infinite dimensional analysis, New York: Springer-Verlag, 1994.
    [22] F. Ferro, Optimization and stability results through cone lower semicontinuity, Set-Valued Anal., 5 (1997), 365–375. doi: 10.1023/A:1008653120360
    [23] S. Park, Elements of the KKM theory on convex spaces, J. Korean Math. Soc., 45 (2008), 1–27. doi: 10.4134/JKMS.2008.45.1.001
    [24] M. Lassonde, On the use of KKM multifunctions in fixed point theory and related topics, J. Math. Anal. Appl., 97 (1983), 151–201.
    [25] C. D. Horvath, Contractibility and generalized convexity, J. Math. Anal. Appl., 156 (1991), 341–357. doi: 10.1016/0022-247X(91)90402-L
    [26] H. Ben-E1-Mechaiekh, S. Chebbi, M. Flonzano, J. V. Llinares, Abstract convexity and fixed points, J. Math. Anal. Appl., 222 (1998), 138–150. doi: 10.1006/jmaa.1998.5918
    [27] S. Park, New generalizations of basic theorems in the KKM theory, Nonlinear Anal. Theor., 74 (2011), 3000–3010. doi: 10.1016/j.na.2011.01.020
    [28] S. Park, On the von Neumann-Sion minimax theorem in KKM spaces, Appl. Math. Lett., 23 (2010), 1269–1273. doi: 10.1016/j.aml.2010.06.011
    [29] S. Park, A genesis of general KKM theorems for abstract convex spaces, J. Nonlinear Anal. Optimiz., 2 (2011), 141–154.
    [30] E. Tarafdar, A fixed point theorem in H-space and related results, B. Aust. Math. Soc., 42 (1990), 133–140. doi: 10.1017/S0004972700028239
    [31] K. K. Tan, X. L. Zhang, Fixed point theorems on G-convex spaces and applications, Proc. Nonlinear Funct. Anal. Appl., 1 (1996), 1–19.
    [32] X. P. Ding, Maximal elements of GKKM-majorized mappings in product FC-spaces and applications (I), Nonlinear Anal. Theor., 67 (2007), 963–973. doi: 10.1016/j.na.2006.06.037
    [33] X. Ding, Fixed points, minimax inequalities and equilibria of noncompact generalized games, Taiwan. J. Math., 2 (1998), 25–55.
    [34] F.E. Browder, The fixed point theory of multivalued mappings in topological vector spaces, Math. Ann., 177 (1968), 283–301. doi: 10.1007/BF01350721
    [35] C. D. Horvath, J. V. L. Ciscar, Maximal elements and fixed points for binary relations on topological ordered spaces, J. Math. Econ., 25 (1996), 291–306. doi: 10.1016/0304-4068(95)00732-6
    [36] N. C. Yannelis, N. D. Prabhakar, Existence of maximal elements and equilibria in linear topological spaces, J. Math. Econ., 12 (1983), 233–245. doi: 10.1016/0304-4068(83)90041-1
    [37] S. Al-Homidan, Q. H. Ansari, Fixed point theorems on product topological semilattice spaces, generalized abstract economies and systems of generalized vector quasi-equilibrium problems, Taiwan. Math., 15 (2011), 307–330.
    [38] Q. Luo, Ky Fan's section theorem and its applications in topological ordered spaces, Appl. Math. Lett., 17 (2004), 1113–1119. doi: 10.1016/j.aml.2003.12.003
    [39] M. Balaj, L. J. Lin, Existence criteria for the solutions of two types of variational relation problems, J. Optimiz. Theory Appl., 156 (2013), 232–246. doi: 10.1007/s10957-012-0136-0
    [40] X. P. Ding, Existence af Pareto equilibria for constrained multiobjective gmes in H-space, Comput. Math. Appl., 39 (2000), 125–134.
    [41] K. Kim, X. P. Ding, On generalized weight nash equilibria for generalized multiobjective games, J. Korean Math. Soc., 40 (2003), 883–899. doi: 10.4134/JKMS.2003.40.5.883
    [42] S. Y. Wang, Existence of a pareto equilibrium, J. Optimiz. Theory Appl., 79 (1993), 373–384. doi: 10.1007/BF00940586
    [43] X. Z. Yuan, E. Tarafdar, Non-compact pareto equilibria for multiobjective games, J. Math. Anal. Appl., 204 (1996), 156–163. doi: 10.1006/jmaa.1996.0429
    [44] J. Yu, G. X. Z. Yuan, The study of Pareto equilibria for multiobjective games by fixed point and Ky Fan minimax inequality methods, Comput. Math. Appl., 35 (1998), 17–24.
    [45] P. L. Yu, Second-order game problems: Decision dynamics in gaming phenomena, J. Optimiz. Theory Appl., 27 (1979), 147–166. doi: 10.1007/BF00933332
    [46] R. Bielawski, Simplicial convexity and its applications, J. Math. Anal. Appl., 127 (1987), 155–171. doi: 10.1016/0022-247X(87)90148-X
    [47] W. A. Kirk, B. Sims, G. X. Z. Yuan, The Knaster-Kuratowski and Mazurkiewicz theory in hyperconvex metric spaces and some of its applications, Nonlinear Anal. Theor., 39 (2000), 611–627. doi: 10.1016/S0362-546X(98)00225-9
    [48] K. Fan, Some properties of convex sets related to fixed point theorems, Math. Ann., 266 (1984), 519–537. doi: 10.1007/BF01458545
    [49] S. H. Wang, N. J. Huang, Generalized implicit inclusion problems on noncompact sets with applications, B. Aust. Math. Soc., 84 (2011), 261–279. doi: 10.1017/S0004972710002091
    [50] Y. P. Fang, N. J. Huang, An existence result for a class of extended inclusion problems with applications to equilibrium problems, J. Anal. Appl., 25 (2006), 257–264.
    [51] B. Di Bella, An existence theorem for a class of inclusions, Appl. Math. Lett., 13 (2000), 15–19.
    [52] K. R. Kazmi, S. A. Khan, Existence of solutions to a generalized system, J. Optimiz. Theory Appl., 142 (2009), 355–361. doi: 10.1007/s10957-009-9530-7
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2050) PDF downloads(94) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog