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1. Introduction

Collectively fixed point theorems for a family of set-valued mappings play a key role in studying
pure and applied mathematical problems, which can be seen as natural generalizations of fixed point
theorems. In 1991, Tarafdar [1] first established a collectively fixed point theorem in the framework
of nonempty compact convex subsets of Hausdorff topological vector spaces and then provided its
applications in the existence problem of equilibrium points for abstract economies. Since then, many
authors have investigated and developed this topic under different assumptions in Hausdorff topological
vector spaces. See, for example, [2–7] and the references therein.

On the other hand, to broaden the application of the collectively fixed point theory, many authors
have studied the collectively fixed point problem in the framework of Hausdorff topological spaces
without linear structure. In 1992, Tarafdar [8] extended the collectively fixed point theorem in [1] to
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compact H-spaces and then gave some applications to the nonempty intersection problem of sets with
H-convex sections and existence problem of equilibrium points for an abstract economy. In 1999,
Park [9] proved a collectively fixed point theorem which generalizes the collectively fixed point
theorems in [1, 8] to compact G-convex spaces. In 2003, Yu and Lin [10] generalized the collectively
fixed point theorem in [9] to noncompact G-convex spaces. In 2007, Ding [11] and Zhang and
Cheng [12] obtained some collectively fixed point theorems in noncompact FC-spaces. In 2010,
Al-Homidan et al. [13] derived a collectively fixed point theorem and a maximal element theorem in
noncompact topological semilattice spaces and presented applications to problems on generalized
abstract economy, systems of vector quasi-equilibrium, and constrained Nash equilibrium. In 2011,
Khanh et al. [14] proved some collectively fixed point theorems in noncompact GFC-spaces and gave
applications to collectively coincidence point theorems and systems of variational relations. Recently,
by means of the technique of partition of unity and Tikhonov fixed point theorem, Khanh and
Quan [15] proved the existence of collectively fixed points for a family of set-valued mappings
defined on the product set of nonempty sets which have topologically based structures and do not
possess linear or convexity structures. Furthermore, they gave applications to coincidence points of a
family of set-valued mappings and intersection points of a family of sets.

The abstract convex space is first introduced by Park [16], which includes the spaces mentioned
above as special cases. So far, a small part of the literature discussed the problem of collectively fixed
points in abstract convex spaces. In 2010, by using a Fan-Browder type fixed point theorem in [17],
Park [18] obtained a collectively fixed point theorem for finite families of compact abstract convex
spaces and then used this collectively fixed point theorem to obtain a Fan-type nonempty intersection
theorem for sets with Γ-convex sections. Recently, Lu and Hu [19] proved a new collectively fixed
point theorem for finite families of noncompact abstract convex spaces and gave its applications to
equilibria for generalized abstract economies. It is needed to point out that the Hausdorffness of the
spaces involved in the collectively fixed point theorems in [1–15] for a family of set-valued mappings
is necessary since these theorems are proved based on the partition of unity argument. Note that the
proofs of the collectively fixed point theorems in [18, 19] are based on the Fan-Browder-type fixed
point theorem in abstract convex spaces whose Hausdorff separation property can be dropped. Thus,
in this sense, the corresponding collectively fixed point theorems in these two cases cannot be deduced
from each other.

Motivated and inspired by the work mentioned above, in this paper, the main goal of this paper is
to prove the existence of collectively fixed points for a family with a finite number of set-valued
mappings defined on the product space of noncompact abstract convex spaces. These obtained
collectively fixed point theorems have two alternative coercivity conditions. Furthermore, as
applications, in the framework of noncompact abstract convex spaces, some existence theorems of
generalized weighted Nash equilibria and generalized Pareto Nash equilibria for constrained
multiobjective games, some nonempty intersection theorems for sets with abstract convex sections,
and some existence theorems of solutions for generalized weak implicit inclusion problems are
established.

The rest of this paper is organized as follows. In Section 2, we introduce some notation,
definitions, and lemmas for further investigations. Section 3 is devoted to theorems on collectively
fixed points in noncompact abstract convex spaces. The following sections give applications of
collectively fixed points in noncompact abstract convex spaces. Section 4 contains existence results
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for generalized weighted Nash equilibra and generalized Pareto Nash equilibria for constrained
multiobjective games. In Section 5, we deal with some nonempty intersection theorems for sets with
abstract convex sections and give applications to the Fan analytic alternative formulation and the
existence of Nash equilibria for noncooperative games in noncompact abstract convex spaces. Finally,
in Section 6, by using a maximal element theorem which is essentially equivalent to fixed point
theorem, we obtain some existence results of solutions for generalized weak implicit inclusion
problems in the setting of noncompact abstract convex spaces.

2. Preliminaries

In this section, we give some notation, definitions, and lemmas for later use.
Let R and N denote the set of the real numbers and the set of the natural numbers, respectively.

For a nonempty set X, let 2X and 〈X〉 denote by the family of all subsets of X and by the family of
nonempty finite subsets of X, respectively. Let T : X → 2Y be a set-valued mapping, where X and Y
are two nonempty sets. Then the graph of T is defined by the set {(x, y) ∈ X × Y : y ∈ T (x)} and the
set-valued mapping T−1 : Y → 2X is defined by T−1(y) = {x ∈ X : y ∈ T (x)} for each y ∈ Y . For each
y ∈ Y , we call T−1(y) the lower section of T . For every X0 ⊆ X, T (X0) := ∪x∈X0T (x). If A and B are
subsets of a topological space X such that A ⊆ B, then we denote the closure (respectively, interior)
of A in B by clBA (respectively, intBA). When B = X, clA (respectively, intA) denotes the closure
(respectively, interior) of A. A topological space X is said to be first-countable if for each x ∈ X,
there exists a sequence {N1,N2, . . .} of neighbourhoods of x such that for any neighbourhood N of x,
there exists an integer k such that Nk ⊆ N. The product of countable first-countable topological spaces
is first-countable, although uncountable product needs not be. Let A be a subset of a first countable
topological space X. Then x ∈ clA if and only if there exists a sequence {xn} in A such that xn → x. We
should point out that if A is a subset of a topological space X, then x ∈ clA if and only if there exists a
net {xα} in A such that xα → x.
Definition 2.1 ([20]). Let X and Y be two topological spaces. A set-valued mapping T : X → 2Y is
called to be:

(i) upper semicontinuous (respectively, lower semicontinuous) at x ∈ X if for each open set U in
Y with T (x) ⊆ U (respectively, T (x)

⋂
U , ∅), there is a neighborhood V(x) of x such that T (x′) ⊆ U

(respectively, T (x′)
⋂

U , ∅) for every x′ ∈ V(x);
(ii) upper semicontinuous (respectively, lower semicontinuous) on X if it is upper semicontinuous

(respectively, lower semicontinuous) at every point x ∈ X;
(iii) continuous on X if it is both upper semicontinuous and lower semicontinuous on X;
(iv) closed if its graph Gr(T ) = {(x, y) ∈ X × Y : y ∈ T (x)} is closed in X × Y .

Lemma 2.1 ([20]). Let T : X → 2Y be a set-valued mapping, where X is a topological space and Y is
a compact topological space. If the graph of T is closed in X × Y, then T is upper semicontinuous.
Lemma 2.2 ([21]). Let X and Y be two topological spaces and T : X → 2Y be a set-valued mapping.
Then T is lower semicontinuous at x ∈ X if and only if for each y ∈ T (x) and each net {xα} ⊆ X such
that xα → x, there is a net {yα} ⊆ Y such that yα ∈ T (xα) for every α and yα → y.
Lemma 2.3 ([21]). Let X and Y be two topological spaces and T : X → 2Y be a set-valued mapping.
If either T is upper semicontinuous on X with compact values and Y is Hausdorff, or T is upper
semicontinuous on X with closed values and Y is regular, then T is closed, that is, the graph of T is
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closed in X × Y .
Lemma 2.4 ([22]). Let X and Y be two topological spaces and T : X → 2Y be a set-valued mapping.
If T has compact values, then T is upper semicontinuous at x ∈ X if and only if for each net {xα} ⊆ X
such that xα → x and for each net {yα} ⊆ T (xα) for every α, there exist y ∈ T (x) and a subsbet {yβ} of
{yα} such that yβ → y.

In what follows, we introduce some basic definitions and lemmas related to abstract convex spaces.
For more details, the reader may refer to [16–18, 23, 27–29].
Definition 2.2 ([23]). If X is a topological space, Y is a nonempty set, and Γ : 〈Y〉 → 2X is a set-valued
mapping with nonempty values ΓA := Γ(A) for every A ∈ 〈Y〉, then the family (X,Y; Γ) is called to be
an abstract convex space. When X = Y , we denote (X, X; Γ) by (X; Γ).
Remark 2.1. It is worthwhile noticing that abstract convex spaces contain convex spaces due to
Lassonde [24], H-spaces introduced by Horvath [25], G-convex spaces due to Park and Kim [9],
L-spaces due to Ben-El-Mechaiekh et al. [26], GFC-spaces due to Khanh et al. [14], FC-spaces due
to Ding [11], and many other topological spaces with generalized convex structure (for example,
see [18] and references therein).
Definition 2.3 ([23]). Given an abstract convex space (X,Y; Γ) and a nonempty subset Y ′ of Y , we
define the Γ-convex hull of Y ′ by coΓ(Y ′) =

⋃
{ΓA : A ∈ 〈Y ′〉}.

Definition 2.4 ([23]). Let (X,Y; Γ) be an abstract convex space. A nonempty subset X′ of X is said to
be a Γ-convex subset of (X,Y; Γ) relative to a nonempty subset Y ′ of Y if we have ΓN ⊆ X′ for every
N ∈ 〈Y

′

〉, that is, coΓ(Y
′

) ⊆ X′. In case X = Y , a nonempty subset X′ of X is said to be Γ-convex if
coΓ(X′) ⊆ X′, that is, X′ is Γ-convex relative to itself.
Remark 2.2. Given an abstract convex space (X,Y; Γ), by Definition 2.3, we can see that if a nonempty
subset X′ of X is a Γ-convex subset of (X,Y; Γ) relative to a nonempty subset Y ′ of Y , then (X′,Y ′; Γ|〈Y′ 〉)
itself is an abstract convex space which is called to be a subspace of (X,Y; Γ).
Definition 2.5 ([23]). Let (X,Y; Γ) be an abstract convex space and Z be a set. For a set-valued
mapping H : X → 2Z with nonempty values, if a set-valued mapping G : Y → 2Z satisfies
H(ΓA) ⊆ G(A) for every A ∈ 〈Y〉, then G is called to be a KKM mapping with respect to H. A KKM
mapping G : Y → 2X is a KKM mapping with respect to the identity mapping 1X.
Definition 2.6 ([23]). Let (X,Y; Γ) be an abstract convex space and Z be a topological space. A set-
valued mapping H : X → 2Z is called to be a RC-mapping, if for any closed-valued KKM mapping
G : Y → 2Z with respect to H, the family {G(y) : y ∈ Y} has the finite intersection property. We denote
RC(X,Z) := {H : X → 2Z | H is a RC-mapping}.
Definition 2.7 ([27]). Let (X,Y; Γ) be an abstract convex space. A function f : X → R is said to be
quasi-convex (respectively, quasi-concave) relative to a nonempty subset Y ′ of Y if the set {x ∈ X :
f (x) < t} (respectively, {x ∈ X : f (x) > t}) is Γ-convex relative to Y ′ for every r ∈ R. In case X = Y , a
function f : X → R is said to be quasi-convex (respectively, quasi-concave) if the set {x ∈ X : f (x) < t}
(respectively, {x ∈ X : f (x) > t}) is Γ-convex for every r ∈ R
Lemma 2.5 ([28]). Let {(Xi,Yi; Γi)}i∈I be a family of abstract convex spaces, where I is a finite (or
infinite) index set. Let X :=

∏
i∈I Xi be equipped with the product topology and Y :=

∏
i∈I Yi. For each

i ∈ I, let πi : Y → Yi be the projection. Define Γ =
∏

i∈I Γi : 〈Y〉 → 2E by
Γ(A) :=

∏
i∈I Γi(πi(A)) for each A ∈ 〈Y〉, where πi(A) is the projection of A onto Xi. Then (X,Y; Γ) is an

abstract convex space.
Lemma 2.6 ([29]). Let (X,Y; Γ) be an abstract convex space, (X′,Y ′; Γ|〈Y′〉) be a subspace of (X,Y; Γ),
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and Z be a topological space. If H ∈ KC(X,Z), then H|X′ ∈ KC(X′, cl(H(X′))).
Let (X; Γ) be an abstract convex space and C be a nonempty subset of X. We define the Γ-convex

combination of C, denoted by Γ-co(C) as follows.

Γ-co(C) =
⋂
{D ⊆ X : D is Γ-convex and C ⊆ D}.

We can see that Γ-co(C) is the smallest Γ-convex subset containing C. In fact, for any Γ-convex subset
D of X with C ⊆ D, it follows from the definition of Γ-co(C) that Γ-co(C) ⊆ D. Next, we show that
Γ-co(C) is Γ-convex. Indeed, let A ∈ 〈Γ-co(C)〉. Then for each Γ-convex subset D of X with C ⊆ D,
we have A ⊆ Γ-co(C) ⊆ D. Since D is Γ-convex, it follows that ΓA ⊆ D and thus, ΓA ⊆ Γ-co(C) which
implies that Γ-co(C) is Γ-convex. It is obvious that C is Γ-convex if and only if C = Γ-co(C).
Lemma 2.7. Let (X; Γ) be an abstract convex space and C be a nonempty subset of X. Then Γ-co(C) =⋃
{Γ-co(A) : A ∈ 〈C〉}.

Proof. Let A ∈ 〈C〉. Then by the fact that Γ-co(A) is the smallest Γ-convex subset containing A
and Γ-co(C) is the smallest Γ-convex subset containing C, we have Γ-co(A) ⊆ Γ-co(C). Therefore,⋃
{Γ-co(A) : A ∈ 〈C〉} ⊆ Γ-co(C). Next, we prove that Γ-co(C) ⊆

⋃
{Γ-co(A) : A ∈ 〈C〉}. Since⋃

{Γ-co(A) : A ∈ 〈C〉} ⊇ C, it suffices to show that
⋃
{Γ-co(A) : A ∈ 〈C〉} is Γ-convex. Let B =

{x0, x1, . . . , xn} ∈ 〈
⋃
{Γ-co(A) : A ∈ 〈C〉}〉. Then there exist finite subsets A0, A1, . . . , An of C such that

xi ∈ Γ-co(Ai), i = 0, 1, . . . , n. Let Â =
⋃n

i=0 Ai. Then we have Â ∈ 〈C〉 and xi ∈ Γ-co(Â), i = 0, 1, . . . , n.
Therefore, by the fact that Γ-co(Â) is Γ-convex, we get ΓB ⊆ Γ-co(Â) ⊆

⋃
{Γ-co(A) : A ∈ 〈C〉}, which

implies that
⋃
{Γ-co(A) : A ∈ 〈C〉} is Γ-convex subset containing C. Hence, Γ-co(C) ⊆

⋃
{Γ-co(A) :

A ∈ 〈C〉}. This completes the proof. �
Remark 2.3. Lemma 2.7 extends Lemma 1 obtained by Tarafdar [30] in H-spaces, Lemma 2.1 by
Tan and Zhang [31] in G-convex spaces, and Lemma 2.1 by Ding [32] in FC-spaces to abstract convex
spaces.
Lemma 2.8. Let (X; Γ) be an abstract convex space, Y be a topological space, and F : Y → 2X be a set-
valued mapping such that F−1(x) is open in Y for every x ∈ X. Then the set-valued mapping Γ-co(F) :
Y → 2X defined by Γ-co(F)(y) = Γ-co(F(y)) for every y ∈ Y, has the property that (Γ-co(F))−1(x) is
open in Y .
Proof. Let x ∈ X and y ∈ (Γ-co(F))−1(x) be any given. Then it suffices to find an open neighborhood O
of y in Y such that O ⊆ (Γ-co(F))−1(x). Since x ∈ Γ-co(F(y)), it follows from Lemma 2.7 that there
exists A = {x0, . . . , xn} ∈ 〈F(y)〉 such that x ∈ Γ-co(A). Let O =

⋂n
i=0 F−1(xi). Since F−1(xi) is open in

Y and y ∈ F−1(xi) for every i = 0, . . . , n, it follows that O is an open neighborhood of y in Y . We show
that O ⊆ (Γ-co(F))−1(x). In fact, let w ∈ O be any given. Then xi ∈ F(w) for all i = 0, . . . , n. Hence, we
have x ∈ Γ-co(A) ⊆ Γ-co(F(w)) and so, w ∈ (Γ-co(F))−1(x). This implies that (Γ-co(F))−1(x) is open in
Y for every x ∈ X. This completes the proof. �
Remark 2.4. Lemma 2.2 due to Ding [32] with underlying FC-spaces, Lemma 3.1 due to Ding [33]
for a H-space setting, and Lemma 2.2 due to Tan and Zhang [31] for the framework of a G-convex
space are special cases of Lemma 2.8.

3. Collectively fixed points

In this section, by using the KKM method, we obtain the following theorem which characterizes the
existence of collectively fixed points for finite families of set-valued mappings in noncompact abstract
convex spaces.
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Theorem 3.1. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (
∏

i∈I Xi; Γ) is
an abstract convex space defined as in Lemma 2.5, where I is a finite index set. Let K be a nonempty
compact subset of X. For each i ∈ I, let S i, Ti : X → 2Xi be two set-valued mappings satisfying

(i) for each x ∈ X, S i(x) ⊆ Ti(x) and Ti(x) is Γi-convex;
(ii) for each ui ∈ Xi, S −1

i (ui) is open in X;
(iii) for each x ∈ K, S i(x) , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(⋂
i∈I

T−1
i (ui)

⋂
L
)
;

(iv)2 there exists u0 ∈ X such that cl(X \
⋂

i∈I T−1
i (u0i)) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x = (xi)i∈I ∈ X such that xi ∈ Ti(x) for every i ∈ I.
Proof. Define two set-valued mappings S ,T : X → 2X by S (x) =

∏
i∈I S i(x) and T (x) =

∏
i∈I Ti(x) for

every x ∈ X, respectively. We distinguish the following two cases for proving the conclusion that there
exists x ∈ X such that x ∈ T (x).

Case I. If (iv)1 holds, then we suppose contrary to the assertion that x < T (x) for every x ∈ X. Define
two set-valued mappings S̃ , T̃ : X → 2X by S̃ (u) = (X \ S −1(u))

⋂
K and T̃ (u) = cl(X \T−1(u))

⋂
K for

every u ∈ X, respectively. We show that the family {T̃ (u) : u ∈ X} has the finite intersection property.
Indeed, let N ∈ 〈X〉 be any given and let πi be the projection from X to Xi for every i ∈ I. Then for each
i ∈ I, we have πi(N) = Ni ∈ 〈Xi〉 and thus, it follows from (iv)1 that there is a compact Γi-convex subset
LNi of (Xi; Γi) containing Ni such that L =

∏
i∈I LNi . Further, let us define two set-valued mappings

S ′,T ′ : L → 2L by S ′(u) = L \ S −1(u) and T ′(u) = clL(L \ T−1(u)) for every u ∈ L, respectively. For
each u ∈ X, by the definition of S , we have

S −1(u) =

{
x ∈ X : u ∈ S (x)

}
=

{
x ∈ X : u ∈

∏
i∈I

S i(x)
}

=

{
x ∈ X : ui ∈ S i(x),∀i ∈ I

}
=

{
x ∈ X : x ∈ S −1

i (ui),∀i ∈ I
}

=
⋂
i∈I

S −1
i (ui).

Similarly, we have T−1(u) =
⋂

i∈I T−1
i (ui) for every u ∈ X. Since I is a finite index set, it follows

from (ii) that S −1(u) is open in X for every u ∈ X. By (i), we can see that T ′(u) ⊆ S ′(u) for every u ∈ X.
Now, we check that the set-valued mapping T ′′ : L → 2L defined by T ′′(u) = L \ T−1(u) for every
u ∈ L, is a KKM mapping. In fact, if this were not, then there exist A ∈ 〈L〉 and x0 ∈ Γ(A) ⊆ L such
that

x0 <
⋃
u∈A

T ′′(u) = L \
(⋂

u∈A

T−1(u)
)
,
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which implies that x0 ∈
⋂

u∈A T−1(u) and thus, A ⊆ T (x0). By (i) again, we can deduce that T (x0) is
Γ-convex. Therefore, we have x0 ∈ Γ(A) ⊆ T (x0), which contradicts our assumption that x < T (x) for
every x ∈ X. Hence, T ′′ : L→ 2L is a KKM mapping and so is T ′. Since L is Γ-convex, it follows from
Remark 2.2 that (L; Γ|〈L〉) be a subspace of (X; Γ). So, by Lemma 2.6 and the fact that 1X ∈ RC(X, X),
we have 1L ∈ RC(L, L). Since T ′ is a KKM mapping with closed compact values and (iv)1 holds, it
follows that ∅ ,

⋂
u∈L T ′(u) =

⋂
u∈L clL(L \ T−1(u)) ⊆ L

⋂
K. Let x0 ∈

⋂
u∈L T ′(u). Then we have

x0 ∈
⋂
u∈L

T ′(u)

⊆
⋂
u∈N

(
T ′(u)

⋂
K
)

⊆
⋂
u∈N

T̃ (u).

This implies that the family {T̃ (u) : u ∈ X} has the finite intersection property. By the compactness
of K, we obtain

⋂
u∈X T̃ (u) , ∅. Since T̃ (u) ⊆ S̃ (u) for every u ∈ X, we have

∅ ,
⋂
u∈X

S̃ (u)

=
⋂
u∈X

(
X \ S −1(u)

)⋂
K

= K \
⋃
u∈X

S −1(u),

which implies that there exists x∗ ∈ K such that S (x∗) = ∅. By the definition of S again, there exists
i0 ∈ I such that S i0(x∗) = ∅, which contradicts (iii). Therefore, there exists x ∈ X such that x ∈ T (x).
By the definition of T , we have xi ∈ Ti(x) for every i ∈ I. This completes the proof.

Case II. Assume that (iv)2 hold. Suppose to the contrary that x < T (x) for every x ∈ X. Define two
set-valued mappings S̃ , T̃ : X → 2X by S̃ (u) = (X \ S −1(u)) and T̃ (u) = cl(X \ T−1(u)) for every u ∈ X,
respectively. By (i), (ii), and the expressions of S −1(u) and T−1(u) in Case I, we have T̃ (u) ⊆ S̃ (u)
for every u ∈ X. We show that Γ(A) ⊆

⋃
u∈A T̃ (u) for every A ∈ 〈X〉, that is, T̃ is a KKM mapping.

Otherwise, there exist A ∈ 〈X〉 and a point x0 ∈ Γ(A) such that x0 <
⋃

u∈A T̃ (u) = X \
⋂

u∈A intT−1(u).
It follows that x0 ∈

⋂
u∈A T−1(u). Therefore, we have A ⊆ T (x0). According to (i) and the definition of

T , we can see that T (x0) is Γ-convex and thus, x0 ∈ Γ(A) ⊆ T (x0). This creates a contradiction. Hence,
T̃ is a KKM mapping. Since 1X ∈ RC(X, X) and T̃ (u) is closed in X for every u ∈ X, it follows that the
family {T̃ (u) : u ∈ X} has the finite intersection property. By (iv)2, there exists u0 ∈ X such that

T̃ (u0) = cl(X \ T−1(u0))

= cl
(
X \

⋂
i∈I

T−1
i (u0i)

)
⊆ K,

which implies that T̃ (u0) is compact. Consequently, the intersection of the family {T̃ (u) : u ∈ X} is
nonempty. Let x0 ∈

⋂
u∈X T̃ (u). Then we have x0 ∈ K

⋂
(
⋂

u∈X S̃ (u)). Thus, we get S (x0) = ∅. It follows
from the definition of S that there exists i0 ∈ I such that S i0(x0) = ∅, which contradicts (iii). Therefore,
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there exists x ∈ X such that x ∈ T (x). By the definition of T again, we have xi ∈ Ti(x) for every i ∈ I.
The proof is complete. �
Remark 3.1. (1) Unlike Theorem 6.1 obtained by Park [18], the abstract convex spaces involved in
Theorem 3.1 is not required to be compact.

(2) Theorem 3.1 cannot be regarded as a special case of Theorem 10 due to Lu and Hu [19].
Although (i)–(iii) of Theorem 3.1 are stronger than the corresponding conditions of Theorem 10 in
Lu and Hu [19], Theorem 3.1 has two coercive conditions to be selected, and both the first coercive
condition of Theorem 3.1 and the corresponding coercive condition of Theorem 10 in Lu and Hu
[19] are independent of each other. Thus, Theorem 3.1 and Theorem 10 obtained by Lu and Hu [19]
cannot be deduced from each other. In addition, the methods of proving these two theorems are also
different. The proof of our theorem is based on KKM theory in abstract convex spaces, and the proof
of Theorem 10 in Lu and Hu [19] is to use a fixed point theorem in abstract convex spaces.
Theorem 3.2. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5, where I is a finite index set. Let K be a nonempty
compact subset of X. For each i ∈ I, let S i, Ti : X → 2Xi be two set-valued mappings satisfying

(i) for each x ∈ X, S i(x) ⊆ Γ-co(Ti(x));
(ii) for each ui ∈ Xi, S −1

i (ui) is open in X;
(iii) for each x ∈ K, S i(x) , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(⋂
i∈I

T−1
i (ui)

⋂
L
)
;

(iv)2 there exists u0 ∈ X such that cl(X \
⋂

i∈I T−1
i (u0i)) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x = (xi)i∈I ∈ X such that xi ∈ Γ-co(Ti(x)) for every
i ∈ I.
Proof. For each i ∈ I, we define a set-valued mapping T̃i : X → 2Xi by T̃i(x) = Γ-co(Ti(x)) for every
x ∈ X. By (i) the definition of Γ-convex combination, we can see that S i(x) ⊆ T̃i(x) and T̃i(x) is Γi-
convex for every i ∈ I and every x ∈ X. From (iv) and the definition of T̃i, one can see that one of the
following two conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such that

for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(⋂
i∈I

T̃−1
i (ui)

⋂
L
)
;

• there exists u0 ∈ X such that cl(X \
⋂

i∈I T̃−1
i (u0i)) ⊆ K.

So far, combined with (ii) and (iii), we can see that all the conditions of Theorem 3.1 are fulfilled.
Thus, by Theorem 3.1, there exists x = (xi)i∈I ∈ X such that xi ∈ Γ-co(Ti(x)) for every i ∈ I. This
completes the proof.
Remark 3.2. Theorem 3.1 is equivalent to Theorem 3.2. In fact, we only need to show that theorem 3.2
implies Theorem 3.1. By (i) of Theorem 3.1 and the definition of Γ-convex combination, we have
Ti(x) = Γ-co(Ti(x)) for every i ∈ I and every x ∈ X. Therefore, it follows from Theorem 3.2 that there
exists x = (xi)i∈I ∈ X such that xi ∈ Γ-co(Ti(x)) = Ti(x) for every i ∈ I.
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Let I in Theorem 3.1 be a singleton. Then we have the following fixed point theorem.
Theorem 3.3. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and
S , T : X → 2X be two set-valued mappings such that

(i) for each x ∈ X, S (x) ⊆ T (x) and T (x) is Γ-convex;
(ii) for each u ∈ X, S −1(u) is open in X;
(iii) for each x ∈ K, S (x) , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each N ∈ 〈X〉, there exists a compact Γ-convex subset LN of (X; Γ) containing N such that

LN \ K ⊆
⋃
u∈LN

intLN

(
T−1(u)

⋂
LN

)
;

(iv)2 there exists u0 ∈ X such that cl(X \ T−1(u0)) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x ∈ X such that x ∈ T (x).

Remark 3.3. Theorem 3.3 extends the famous Fan-Browder fixed point theorem due to
Browder [34], Corollary 1 obtained by Horvath and Ciscar [35], Theorem 3.2 by Yannelis and
Prabhakar [36], Corollary 1 by Ansari and Yao [3], Corollary 3.1 by Al-Homidan and Ansari [37],
Theorem 2.4 by Luo [38], and several other fixed point theorems in the literature to noncompact
abstract convex spaces (see Park [18] and the references therein).

When I is a singleton and S = T , it is obvious that the following maximal element theorem can be
obtained from Theorem 3.1 (or Theorem 3.3). We omit the proof.
Theorem 3.4. Let {(X; Γ1)} and {(Y; Γ2)} be two abstract convex spaces such that (X × Y; Γ1 × Γ2) is
an abstract convex space defined as in Lemma 2.5. Let K be a nonempty compact subset of X × Y. Let
T : X × Y → 2X×Y be a set-valued mapping satisfying

(i) for each (x, y) ∈ X × Y, T (x, y) is Γ1 × Γ2-convex;
(ii) for each (u, v) ∈ X × Y, T−1(u, v) is open in X × Y;
(iii) for each (x, y) ∈ X × Y, (x, y) < T (x, y);
(iv) one of the following two conditions holds:
(iv)1 for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing

N0 and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 , one has
L \ K ⊆

⋃
(u,v)∈L T−1(u, v);

(iv)2 there exists (u0, v0) ∈ X × Y such that X × Y \ T−1(u0, v0) ⊆ K.
If (X×Y; Γ1×Γ2) satisfies 1X×Y ∈ RC(X×Y, X×Y), then there exists (x, y) ∈ K such that T (x, y) = ∅.

Remark 3.4. (1) It is obvious that (iv)1 of Theorem 3.4 is equivalent to the following condition:
(iv)1

′ for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing
N0 and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 , one has
L \ K ⊆

⋃
(u,v)∈L(T−1(u, v)

⋂
L).

(2) If we drop (i) of Theorem 3.4, then (iii) of Theorem 3.4 can be replaced by the following
stronger condition:

(x, y) < Γ1 × Γ2-co(T (x, y)), ∀(x, y) ∈ X × Y. (3.1)

In fact, we can show that the conclusion of Theorem 3.4 still holds when (3.1) is satisfied. Define
a set-valued mapping T̃ : X × Y → 2X×Y by T̃ (x, y) = Γ1 × Γ2-co(T (x, y)) for every (x, y) ∈ X × Y . It
is obvious that T̃ (x, y) is Γ1 × Γ2-convex for every (x, y) ∈ X × Y . By Lemma 2.8, T̃−1(u, v) is open in
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X×Y for every (u, v) ∈ X×Y . It follows from (3.1) that (x, y) < T̃ (x, y) for every (x, y) ∈ X×Y . Finally,
by (iv), we can see that one of the following two conditions holds:
• for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing N0

and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 , one has

L \ K ⊆
⋃

(u,v)∈L

T−1(u, v) ⊆
⋃

(u,v)∈L

T̃−1(u, v);

• there exists (u0, v0) ∈ X × Y such that

X × Y \ T̃−1(u0, v0) ⊆ X × Y \ T−1(u0, v0) ⊆ K.

Thus, all the hypotheses of Theorem 3.4 are satisfied. Therefore, by Theorem 3.4, there exists (x, y) ∈ K
such that T̃ (x, y) = ∅ and so, T (x, y) = ∅.

(3) Combining the above arguments in (2), we can see that Theorem 3.4 generalizes Lemma 2.1
of Balaj and Lin [39] in the following aspects: (a) from noncompact topological vector spaces to
noncompact abstract convex spaces; (b) the Hausdorffness of the topological spaces in Theorem 3.4
is redundant, while the topological spaces in Lemma 2.1 of Balaj and Lin [39] are assumed to be
Hausdorff; (c) from one coercivity condition to two alternative coercivity conditions; (d) the conclusion
of our Theorem 3.4 is stronger than that of Lemma 2.1 of Balaj and Lin [39] since the maximal elements
of T can be found in K instead of X.

4. Weighted Nash equilibria and Pareto equilibria

In this section, we shall consider the constrained multiobjective game in its strategic form Θ :=
((Xi; Γi),U i, Ai, Bi)i∈I , where I = {1, 2, . . . , n} is a finite set of player. For each i ∈ I, Xi is the strategy
set of player i such that (Xi; Γi) is an abstract convex space, Ai, Bi : X =

∏
i∈I Xi → 2Xi are two

constraint set-valued mappings of the ith player, and U i : X = Πi∈IXi → R
ki is the payoff function

of the ith player, where ki ∈ N. For each i ∈ I, we denote X̂i :=
∏

j∈I\i X j. If x = (x1, x2, . . . , xn) ∈
X, then we write x̂i := (x1, . . . , xi−1, xi+1, . . . , xn) for every i ∈ I. If xi ∈ Xi, zi ∈ Xi and x̂i ∈ X̂i,
then we use the notation (x̂i, xi) := (x1, . . . , xi−1, xi, xi+1, . . . , xn) = x ∈ X and the natation (x̂i, zi) :=
(x1, . . . , xi−1, zi, xi+1, . . . , xn) ∈ X. If a choice x = (x1, . . . , xn) is played, each player i is trying to find
his/her vector payoff function U i(x) := (ui

1(x), . . . , ui
ki

(x)) consisting of non-commensurable outcomes.
Each player i has a preference �i over the outcome space Rki . For each i ∈ I, the ith player’s preference
�i is defined by

z1 �i z2 if and only if z1
j ≥ z2

j for each j = 1, . . . , ki,

where z1 = (z1
1, . . . , z

1
ki

) ∈ Rki and z2 = (z2
1, . . . , z

2
ki

) ∈ Rki . The players’ preference relations induce
the preferences on X which is defined by x �i y⇔ U i(x) �i U i(y) for each player i and their choices
x = (x1, . . . , xn), y = (y1, . . . , yn) ∈ X.

If A(x) = Bi(x) , Xi for every i ∈ I and every x ∈ X, then the model of constrained multiobjective
games with two constrained set-valued mappings reduces to the model of constrained multiobjective
games with one constrained set-valued mapping considered by Ding [40] and Kim and Ding [41]. If
A(x) = Bi(x) = Xi for every i ∈ I and every x ∈ X, then the constrained multiobjective game model
reduces to the multiobjective game model studied by Wang [42], Yuan and Tarafdar [43], and Yu and
Yuan [44].
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We need to point out that the constrained multiobjective game model in this paper is a
non-cooperative game model, which implies that there is no communicating between players and so,
players act as free agents, and each player is trying to minimize his/her own payoff function according
to his/her preference.

For a multiobjective game, as it is well known, in general, there does not exist a strategy x̂ ∈ X to
minimize all ui

js for each player i ∈ I; see, for example, Yu [45] and the references therein. Hence, we
need to give some solution concepts for the multicriteria games with constraint set-valued mappings.

Throughout this paper, for each m ∈ N, we shall denote by Rm
+ := {q := (q1, . . . , qm) ∈ Rm : q j ≥

0,∀ j = 1, . . . ,m} and intRm
+ := {q := (q1, . . . , qm) ∈ Rm : q j > 0,∀ j = 1, . . . ,m} the nonnegative orthant

of Rm and the nonempty interior with the topology induced by the Euclidean metric, respectively. For
each u, v ∈ Rm, u · v denotes the standard Euclidian inner product.

Let x̂ = (x̂1, . . . , x̂n) ∈ X. Now, we have the following definitions.
Definition 4.1. A strategy x̂i ∈ Xi of player i is said to be a generalized Pareto efficient strategy
(respectively, a generalized weak Pareto efficient strategy) of the constrained multiobjective game Θ =

((Xi; Γi),U i, Ai, Bi)i∈I with respect to x̂ if x̂i ∈ Bi(x̂) and there is no strategy xi ∈ Ai(x̂) such that

U i(x̂) − U i( x̂̂i, xi) ∈ R
ki
+ \ {0} (respectively, U i(x̂) − U i( x̂̂i, xi) ∈ intRki

+).

Definition 4.2. A strategy x̂ ∈ X is said to be a generalized Pareto equilibrium (respectively, a
generalized weak Pareto equilibrium) of the constrained multiobjective game
Θ = ((Xi; Γi),U i, Ai, Bi)i∈I if for each player i, x̂i ∈ Xi is a generalized Pareto efficient strategy
(respectively, a generalized weak Pareto efficient strategy) of the constrained multiobjective game
Θ := ((Xi; Γi),U i, Ai, Bi)i∈I with respect to x̂.
Remark 4.1. The above two definitions generalize the corresponding definitions in [42–44]. It is clear
that every generalized Pareto equilibrium is a generalized weak Pareto equilibrium, but the converse is
not always true.
Definition 4.3. A strategy x̂ ∈ X is said to be a generalized weighted Nash equilibrium with respect to
the weight vector W = (Wi)i∈I with Wi = (Wi,1,Wi,2 . . . ,Wi,ki) ∈ R

ki
+ of the constrained multiobjective

game Θ = ((Xi; Γi),U i, Ai, Bi)i∈I if for each player i, we have
(i) x̂i ∈ Bi(x̂);
(ii) Wi ∈ R

ki
+ \ {0};

(iii) Wi · U i(x̂) ≤ Wi · U i( x̂̂i, xi) for every xi ∈ Ai(x̂), where · denotes the inner product in Rki .
Remark 4.2. When Wi ∈ R

ki
+ with

∑ki
j=1 Wi j = 1 for every i ∈ I, the strategy x̂ ∈ X is said to a

normalized form of generalized weighted Nash equilibrium with respect to the weight vector W. In
addition, it follows from the above definition that x̂ ∈ X is a generalized weighted Nash equilibrium
with respect to the weight vector W = (Wi)i∈I of the constrained multiobjective game
Θ = ((Xi; Γi),U i, Ai, Bi)i∈I if and only if x̂ ∈ X is a solution of the constrained optimization problem as
follows: find x̂ ∈ X such that for each i ∈ I, x̂i ∈ Bi(x̂) and minyi∈Ai(x̂) Wi · U i( x̂̂i, yi) = Wi · U i(x̂).

The following lemma shows that the existence problem of generalized weak Pareto equilibrium
(respectively, generalized Pareto equilibrium) for a constrained multiobjective game can be reduced to
the existence problem of generalized weighted Nash equilibrium under certain conditions.
Lemma 4.1. Let Θ = ((Xi; Γi),U i, Ai, Bi)i∈I be a constrained multiobjective game. Then a normalized
form of generalized weighted Nash equilibrium x̂ ∈ X with respect to a weight W = (W1, . . . ,Wn),
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Wi ∈ R
ki
+ \ {0} (respectively, Wi ∈ intRki

+) and
∑ki

j=1 Wi, j = 1 for every i ∈ I, is a generalized weak Pareto
equilibrium (respectively, a generalized Pareto equilibrium) of the game Θ.
Proof. Suppose to the contrary that x̂ is not a generalized weak Pareto equilibrium. Then by
Definitions 4.1 and 4.2, there exists some i0 ∈ I such that x̂i0 < Bi0(x̂) or there exists an xi0 ∈ Ai0(x̂)
such that

U i(x̂î0 , x̂i0) − U i(x̂î0 , xi0) ∈ intR
ki0
+ .

It is obvious that x̂i0 < Bi0(x̂) contradicts the the assumption that x̂ is a normalized generalized
weighted Nash equilibrium with respect to the weight W = (W1, . . . ,Wn). Thus, we only consider
the second case that there exists an xi0 ∈ Ai0(x̂) such that U i(x̂î0 , x̂i0) − U i(x̂î0 , xi0) ∈ intR

ki0
+ . In fact,

since Wi0 ∈ R
ki0
+ \ {0} with

∑ki0
j=1 Wi0, j = 1, it follows that Wi0 · U

i(x̂î0 , x̂i0) > Wi0 · U
i(x̂î0 , xi0), which

also contradicts the fact that x̂ is a normalized form of generalized weighted Nash equilibrium with
respect to the weight W = (W1, . . . ,Wn). Therefore, x̂ is a generalized weak Pareto equilibrium. Now,
we suppose that Wi ∈ intRki

+ and
∑ki

j=1 Wi, j = 1 for every i ∈ I. We show that x̂ is a generalized Pareto
equilibrium by contradiction. If this was not the case, then by Definitions 5.1 and 5.2, there exists i0 ∈ I
such that x̂i0 < Bi0(x̂) or there exists an xi0 ∈ Ai0(x̂) such that

U i(x̂î0 , x̂i0) − U i(x̂î0 , xi0) ∈ R
ki0
+ \ {0}.

By using the same argument as in the above, we get contradictions. Therefore, x̂ is a generalized
Pareto equilibrium. This completes the proof. �

Remark 4.3. It should be noted that the conclusion of Lemma 4.1 still holds if x̂ ∈ X is a generalized
weighted Nash equilibrium with respect to a weight W = (W1, . . . ,Wn) satisfying Wi ∈ R

ki
+ \ {0}

(respectively, Wi ∈ intRki
+) for every i ∈ I. Also, we point out that a generalized Pareto equilibrium is

not necessarily a generalized weighted Nash equilibrium.
Lemma 4.2 ([41]). Let X and Y be two topological spaces. Let T : X → 2Y be a continuous set-valued
mapping such that T (x) is nonempty compact subset of Y for every x ∈ X. Suppose that f : X × Y → R
is a continuous function. Then the function ξ : X → R defined by ξ(x) := miny∈T (x) f (x, y) for every
x ∈ X, is a continuous function on X.

Now, as applications of Theorems 3.1 and 3.3, we have the following existence theorems of
generalized weighted Nash equilibria and generalized Pareto equilibria for constrained multiobjective
games.
Theorem 4.1. Let Θ = ((Xi; Γi),U i, Ai, Bi)i∈I be a constrained multiobjective game such that (X; Γ) :=
(
∏

i∈I Xi; Γ) is an abstract convex space defined as in Lemma 2.5 and K is a nonempty compact subset
of X, where I is a finite index set. For each i ∈ I and each ui ∈ Xi, A−1

i (ui) is open in X. Assume that
there exists a weight vector W = (W1, . . . ,Wn) with Wi ∈ R

ki
+ \ {0} such that for each i ∈ I, the following

conditions are satisfied:
(i) for each x ∈ X, ∅ , Ai(x) ⊆ Bi(x), and Bi(x) is Γi-convex;
(ii) for each x ∈ X, the set {ui ∈ Xi : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is Γi-convex;
(iii) for each ui ∈ Xi, the set {x ∈ X : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is open in X;
(iv) the set Fi = {x ∈ X : there exists ui ∈ Ai(x) such that Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is a closed

subset of X;
(v) one of the following conditions holds:
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(v)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such
that L \ K ⊆

⋃
u∈L intL(

⋂
i∈I((X \ Fi)

⋂
B−1

i (ui))
⋂

L), where L :=
∏

i∈I LNi;
(v)2 there exists u0 ∈ X such that cl(X \

⋂
i∈I((X \ Fi)

⋂
B−1

i (u0i))) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a generalized weighted Nash equilibrium

x̂ ∈ X with respect to the weight vector W = (Wi)i∈I and hence it has a generalized weak Pareto
equilibrium. Further, if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a generalized Pareto
equilibrium.
Proof. We shall prove this theorem by considering the following two cases:

Case I. Suppose that the set Fi = {x ∈ X : there exists ui ∈ Ai(x) such that Wi · U i(x̂i, ui) <

Wi · U i(x̂i, xi)} is empty for every i ∈ I. Then we have Wi · U i(x̂i, ui) ≥ Wi · U i(x̂i, xi) for every i ∈ I,
x ∈ X, and every ui ∈ Ai(x). By (v), we know that the one of the following conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such that

L \ K ⊆
⋃

u∈L intL(
⋂

i∈I((X \ Fi)
⋂

B−1
i (ui))

⋂
L) ⊆

⋃
u∈L intL(

⋂
i∈I B−1

i (ui)
⋂

L), where L :=
∏

i∈I LNi .
• there exists u0 ∈ X such that cl(X \

⋂
i∈I(B−1

i (u0i))) ⊆ cl(X \
⋂

i∈I((X \ Fi)
⋂

B−1
i (u0i))) ⊆ K.

By combining (i) and the fact that A−1
i (ui) is open in X for every ui ∈ Xi, we can see that all the

hypotheses of Theorem 3.1 are satisfied. Thus, by Theorem 3.1, there exists x̂ ∈ X such that x̂i ∈ Bi(x̂)
for every i ∈ I. Therefore, for each i ∈ I, x̂i ∈ Bi(x̂) and Wi · U i(x̂) ≤ Wi · U i( x̂̂i, xi) for every xi ∈ Ai(x̂),
which implies that x̂ ∈ X is a generalized weighted Nash equilibrium of the game Θ with respect to
the weight vector W = (Wi)i∈I . It follows from Lemma 4.1 that x̂ ∈ X is also a generalized weak Pareto
equilibrium of Θ, and a generalized Pareto equilibrium of Θ if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every
i ∈ I.

Case II. Suppose that the set Fi = {x ∈ X : there exists ui ∈ Ai(x) such that Wi · U i(x̂i, ui) <
Wi · U i(x̂i, xi)} is nonempty for every i ∈ I. Define a set-valued mapping Qi : X → 2Xi by

Qi(x) = {ui ∈ Xi : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)}, ∀i ∈ I and x ∈ X. (4.1)

By (4.1), we get
xi < Qi(x), ∀i ∈ I and x ∈ X. (4.2)

Further, for each i ∈ I, we define two set-valued mappings S i,Ti : X → 2Xi by setting, for each x ∈ X,

S i(x) =

{
Qi(x)

⋂
Ai(x), if x ∈ Fi,

Ai(x), if x ∈ X \ Fi,

Ti(x) =

{
Qi(x)

⋂
Bi(x), if x ∈ Fi,

Bi(x), if x ∈ X \ Fi.

It follows from (i), (ii), and the definitions of Fi and Qi that S i(x) ⊆ Ti(x), Ti(x) is Γi-convex, and
S i(x) , ∅ for every i ∈ I and every x ∈ X. For each i ∈ I and each ui ∈ Xi, we have

S −1
i (ui) =

{
x ∈ X : ui ∈ S i(x)

}
=

{
x ∈ Fi : ui ∈ Qi(x)

⋂
Ai(x)

}⋃{
x ∈ X \ Fi : ui ∈ Ai(x)

}
=

(
(X \ Fi)

⋂
A−1

i (ui)
)⋃(

Fi

⋂
Q−1

i (ui)
⋂

A−1
i (ui)

)
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=

(
(X \ Fi)

⋂
A−1

i (ui)
)⋃(

Q−1
i (ui)

⋂
A−1

i (ui)
)
.

Then by (iii), (iv), and the definition of Qi, we can see that S −1
i (ui) is open in X. Similarly, we get

T−1
i (ui) =

(
(X \ Fi)

⋂
B−1

i (ui)
)⋃(

Q−1
i (ui)

⋂
B−1

i (ui)
)
.

Next, we show that (iv) of Theorem 3.1 is fulfilled. Indeed, by (v) and the expression of T−1
i (ui), we

can see that one of the following conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such that

for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(⋂
i∈I

((X \ Fi)
⋂

B−1
i (ui))

⋂
L
)

⊆
⋃
u∈L

intL

(⋂
i∈I

T−1
i (ui)

⋂
L
)
.

• there exists u0 ∈ X such that

cl
(
X \

⋂
i∈I

T−1
i (u0i)

)
⊆ cl

(
X \

⋂
i∈I

((X \ Fi)
⋂

B−1
i (u0i))

)
⊆ K.

Thus, we can see that all the conditions of Theorem 3.1 are satisfied. Therefore, it follows from
Theorem 3.1 that there exists x̂ ∈ X such that x̂i ∈ Ti(x̂) for every i ∈ I. If x̂i ∈ Fi for some i ∈ I, then
it follows from the definition of Ti that x̂i ∈ Qi(x̂)

⋂
Bi(x̂). Hence, x̂i ∈ Qi(x̂), which contradicts (4.2).

Therefore, we have x̂i ∈ X\Fi for every i ∈ I. By the definitions of Qi, Fi, and Ti, we can deduce that for
each i ∈ I, x̂i ∈ Bi(x̂) and Qi(x̂)∩Ai(x̂) = ∅, that is, for each i ∈ I, x̂i ∈ Bi(x̂) and Wi·U i(x̂) ≤ Wi·U i( x̂̂i, xi)
for every xi ∈ Ai(x̂), which implies that x̂ ∈ X is a generalized weighted Nash equilibrium of the game
Θ with respect to the weight vector W = (Wi)i∈I . By Lemma 4.1, one can see that x̂ ∈ X is also a
generalized weak Pareto equilibrium of Θ, and a generalized Pareto equilibrium of Θ if Wi ∈ intRki

+

with
∑ki

j=1 Wi, j = 1 for every i ∈ I. This completes the proof. �

Theorem 4.2. Let Θ = ((Xi; Γi),U i, Ai, Bi)i∈I be a constrained multiobjective game such that (X; Γ) :=
(
∏

i∈I Xi; Γ) is a compact abstract convex space defined as in Lemma 2.5, where I is a finite index set.
For each i ∈ I, the graph of Bi is closed in X × Xi and Ai is a continuous set-valued mapping such that
each Ai(x) is a Γi-convex subset of Xi. Assume that there exists a weight vector W = (W1, . . . ,Wn) with
Wi ∈ R

ki
+ \ {0} such that for each i ∈ I, the following conditions are satisfied:

(i) for each x ∈ X, ∅ , Ai(x) ⊆ Bi(x), and Bi(x) is Γi-convex;
(ii) for each ui ∈ Xi, B−1

i (ui) is open in X;
(iii) the function (x, u) 7→ Wi · U i(x̂i, ui) is jointly continuous on X × X;
(iv) for each x ∈ X, the function u 7→ Wi · U i(x̂i, ui) is quasi-convex on X.
If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a generalized weighted Nash equilibrium

x̂ ∈ X with respect to the weight vector W = (Wi)i∈I and hence it has a generalized weak Pareto
equilibrium. Further, if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a generalized Pareto
equilibrium.
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Proof. For each m ∈ N, define a set-valued mapping Tm : X → 2X as follows:

Tm(x) =
∏
i∈I

Bi(x)
⋂∏

i∈I

(
{ui ∈ Xi : Wi · U i(x̂i, ui) < minyi∈Ai(x)Wi · U i(x̂i, yi) +

1
m
}

)
, ∀x ∈ X.

Thus, we have Tm(x) =
∏

i∈I{ui ∈ Bi(x) : Wi · U i(x̂i, ui) < minyi∈Ai(x)Wi · U i(x̂i, yi) + 1
m } for every

x ∈ X. By (i) and (iv), we can see that Tm(x) is a nonempty Γ-convex subset of X for every x ∈ X. Note
that for each u ∈ X, we have

T−1
m (u) =

{
x ∈ X : u ∈ Tm(x)

}
=

{
x ∈ X : u ∈

∏
i∈I

{ui ∈ Bi(x) : Wi · U i(x̂i, ui) < minyi∈Ai(x)Wi · U i(x̂i, yi) +
1
m
}

}
=

{
x ∈ X : ui ∈ Bi(x) and Wi · U i(x̂i, ui) < minyi∈Ai(x)Wi · U i(x̂i, yi) +

1
m
, ∀i ∈ I

}
=

(⋂
i∈I

B−1
i (ui)

)⋂(⋂
i∈I

{x ∈ X : Wi · U i(x̂i, ui) < minyi∈Ai(x)Wi · U i(x̂i, yi) +
1
m
}

)
.

By (ii), (iii), and Lemma 4.2, we have that T−1
m (u) is open in X for every u ∈ X. Therefore, by

Theorem 3.2 with K = X and S = T , Tm has a fixed point x(m) ∈ X. Then it follows from the definition
of Tm that Wi ·U i(x̂i(m), xi(m)) < minyi∈Ai(x(m))Wi ·U i(x̂i(m), yi) + 1

m for every i ∈ I. Since X is compact,
we may assume that x(m)→ x̂ ∈ X without loss of generality. Since xi(m) ∈ Bi(x(m)) and the graph of
Bi is closed in X × Xi, we have x̂i ∈ Bi(x̂). By (iii) and Lemma 4.2 again, we have

Wi · U i( x̂̂i, x̂i) = lim
m→∞

Wi · U i(x̂i(m), xi(m))

≤ lim
m→∞

minyi∈Ai(x(m))Wi · U i(x̂i(m), yi)

= minyi∈Ai(x̂)Wi · U i( x̂̂i, yi)
≤ minyi∈Bi(x̂)Wi · U i( x̂̂i, yi).

Since x̂i ∈ Bi(x̂) for every i ∈ I, we have Wi · U i( x̂̂i, x̂i) = minyi∈Ai(x̂)Wi · U i( x̂̂i, yi), which implies
that x̂ ∈ X is a generalized weighted Nash equilibrium of the game Θ with respect to the weight vector
W = (Wi)i∈I . By Lemma 4.1, we can see that x̂ ∈ X is also a generalized weak Pareto equilibrium of
Θ, and a generalized Pareto equilibrium of Θ if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I. This
completes the proof.
Remark 4.4. Theorem 4.2 generalizes Theorem 2 due to Kim and Ding [41] in the following aspects:
(a) from topological vector spaces to abstract convex spaces without any linear and convex structure;
(b) the topological spaces in Theorem 4.2 need not possess Hausdorff property; (c) from constrained
multiobjective games with one constrained set-valued mapping to constrained multiobjective games
with two constrained set-valued mappings. Theorem 4.2 also generalizes Theorem 3.1 due to
Wang [42] and Theorem 1 due to Yu and Yuan [44] to abstract convex spaces under much weaker
assumptions.

If Ai = Bi for every i ∈ I, then by Theorems 4.1 and 4.2, we have the following two theorems.
Theorem 4.3. Let Θ = ((Xi; Γi),U i, Ai)i∈I be a constrained multiobjective game such that (X; Γ) :=
(
∏

i∈I Xi; Γ) is an abstract convex space defined as in Lemma 2.5 and K is a nonempty compact subset
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of X, where I is a finite index set. For each i ∈ I and each ui ∈ Xi, A−1
i (ui) is open in X. Assume that

there exists a weight vector W = (W1, . . . ,Wn) with Wi ∈ R
ki
+ \ {0} such that for each i ∈ I, the following

conditions are satisfied:
(i) for each x ∈ X, Ai(x) is nonempty Γi-convex;
(ii) for each x ∈ X, the set {ui ∈ Xi : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is Γi-convex;
(iii) for each ui ∈ Xi, the set {x ∈ X : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is open in X;
(iv) the set Fi = {x ∈ X : there exists ui ∈ Ai(x) such that Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is a

nonempty closed subset of X;
(v) one of the following conditions holds:
(v)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such

that L \ K ⊆
⋃

u∈L intL(
⋂

i∈I((X \ Fi)
⋂

A−1
i (ui))

⋂
L), where L :=

∏
i∈I LNi;

(v)2 there exists u0 ∈ X such that cl(X \
⋂

i∈I((X \ Fi)
⋂

A−1
i (u0i))) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a generalized weighted Nash equilibrium
x̂ ∈ X with respect to the weight vector W = (Wi)i∈I and hence it has a generalized weak Pareto
equilibrium. Further, if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a generalized Pareto
equilibrium.
Theorem 4.4. Let Θ = ((Xi; Γi),U i, Ai)i∈I be a constrained multiobjective game such that (X; Γ) :=
(
∏

i∈I Xi; Γ) is a compact abstract convex space defined as in Lemma 2.5, where I is a finite index
set. For each i ∈ I, the graph of Ai is closed in X × Xi. Assume that there exists a weight vector
W = (W1, . . . ,Wn) with Wi ∈ R

ki
+ \ {0} such that for each i ∈ I, the following conditions are satisfied:

(i) for each x ∈ X, Ai(x) is nonempty Γi-convex;
(ii) for each ui ∈ Xi, A−1

i (ui) is open in X;
(iii) the function (x, u) 7→ Wi · U i(x̂i, ui) is jointly continuous on X × X;
(iv) for each x ∈ X, the function u 7→ Wi · U i(x̂i, ui) is quasi-convex on X.
If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a generalized weighted Nash equilibrium

x̂ ∈ X with respect to the weight vector W = (Wi)i∈I and hence it has a generalized weak Pareto
equilibrium. Further, if Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a generalized Pareto
equilibrium.
Proof. It suffices to prove that Ai is a continuous set-valued mapping for every i ∈ I. In fact, since the
graph of Ai is closed in X × Xi and Xi is compact topological space for every i ∈ I, it follows from
Lemma 2.1 that Ai is an upper semicontinuous set-valued mapping. We note that each Ai has open
lower sections and so, Ai is a lower semicontinuous set-valued mapping. Therefore, Ai is a continuous
set-valued mapping. Let Ai = Bi for every i ∈ I. Then by Theorem 4.2, the conclusion of Theorem 4.4
holds. This completes the proof.

By setting Ai(x) ≡ Xi for every i ∈ I and every x ∈ X, we have the following corollaries from
Theorems 4.3-4.4. These two corollaries characterize the existence of weighted Nash equilibria for the
multiobjective games without constrained set-valued mappings.
Corollary 4.1. Let Θ = ((Xi; Γi),U i)i∈I be a multiobjective game such that (X; Γ) := (

∏
i∈I Xi; Γ) is an

abstract convex space defined as in Lemma 2.5 and K is a nonempty compact subset of X, where I is
a finite index set. Assume that there exists a weight vector W = (W1, . . . ,Wn) with Wi ∈ R

ki
+ \ {0} such

that for each i ∈ I, the following conditions are satisfied:
(i) for each x ∈ X, the set {ui ∈ Xi : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is Γi-convex;
(ii) for each ui ∈ Xi, the set {x ∈ X : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} is open in X;
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(iii) the set Fi = {x ∈ X : there exists ui ∈ Xi such that Wi ·U i(x̂i, ui) < Wi ·U i(x̂i, xi)} is closed in X;
(iv) one of the following conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such

that L \ K ⊆
⋃

u∈L intL(
⋂

i∈I(X \ Fi)
⋂

L), where L :=
∏

i∈I LNi;
(iv)2 there exists u0 ∈ X such that cl(X \

⋂
i∈I(X \ Fi)) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a weighted Nash equilibrium x̂ ∈ X with
respect to the weight vector W = (Wi)i∈I and hence it has a weak Pareto equilibrium. Further, if
Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a Pareto equilibrium.
Remark 4.5. If {(Xi; Γi)}i∈I is a family of abstract convex spaces such that Xi is a first-countable
topological space for every i ∈ I, then (iii) of Corollary 4.1 can be replaced with the following
condition:

(iii)′ for each i ∈ I, the graph of the set-valued mapping Qi : X → 2Xi defined by
Qi(x) = {ui ∈ Xi : Wi · U i(x̂i, ui) < Wi · U i(x̂i, xi)} for each x ∈ X, is closed in X × Xi and for each
compact subset Z ⊆ X, the set Qi(Z) is compact subset of Xi.

In fact, let i ∈ I be fixed. For each x ∈ cl({x ∈ X : Qi(x) , ∅}), since each Xi is a first-countable
topological space, it follows that X =

∏
i∈I Xi is a first-countable topological space. By Theorem 2.40

due to Aliprantis and Border [21], there exists a sequence {xn}n∈N ⊆ {x ∈ X : Qi(x) , ∅} such that
xn → x ∈ X. Thus, we have Qi(xn) , ∅ and thus, for every n ∈ N, there exists uin ∈ Xi such that
uin ∈ Qi(xn). Let L = {xn}n∈N ∪ {x}. Then by Theorem 2.38 due to Aliprantis and Border [21], L is
compact subset of X. By (iii)′, the set Qi(L) = ∪x∈LQi(x) is compact subset of Xi. Since
{uin}n∈N ⊆ Qi(L), it follows that {uin}n∈N has a convergent subnet with limit u∗i . Without loss of
generality, we may assume that uin → ui. Since the graph of Qi is closed, we have ui ∈ Qi(x), which
implies that

x ∈ {x ∈ X : Qi(x) , ∅}.

Therefore, the set {x ∈ X : Qi(x) , ∅} = {x ∈ X : there exists ui ∈ Xi such that Wi · U i(x̂i, ui) <
Wi · U i(x̂i, xi)} is closed in X.
Corollary 4.2. Let Θ = ((Xi; Γi),U i)i∈I be a multiobjective game such that (X; Γ) := (

∏
i∈I Xi; Γ) is a

compact abstract convex space defined as in Lemma 2.5, where I is a finite index set. Assume that there
exists a weight vector W = (W1, . . . ,Wn) with Wi ∈ R

ki
+ \ {0} such that for each i ∈ I, the following

conditions are satisfied:
(i) the function (x, u) 7→ Wi · U i(x̂i, ui) is jointly continuous on X × X;
(ii) for each x ∈ X, the function u 7→ Wi · U i(x̂i, ui) is quasi-convex on X.
If (X; Γ) satisfies 1X ∈ RC(X, X), then the game Θ has a weighted Nash equilibrium x̂ ∈ X with

respect to the weight vector W = (Wi)i∈I and hence it has a weak Pareto equilibrium. Further, if
Wi ∈ intRki

+ with
∑ki

j=1 Wi, j = 1 for every i ∈ I, then Θ has a Pareto equilibrium..
Remark 4.6. Corollary 4.2 is different from Corollary 4.1 in the following aspects: (a) the topological
spaces in Corollary 4.1 may be noncompact, while the topological spaces in Corollary 4.2 need to be
compact; (b) (i) and (ii) of Corollary 4.1 are respectively weaker than (i) and (ii) of Corollary 4.2; (c)
in order to guarantee the conclusion of Corollary 4.1 holds, the closeness condition of the set Fi and
the coercive condition, that is, (iii) and (iv) of Corollary 4.1 must be satisfied, but Corollary 4.2 does
not need theses conditions.
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5. Sets with abstract convex sections

In this section, by using Theorems 3.1 and 3.2, we establish some new nonempty intersection
theorems for sets with abstract convex sections. Furthermore, as applications of nonempty intersection
property for sets with abstract convex sections, we obtain an analytic alternative formulation and two
existence results of Nash equilibria for noncooperative games in noncompact abstract convex spaces.
Theorem 5.1. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let Pi and Qi be two subsets of X satisfying the following
conditions:

(i) for each x̂i ∈ X̂i, {yi ∈ Xi : (x̂i, yi) ∈ Pi} ⊆ {yi ∈ Xi : (x̂i, yi) ∈ Qi} and {yi ∈ Xi : (x̂i, yi) ∈ Qi} is
Γi-convex;

(ii) for each ui ∈ Xi, {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} is open in X̂i;
(iii) for each x̂i ∈ K̂i, {yi ∈ Xi : (x̂i, yi) ∈ Pi} , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Qi} × Xi))
⋂

L
)
;

(iv)2 there exists u0 = (u0i)i∈I ∈ X such that cl(X \
⋂

i∈I({x̂i ∈ X̂i : (x̂i, u0i) ∈ Qi} × Xi)) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then

⋂
i∈I Qi , ∅.

Proof. For each i ∈ I, let us define two set-valued mappings S i,Ti : X → 2Xi by S i(x) = {yi ∈

Xi : (x̂i, yi) ∈ Pi} and Ti(x) = {yi ∈ Xi : (x̂i, yi) ∈ Qi} for every x = (xi)i∈I ∈ X. Then by (i), we
have S i(x) ⊆ Ti(x) and Ti(x) is Γi-convex for every i ∈ I and every x ∈ X. For each i ∈ I and each
ui ∈ Xi, we have S −1

i (ui) = {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} × Xi which is an open subset of X by (ii) and
the definition of S i. For each i ∈ I, it follows from (iii) and the definition of S i that S i(x) , ∅ for
every x ∈ K. Finally, we show that (iv) of Theorem 3.1 is fulfilled. Indeed, by (iv) and the fact that
T−1

i (ui) = {x̂i ∈ X̂i : (x̂i, ui) ∈ Qi} × Xi, one can see that one of the following conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such that

for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Qi} × Xi))
⋂

L
)

⊆
⋃
u∈L

intL

(⋂
i∈I

T−1
i (ui)

⋂
L
)
.

• there exists u0 = (u0i)i∈I ∈ X such that

cl
(
X \

⋂
i∈I

T−1
i (u0i)

)
= cl(X \

⋂
i∈I

({x̂i ∈ X̂i : (x̂i, u0i) ∈ Qi} × Xi))

⊆ K.

Thus, we can see that all the conditions of Theorem 3.1 are satisfied. Therefore, it follows from
Theorem 3.1 that there exists x̂ ∈ X such that x̂i ∈ Ti(x̂) = {yi ∈ Xi : ( x̂̂i, yi) ∈ Qi} for every i ∈ I, that is,
x̂ = ( x̂̂i, x̂i) ∈ Qi for every i ∈ I and thus,

⋂
i∈I Qi , ∅. Our proof is complete. �
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Remark 5.1. Theorem 5.1 extends Theorem 7.1 in Park [18], Theorem 22 in Park [23], Theorem 4.15
in Bielawski [46], and Theorem 5.2 in Kirk et al. [47] to noncompact abstract convex spaces.
Theorem 5.2. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let Pi and Qi be two subsets of X satisfying the following
conditions:

(i) for each x̂i ∈ X̂i, Γ-co({yi ∈ Xi : (x̂i, yi) ∈ Pi}) ⊆ {yi ∈ Xi : (x̂i, yi) ∈ Qi};
(ii) for each ui ∈ Xi, {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} is open in X̂i;
(iii) for each x̂i ∈ K̂i, {yi ∈ Xi : (x̂i, yi) ∈ Pi} , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} × Xi))
⋂

L
)
;

(iv)2 there exists u0 = (u0i)i∈I ∈ X such that cl(X \
⋂

i∈I({x̂i ∈ X̂i : (x̂i, u0i) ∈ Pi} × Xi)) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then

⋂
i∈I Qi , ∅.

Proof. For each i ∈ I, we define two set-valued mappings S i, S̃ i : X → 2Xi by S i(x) = {yi ∈ Xi : (x̂i, yi) ∈
Pi} and S̃ i(x) = Γ-co({yi ∈ Xi : (x̂i, yi) ∈ Pi}) = Γ-co(S i(x)) for every x = (xi)i∈I ∈ X. It is obvious that
Γ-co(S i(x)) is Γi-convex for all i ∈ I and all x = (xi)i∈I ∈ X. From (ii) and the definition of S i, it follows
that S −1

i (ui) = {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} × Xi is an open subset of X for every i ∈ I and every ui ∈ Xi. Thus,
by Lemma 2.8, S̃ −1

i (ui) is also an open subset of X for every i ∈ I and every ui ∈ Xi. By (iii), we have
S̃ i(x) ⊇ S i(x) , ∅ for every i ∈ I and every x ∈ K. Since S −1

i (ui) = {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi}×Xi ⊆ S̃ −1
i (ui)

for every i ∈ I and every ui ∈ Xi, it follows from (iv) that that one of the following conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such that

for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} × Xi))
⋂

L
)

=
⋃
u∈L

intL

(⋂
i∈I

S −1
i (ui)

⋂
L
)

⊆
⋃
u∈L

intL

(⋂
i∈I

S̃ −1
i (ui)

⋂
L
)
.

• there exists u0 = (u0i)i∈I ∈ X such that

cl
(
X \

⋂
i∈I

S̃ −1
i (u0i)

)
⊆ cl

(
X \

⋂
i∈I

S −1
i (u0i)

)
= cl(X \

⋂
i∈I

({x̂i ∈ X̂i : (x̂i, u0i) ∈ Pi} × Xi))

⊆ K.

Thus, we can see that all the conditions of Theorem 3.1 with S i = Ti are satisfied. Therefore, we
know that there exists x̂ ∈ X such that x̂i ∈ S̃ i(x̂) = Γ-co(S i(x̂)) = Γ-co({yi ∈ Xi : ( x̂̂i, yi) ∈ Pi}) for every
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i ∈ I. For this x̂, by (i), we have x̂i ∈ Γ-co({yi ∈ Xi : ( x̂̂i, yi) ∈ Pi}) ⊆ {yi ∈ Xi : ( x̂̂i, yi) ∈ Qi} for every
i ∈ I, which implies that x̂ = ( x̂̂i, x̂i) ∈ Qi for every i ∈ I. Therefore, we get

⋂
i∈I Qi , ∅. This completes

the proof.
Remark 5.2. Except that the condition that the index set of Theorem 5.2 is finite is stronger than
the condition that the index set of Theorem 16 due to Fan [48] is arbitrary, Theorem 5.2 partially
generalizes Theorem 16 of Fan [48] in the following aspects: (a) from compact topological vector
spaces to noncompact abstract convex spaces without any linear and convex structure; (b) there is no
Hausdorff separation requirement for the abstract convex spaces involved Theorem 5.3. The topological
vector spaces in Theorem 16 of Fan [48] need to meet the Hausdorff separation requirement because
the continuous unity partition theory is used in the proof of this theorem; (c) even if we strengthen
the abstract convex spaces in Theorem 5.2 to be topological vector spaces, (iii) of Theorem 5.2 is still
weaker than the first half of (b) of Theorem 16 due to Fan [48].
Theorem 5.3. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let Pi and Qi be two subsets of X satisfying the following
conditions:

(i) for each x̂i ∈ X̂i, {yi ∈ Xi : (x̂i, yi) ∈ Pi} ⊆ Γ-co({yi ∈ Xi : (x̂i, yi) ∈ Qi});
(ii) for each ui ∈ Xi, {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} is open in X̂i;
(iii) for each x̂i ∈ K̂i, {yi ∈ Xi : (x̂i, yi) ∈ Pi} , ∅;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Qi} × Xi))
⋂

L
)
;

(iv)2 there exists u0 = (u0i)i∈I ∈ X such that cl(X \
⋂

i∈I({x̂i ∈ X̂i : (x̂i, u0i) ∈ Qi} × Xi)) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x̂ ∈ X such that x̂i ∈ Γ-co({yi ∈ Xi : ( x̂̂i, yi) ∈ Qi})

for every i ∈ I.
Proof. For each i ∈ I, define two set-valued mappings S i,Ti : X → 2Xi by S i(x) = {yi ∈ Xi : (x̂i, yi) ∈
Pi} and Ti(x) = {yi ∈ Xi : (x̂i, yi) ∈ Qi} for every x = (xi)i∈I ∈ X. Then it is easy to verify that S i and
Ti satisfy all the requirements of Theorem 3.2. Therefore, by Theorem 3.2, there exists x̂ ∈ X such that
x̂i ∈ Γ-co(Ti(x̂)) = Γ-co({yi ∈ Xi : ( x̂̂i, yi) ∈ Qi}) for every i ∈ I. This completes the proof. �

Remark 5.3. We can compare Theorem 5.3 and Theorem 2.3 obtained by Lan and Webb [2] from the
following aspects: (a) Theorem 5.3 is based on noncompact abstract convex spaces without any linear
and convex structure. The Hausdorffness of the abstract convex spaces involved Theorem 5.3 is
redundant. Theorem 2.3 due to by Lan and Webb [2] is established in the framework of Hausdorff
topological vector spaces; (b) Theorem 5.3 has two coercive conditions to be available, and
Theorem 2.3 obtained by Lan and Webb [2] has only one coercive condition; (c) there are two
families of subsets of X in Theorem 5.3. In Theorem 2.3 obtained by Lan and Webb [2], there is only
one family of subsets of X; (d) even the abstract convex spaces in Theorem 5.3 are strengthened to be
topological vector spaces, (iii) of Theorem 5.3 is weaker than (S 1) of Theorem 2.3 due to Lan and
Webb [2]; (e) Theorem 5.3 deals with nonempty intersection of finite number of sets with abstract
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convex sections, and Theorem 2.3 in Lan and Webb [2] concerns on nonempty intersection of
arbitrary number of sets with convex sections.
Theorem 5.4. Suppose that all the requirements of Theorem 5.3 are satisfied. For each i ∈ I, let Vi be
a subset of X such that for each x ∈ X, there is a subset I(x) of I such that Γ-co({yi ∈ Xi : (x̂i, yi) ∈
Qi}) ⊆ {yi ∈ Xi : (x̂i, yi) ∈ Vi} for every i ∈ I(x). Then there exists x̂ ∈ X such that

⋂
i∈I(x̂) Vi , ∅.

Proof. By Theorem 5.3, there exists x̂ ∈ X such that x̂i ∈ Γ-co({yi ∈ Xi : ( x̂̂i, yi) ∈ Qi}) for every i ∈ I.
Therefore, for this x̂, we have x̂i ∈ {yi ∈ Xi : ( x̂̂i, yi) ∈ Vi} for every i ∈ I(x̂), which implies that there
exists a point x̂ ∈ X such that

⋂
i∈I(x̂) Vi , ∅. This completes the proof.

Now, we present the following analytical formulation of Theorem 5.3.
Theorem 5.5. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let ξi, ρi, υi : X → R be three real-valued functions and
let ti be a real number satisfying the following conditions:

(i) for each x ∈ X, ξi(x) ≤ ρi(x) ≤ υi(x);
(ii) for each ui ∈ Xi, ξi(., ui) is lower semicontinuous on X̂i;
(iii) for each x̂i ∈ X̂i, υi(x̂i, .) is quasiconcave on Xi;
(iv) one of the following two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : ρi(x̂i, ui) > ti} × Xi))
⋂

L
)
;

(iv)2 there exists u0 = (u0i)i∈I ∈ X such that cl(X \
⋂

i∈I({x̂i ∈ X̂i : ρi(x̂i, u0i) > ti} × Xi)) ⊆ K.
If (X; Γ) satisfies 1X ∈ RC(X, X), then either there exist an i ∈ I and an x̂i ∈ K̂i such that ξi(x̂i, yi) ≤ ti

for every yi ∈ Xi or there exists x̂ ∈ X such that υi(x̂) > ti for every i ∈ I.
Proof. Suppose that for each i ∈ I and each x̂i ∈ K̂i, there is yi ∈ Xi satisfying ξi(x̂i, yi) > ti. For each
i ∈ I, we define Pi = {x ∈ X : ξi(x) > ti}, Qi = {x ∈ X : ρi(x) > ti}, and Vi = {x ∈ X : υi(x) > ti}. Then
by (i), for each i ∈ I and each x̂i ∈ X̂i, we have

{yi ∈ Xi : (x̂i, yi) ∈ Pi} ⊆ {yi ∈ Xi : (x̂i, yi) ∈ Qi}

⊆ Γ-co({yi ∈ Xi : (x̂i, yi) ∈ Qi}).

By (ii), it follows that the set {x̂i ∈ X̂i : (x̂i, ui) ∈ Pi} is an open subset of X̂i for every ui ∈ Xi. From the
beginning of the proof, we can see that {yi ∈ Xi : (x̂i, yi) ∈ Pi} , ∅ for all i ∈ I and all x̂i ∈ K̂i. By (iv),
one of the following two conditions holds:
• for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni such that

for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : ρi(x̂i, ui) > ti} × Xi))
⋂

L
)

=
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, ui) ∈ Qi} × Xi))
⋂

L
)
.
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• there exists u0 = (u0i)i∈I ∈ X such that

K ⊇ cl(X \
⋂
i∈I

({x̂i ∈ X̂i : ρi(x̂i, u0i) > ti} × Xi))

= cl(X \
⋂
i∈I

({x̂i ∈ X̂i : (x̂i, u0i) ∈ Qi} × Xi)).

Therefore, it follows from Theorem 5.3 that there exists there exists x̂ ∈ X such that x̂i ∈ Γ-co({yi ∈

Xi : ( x̂̂i, yi) ∈ Qi}) for every i ∈ I. By (iii) and the fact that ρi(x) ≤ υi(x) for every x ∈ X, we have
x̂ ∈

⋂
i∈I Vi, which implies that there exists x̂ ∈ X such that υi(x̂) > ti for every i ∈ I. The proof is

finished.
Remark 5.4. Theorem 5.5 generalizes Theorem 8.1 of Park [18] in the following two aspects: (a)
from compact abstract convex spaces to noncompact abstract convex spaces; (b) from two families of
real-valued functions to three families of real-valued functions.
Theorem 5.6. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

the abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let ξi, ρi, υi : X → R be three real-valued functions
satisfying the following conditions:

(i) for each x ∈ X, ξi(x) ≤ ρi(x) ≤ υi(x);
(ii) for each ui ∈ Xi, ξi(., ui) is lower semicontinuous on X̂i;
(iii) for each x̂i ∈ X̂i, υi(x̂i, .) is quasiconcave on Xi;
(iv) for each x̂i ∈ X̂i, ξi(x̂i, .) is bounded on Xi and for any ε > 0, suppose that one of the following

two conditions holds:
(iv)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : ρi(x̂i, ui) > sup
yi∈Xi

ξi(x̂i, yi) − ε} × Xi))
⋂

L
)
;

(iv)2 there exists u0 = (u0i)i∈I ∈ X such that

cl(X \
⋂
i∈I

({x̂i ∈ X̂i : ρi(x̂i, u0i) > sup
yi∈Xi

ξi(x̂i, yi) − ε} × Xi)) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x̂ε = (x̂ε
î
, x̂εi ) ∈ X such that

υi(x̂ε) > supyi∈Xi
ξi(x̂ε

î
, yi) − ε for every i ∈ I.

Proof. Set ti := supyi∈Xi
ξi(x̂i, yi) − ε ∈ R for all i ∈ I and all x̂i ∈ X̂i. Then it is easy to see that for each

i ∈ I and each x̂i ∈ X̂i, there exists yi ∈ Xi such that ξi(x̂i, yi) > ti. Thus, it follows from Theorem 5.5
that there exists x̂ε = (x̂ε

î
, x̂εi ) ∈ X such that υi(x̂ε) > ti = supyi∈Xi

ξi(x̂ε
î
, yi) − ε for every i ∈ I. This

completes the proof.
Remark 5.5. Under the conditions of Theorem 9.1 due to Park [18], only the conclusion similar to that
of Theorem 5.6 can be obtained. This is because x̂ ∈ X varies with ε and the conditions of Theorem 9.1
in Park [18] are not sufficient to guarantee the continuity of the function x̂i 7→ maxyi∈Xi fi(x̂i, yi). Thus,
from this perspective, Theorem 5.6 generalizes Theorem 9.1 of Park [18] in the following aspects: (a)
from compact abstract convex spaces to noncompact abstract convex spaces; (b) from two families of
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real-valued functions to three families of real-valued functions; (c) the condition that ξi(x̂i, .) is bounded
on Xi for every x̂i ∈ X̂i, is weaker than (9.2) of Theorem 9.1 due to Park [18].

From Theorem 5.6 for ξi = ρi = υi, we can derive the following existence theorem of ε-Nash
equilibria for noncooperative games in noncompact abstract convex spaces.
Theorem 5.7. Let {(Xi; Γi)}i∈I be a family of abstract convex spaces such that (X; Γ) := (

∏
i∈I Xi; Γ) is

an abstract convex space defined as in Lemma 2.5 and K =
∏

i∈I Ki is a nonempty compact subset of
X, where I is a finite index set. For each i ∈ I, let ξi : X → R be a real-valued function satisfying the
following conditions:

(i) for each ui ∈ Xi, ξi(., ui) is lower semicontinuous on X̂i;
(ii) for each x̂i ∈ X̂i, ξi(x̂i, .) is quasiconcave on Xi;
(iii) for each x̂i ∈ X̂i, ξi(x̂i, .) is bounded on Xi and for any ε > 0, suppose that one of the following

two conditions holds:
(iii)1 for each Ni ∈ 〈Xi〉, there exists a compact Γi-convex subset LNi of (Xi; Γi) containing Ni, such

that for L :=
∏

i∈I LNi , we have

L \ K ⊆
⋃
u∈L

intL

(
(
⋂
i∈I

({x̂i ∈ X̂i : ξi(x̂i, ui) > sup
yi∈Xi

ξi(x̂i, yi) − ε} × Xi))
⋂

L
)
;

(iii)2 there exists u0 = (u0i)i∈I ∈ X such that

cl(X \
⋂
i∈I

({x̂i ∈ X̂i : ξi(x̂i, u0i) > sup
yi∈Xi

ξi(x̂i, yi) − ε} × Xi)) ⊆ K.

If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x̂ε = (x̂ε
î
, x̂εi ) ∈ X such that

ξi(x̂ε) > supyi∈Xi
ξi(x̂ε

î
, yi) − ε for every i ∈ I.

By using a special case of Theorem 5.7, we have the following existence theorem of Nash equilibria
for noncooperative games in compact abstract convex spaces.
Corollary 5.1. Let {(Xi; Γi)}i∈I be a family of compact abstract convex spaces such that (X; Γ) :=
(
∏

i∈I Xi; Γ) is an abstract convex space defined as in Lemma 2.5, where I is a finite index set. For each
i ∈ I, let ξi : X → R be a real-valued function such that:

(i) ξi is upper semicontinuous on X;
(ii) for each ui ∈ Xi, ξi(., ui) is lower semicontinuous on X̂i;
(iii) for each x̂i ∈ X̂i, ξi(x̂i, .) is quasiconcave on Xi.
If (X; Γ) satisfies 1X ∈ RC(X, X), then there exists x̂ ∈ X such that ξi(x̂) = maxyi∈Xi ξi( x̂̂i, yi) for every

i ∈ I.
Proof. Let ε > 0. Then by Theorem 5.7 with each Xi being a compact abstract convex space, it follows
there exists x̂ε = (x̂ε

î
, x̂εi ) ∈ X such that ξi(x̂ε) > maxyi∈Xi ξi(x̂ε

î
, yi) − ε. Let ε → 0. By the compactness

of X and {x̂ε} ⊆ X, we assume that x̂ε → x̂ without loss of generality. By (i) and (ii), it follows from
Lemma 2 of Yu and Yuan [44] that the function x̂i 7→ maxyi∈Xi ξi(x̂i, yi) is continuous. Immediately using
(i) again, we get ξi( x̂̂i, x̂i) ≥ limε→0 ξi(x̂ε

î
, x̂εi ) ≥ limε→0 maxyi∈Xi ξi(x̂ε

î
, yi) = maxyi∈Xi ξi( x̂̂i, yi). Thus, we

have ξi(x̂) = maxyi∈Xi ξi( x̂̂i, yi) for every i ∈ I. This completes the proof.

6. Generalized weak implicit inclusion problems

In this section, we use Theorem 3.4 to establish some existence results of solutions for generalized
weak implicit inclusion problems in noncompact abstract convex spaces. We first formulate the
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problems in the following.
Let (X; Γ1) and (Y; Γ2) be two abstract convex spaces and let Z be a nonempty set. Let A, B : X → 2X,

F : X → 2Y , G : X → 2Z, and H : Y × Z → 2X be five set-valued mappings. We consider the
F-generalized weak implicit inclusion problem denoted by (FGWIIP): find (x̂, ŷ) ∈ X × Y such that
x̂ ∈ A(x̂), ŷ ∈ F(x̂), and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(̂y, z) and the
S-generalized weak implicit inclusion problem denoted by (SGWIIP): find (x̂, ŷ) ∈ X × Y such that
x̂ ∈ A(x̂), ŷ ∈ F(x̂), and u ∈ H(̂y, z) for every u ∈ B(x̂) and every z ∈ G(x̂). If X = Z and G is the
identity mapping on X, then (FGWIIP) coincides with (SGWIIP).

Note that if X = Y and F is the identity mapping on X, then (FGWIIP) reduces to the generalized
weak implicit inclusion problem denoted by (GWIIP): find x̂ ∈ X such that x̂ ∈ A(x̂) and for each
u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(x̂, z). If A(x) = B(x) ≡ X for every x ∈ X, then
(GWIIP) reduces to the generalized implicit inclusion problem denoted by (GIIP): find x̂ ∈ X such
that for each u ∈ X, there exists z ∈ G(x̂): u ∈ H(x̂, z), which was discussed by Wang and Huang
[49] under the condition that X and Z are two Hausdorff topological vector spaces. If X = Z and G is
the identity mapping on X, then (GWIIP) reduces to the extended weak inclusion problem denoted by
(EWIP): find x̂ ∈ X such that x̂ ∈ A(x̂) and B(x̂) ⊆ H(x̂, x̂). If A(x) = B(x) ≡ X for every x ∈ X, then
(EWIP) reduces to the extended inclusion problem (for short, EIP): find x̂ ∈ X such that X ⊆ H(x̂, x̂),
which was studied by Fang and Huang [50] under the condition that X is a real Banach space. If X = Z,
G is the identity mapping on X, and H(x, z) = H(x) for every (x, z) ∈ X × X, then (GIIP) reduces to
the inclusion problem denoted by (IP): find x̂ ∈ X such that X ⊆ H(x̂), which was investigated by Di
Bella [51] when X is a Hausdorff topological vector space.

From these special cases, we can see that (FGWIIP) extends and unifies the corresponding models
in [49–51].
Definition 6.1. Let (X; Γ) be an abstract convex space and let Y and Z be two nonempty sets. Let
F : X → 2Y and G : X → 2Z be two set-valued mappings. A set-valued mapping H : Y × Z → 2X

is said to be Γ-quasiconvex-like with respect to F and G if for each N = {u0, u1, . . . , un} ∈ 〈X〉, each
x ∈ Γ-co(N), and for each y ∈ F(x), there exist j ∈ {0, 1, . . . , n} and z ∈ G(x) such that u j ∈ H(y, z).
Definition 6.2. Let (X; Γ) be an abstract convex space and let Y and Z be two nonempty sets. Let
F : X → 2Y and G : X → 2Z be two set-valued mappings. A set-valued mapping H : Y × Z → 2X is
said to be strong Γ-quasiconvex-like with respect to F and G if for each N = {u0, u1, . . . , un} ∈ 〈X〉 and
for each x ∈ Γ-co(N) and each y ∈ F(x), there exists j ∈ {0, 1, . . . , n} such that u j ∈ H(y, z) for every
z ∈ G(x).
Definition 6.3. Let (X; Γ) be an abstract convex space, Y be a topological vector space, C ⊆ Y be
a nonempty convex cone, and η : X × X → X be a single-valued mapping. A set-valued mapping
F : X → 2Y is said to be C-Γ-quasiconvex in the second argument of η if for each x ∈ X, each
A = {y0, y1, . . . , yn} ∈ 〈X〉 and each z ∈ Γ(A), there exists j ∈ {0, 1, . . . , n} such that F(η(x, z)) ⊆
F(η(x, y j)) −C.
Theorem 6.1. Let (X; Γ1) and (Y; Γ2) be two abstract convex spaces such that (X × Y; Γ1 × Γ2) is an
abstract convex space defined as in Lemma 2.5. Let K be a nonempty compact subset of X × Y and Z
be a nonempty set. Let A, B : X → 2X, F : X → 2Y , G : X → 2Z, and H : Y ×Z → 2X be five set-valued
mappings satisfying

(i) for each x ∈ X, B(x) ⊆ A(x);
(ii) B and F have nonempty Γ1-convex and Γ2-convex values and open lower sections;
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(iii) the set F = {(x, y) ∈ X × Y : x ∈ A(x) and y ∈ F(x)} is closed in X × Y;
(iv) for each u ∈ X, the set {(x, y) ∈ X × Y : u < H(y, z) for every z ∈ G(x)} is open in X × Y;
(v) for each x ∈ X and each y ∈ F(x), x < Γ1-co({u ∈ X : u < H(y, z) for every z ∈ G(x)});
(vi) one of the following conditions holds:
(vi)1 for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing

N0 and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 and for
each (x, y) ∈ L \ K, there exists (u, v) ∈ L such that u ∈ B(x), v ∈ F(x), and u < H(y, z) for every
z ∈ G(x);

(vi)2 there exists (u0, v0) ∈ X ×Y such that for each (x, y) ∈ X ×Y \K, one has u0 ∈ B(x), v0 ∈ F(x),
and u0 < H(y, z) for every z ∈ G(x).

If (X × Y; Γ1 × Γ2) satisfies 1X×Y ∈ RC(X × Y, X × Y), then (FGWIIP) is solvable, that is, there
exists (x̂, ŷ) ∈ K such that x̂ ∈ A(x̂), ŷ ∈ F(x̂), and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which
u ∈ H(̂y, z).
Proof. By (ii), B has nonempty Γ1-convex values and open lower sections. Let π(K) denotes the
projection of K onto X. Then it is clear that π(K) is a compact subset of X. For each N0 ×N1 ∈ 〈X ×Y〉,
it follows from (vi)1 that there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing N0 and a
compact Γ2-convex subset LN1 of (Y; Γ2) containing N1. Let x ∈ LN0 \ π(K) and y ∈ LN1 be given
arbitrarily. Then we have (x, y) ∈ L \ K. By (vi)1 again, for each x ∈ LN0 \ π(K), there exists u ∈ LN0

such that u ∈ B(x), which implies that LN0 \ π(K) ⊆
⋃

u∈LN0
(B−1(u)

⋂
LN0). Similarly, let x ∈ X \ π(K)

and y ∈ Y be any given. Then we have (x, y) ∈ X × Y \ K and thus, by (vi)2, there exists u0 ∈ X such
that for each x ∈ X \π(K), we have u0 ∈ B(x), which implies that X \B−1(u0) ⊆ π(K). Therefore, all the
conditions of Corollary 3.1 with S = T are fulfilled and thus, it follows that there exists x0 ∈ X such
that x0 ∈ B(x0) ⊆ A(x0). Then we have x0 × F(x0) ⊆ F and hence, the set F is nonempty.

Define a set-valued mapping T : X × Y → 2X×Y by setting, for each (x, y) ∈ X × Y ,

T (x, y) =

{
(B(x)

⋂
J(x, y)) × F(x), if (x, y) ∈ F,

B(x) × F(x), if (x, y) ∈ X × Y \ F,

where J : X × Y → 2X is defined by J(x, y) = {u ∈ X : u < H(y, z) for every z ∈ G(x)} for every
(x, y) ∈ X × Y . For each (u, v) ∈ X × Y , we have

T−1(u, v) =

(
(X × Y \ F)

⋂
(B−1(u) × Y)

⋂
(F−1(v) × Y)

)
⋃ (

J−1(u)
⋂

(B−1(u) × Y)
⋂

(F−1(v) × Y)
)
.

Since J−1(u) = {(x, y) ∈ X × Y : u < H(y, z) for every z ∈ G(x)} for every u ∈ X, it follows from
(iv) that J−1(u) is open in X × Y . By (ii) and (iii), one can see that T−1(u, v) is open in X × Y for every
(u, v) ∈ X × Y . By (v) and the definition of J, we have

(x, y) < Γ1-co(B(x)
⋂

J(x, y)) × F(x) = Γ1-co(B(x)
⋂

J(x, y)) × Γ2-co(F(x)), ∀(x, y) ∈ F.

Since Γ1-co(B(x)
⋂

J(x, y)) × Γ2-co(F(x)) is a Γ1 × Γ2-convex subset, (B(x)
⋂

J(x, y)) × F(x) ⊆
Γ1-co(B(x)

⋂
J(x, y))×Γ2-co(F(x)), and Γ1×Γ2-co((B(x)

⋂
J(x, y))×F(x)) is the smallest Γ1×Γ2-convex

subset containing (B(x)
⋂

J(x, y)) × F(x), it follows that (x, y) < Γ1 × Γ2-co((B(x)
⋂

J(x, y)) × F(x))
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for every (x, y) ∈ F. It is easy to see that (x, y) < B(x) × F(x) = Γ1 × Γ2-co(B(x) × F(x)) for every
(x, y) ∈ X × Y \ F. Therefore, in both two cases, we have (x, y) < Γ1 × Γ2-co(T (x, y)) for every
(x, y) ∈ X × Y . By (vi), we know that one of the following two conditions holds:
• for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing N0

and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 , we have
L \ K ⊆

⋃
(u,v)∈L T−1(u, v).

• there exists (u0, v0) ∈ X × Y such that X × Y \ T−1(u0, v0) ⊆ K.
Thus, by Theorem 3.4 and Remark 3.4, there exists (x̂, ŷ) ∈ K such that T (x̂, ŷ) = ∅. Since B and F have
nonempty values, we can conclude that (x̂, ŷ) ∈ F. Thus, x̂ ∈ A(x̂), ŷ ∈ F(x̂), and B(x̂)

⋂
J(x̂, ŷ) = ∅.

Therefore, for each u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(̂y, z). This completes the proof.
Remark 6.1. (1) (v) of Theorem 6.1 can be replaced by the following stronger condition:

(v)′ H is Γ1-quasiconvex-like with respect to F and G.
In fact, suppose to the contrary that there exist x ∈ X and y ∈ F(x) such that

x ∈ Γ1-co({u ∈ X : u < H(y, z) for every z ∈ G(x)}). Then by Lemma 2.7, there exists
{u0, u1, . . . , un} ∈ 〈{u ∈ X : u < H(y, z) for every z ∈ G(x)}〉 such that x ∈ Γ1-co({u0, u1, . . . , un}). By
(v)′, there exists j ∈ {0, 1, . . . , n} and z ∈ G(x) such that u j ∈ H(y, z), which contradicts that
u j < H(y, z) for every z ∈ G(x). Therefore, (v)′ implies (v) of Theorem 6.1.

(2) the following two conditions imply that (v)′ holds.
(a) for each x ∈ X and each y ∈ F(x), the set {u ∈ X : u < H(y, z) for every z ∈ G(x)} is Γ1-convex.
(b) for each x ∈ X and each y ∈ F(x), there exists z ∈ G(x) such that x ∈ H(y, z).
Indeed, by way of contradiction, suppose that for some N = {u0, u1, . . . , un} ∈ 〈X〉, some

x ∈ Γ-co(N), and for some y ∈ F(x), u j < H(y, z) for every j ∈ {0, 1, . . . , n} and every z ∈ G(x). By (a),
we have x < H(y, z), which contradicts (b).

(3) If we assume that X has Hausdorff property and Z is a topological space, then (iv) of
Theorem 6.1 can be replaced by the following condition:

(iv)′ G and H are two upper semicontinuous set-valued mappings with compact values.
In fact, it suffices to prove that the set {(x, y) ∈ X × Y : there exists z ∈ G(x) such that u ∈ H(y, z)} is

closed in X × Y for every u ∈ X. Let {(xα, yα)} ⊆ {(x, y) ∈ X × Y : there exists z ∈ G(x) such that u ∈
H(y, z)} be an arbitrary net such that (xα, yα) → (x0, y0). Then for each α, there exists zα ∈ G(xα) such
that u ∈ H(yα, zα). Since G is an upper semicontinuous set-valued mapping with compact values, it
follows from Lemma 2.4 that there exist z0 ∈ G(x0) and a subnet {zβ} of {zα} such that zβ → z0. Since
H is an upper semicontinuous set-valued mapping with compact values, it follows from Lemma 2.3
that H is closed. In addition, for each β, we have u ∈ H(yβ, zβ) and (yβ, zβ)→ (y0, z0), so, u ∈ H(y0, z0).
Therefore, (x0, y0) ∈ {(x, y) ∈ X × Y : there exists z ∈ G(x) such that u ∈ H(y, z)}, which implies that
the set {(x, y) ∈ X × Y : there exists z ∈ G(x) such that u ∈ H(y, z)} is closed in X × Y for every u ∈ X
and thus, the set {(x, y) ∈ X × Y : u < H(y, z) for every z ∈ G(x)} is open in X × Y for every u ∈ X.

By using the similar arguments as in Theorem 6.1, we have the following existence result of
solutions for (GWIIP). We omit the proof.
Theorem 6.2. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and Z
be a nonempty set. Let A, B : X → 2X, G : X → 2Z, and H : X × Z → 2X be four set-valued mappings
satisfying

(i) for each x ∈ X, B(x) ⊆ A(x);
(ii) B has nonempty Γ-convex values and open lower sections;
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(iii) the set F = {x ∈ X : x ∈ A(x)} is closed in X;
(iv) for each u ∈ X, the set {x ∈ X : u < H(x, z) for every z ∈ G(x)} is open in X;
(v) for each x ∈ X, x < Γ-co({u ∈ X : u < H(x, z) for every z ∈ G(x)});
(vi) one of the following conditions holds:
(vi)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and u < H(x, z) for every z ∈ G(x);
(vi)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 ∈ B(x) and u0 < H(x, z) for every

z ∈ G(x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (GWIIP) is solvable, that is, there exists x̂ ∈ K such that

x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(x̂, z).
Remark 6.2. Theorem 6.2 generalizes Theorem 3.1 of Wang and Huang [49] in the following
aspects: (a) from noncompact Hausdorff topological vector spaces to noncompact abstract convex
spaces without any linear and convex structure. In fact, for X in Theorem 3.1 of Wang and
Huang [49], let ΓA = co(A) for every A ∈ 〈X〉, where co(A) denotes the convex hull of A. Then (X; Γ)
forms an abstract convex space. Further, we can prove that 1X ∈ RC(X, X) (for details, see the proof of
the following Theorem 6.3); (b) from two set-valued mappings to four set-valued mappings; (c) from
one coercivity condition to two alternative coercivity conditions. And K in Theorem 6.2 only needs to
be compact, while D in Theorem 3.1 of Wang and Huang [49] needs to be compact convex; (d) (v) of
Theorem 6.2 is weaker than (i) and (ii) of Theorem 3.1 due to Wang and Huang [49]. In such an
abstract convex space perspective, it is easy to see that (i) and (ii) of Theorem 3.1 due to Wang and
Huang [49] can deduce (v) of Theorem 6.2; (e) concerns on the more general set Z without any
topological and linear structure instead of the nonempty set Y in Theorem 3.1 of Wang and
Huang [49], which is a subset of a Hausdorff topological vector space. In addition, the proof of
Theorem 6.2 originates from the existence of maximal elements in noncompact abstract convex
spaces, while Theorem 3.1 of Wang and Huang [49] is proved based on the famous FKKM theorem.
Therefore, the proof method of Theorem 6.2 is different from that of Theorem 3.1 of Wang and
Huang [49].

In Theorem 6.2, if X is a Banach space, then the compactness of LN0 can be weakened to weak
compactness.
Theorem 6.3. Let X be a real Banach space, K be a nonempty weak compact subset of X, and Z be
a nonempty set. Let A, B : X → 2X, G : X → 2Z, and H : X × Z → 2X be four set-valued mappings
satisfying

(i) for each x ∈ X, B(x) ⊆ A(x);
(ii) B has nonempty convex values and weakly open lower sections;
(iii) the set F = {x ∈ X : x ∈ A(x)} is weakly closed in X;
(iv) for each u ∈ X, the set {x ∈ X : u < H(x, z) for every z ∈ G(x)} is weakly open in X;
(v) for each x ∈ X, x < co({u ∈ X : u < H(x, z) for every z ∈ G(x)});
(vi) one of the following conditions holds:
(vi)1 for each N0 ∈ 〈X〉, there exists a weak compact convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and u < H(x, z) for every z ∈ G(x);
(vi)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 ∈ B(x) and u0 < H(x, z) for every

z ∈ G(x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (GWIIP) is solvable, that is, there exists x̂ ∈ K such that
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x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(x̂, z).
Proof. Let Γ : 〈X〉 → 2X be a set-valued mapping defined by ΓA = co(A) for every A ∈ 〈X〉, where
co(A) denotes the convex hull of A. Endowing X with the weak topology, we can see that (X; Γ) forms
an abstract convex space and (i)-(vi) of Theorem 6.2 are satisfied. Now, we show that 1X ∈ RC(X, X).
In fact, let G : X → 2X is a KKM mapping with respect to the identity mapping 1X such that each G(x)
is weakly closed in X. Then for each A = {x0, x1, . . . , xn} ∈ 〈X〉, we have ΓA = co({x0, x1, . . . , xn}) ⊆⋃n

i=0 G(xi) and further, we can define a mapping σ : ∆n → co({x0, x1, . . . , xn}) by σ(t) =
∑n

i=0 tixi for
every t = (t0, t1, . . . , tn) ∈ ∆n with

∑n
i=0 ti = 1 and ti ≥ 0, where ∆n denotes the standard n-dimensional

simplex with vertices {e0, e1, . . . , en}. Considering the norm topology on co({x0, x1, . . . , xn}), we can
see that the continuity of σ can be guaranteed by the fact that ‖σ(t1) − σ(t2)‖ ≤

∑n
i=0 |ti1 − ti2|‖xi‖

for every t1 = (t01, t11, . . . , tn1) ∈ ∆n with
∑n

i=0 ti1 = 1, ti1 ≥ 0 and every t2 = (t02, t12, . . . , tn2) ∈
∆n with

∑n
i=0 ti2 = 1, ti2 ≥ 0. For every i ∈ {0, 1, . . . , n}, let Ei = σ−1(co({x0, x1, . . . , xn})

⋂
G(xi)).

Since each G(xi) is weakly closed in X, it follows that G(xi) is closed in X. Thus, we can see that
co({x0, x1, . . . , xn})

⋂
G(xi) is a closed subset of co({x0, x1, . . . , xn}). By the continuity of σ, each Ei

is closed in ∆n. Next, let us prove that co({ei : i ∈ I}) ⊆
⋃

i∈I Ei for every I = {i1, i2, . . . , ik} ∈

〈{0, 1, . . . , n}〉. In fact, let t =
∑k

j=1 ti jei j ∈ co({ei : i ∈ I}) be any given such that
∑k

j=1 ti j = 1 and
ti j ≥ 0. By the definition of σ and the hypothesis that G is a KKM mapping with respect to the identity
mapping 1X, we have σ(t) ∈ co{xi1 , xi2 , . . . , xik} ⊆

⋃k
j=1 G(xi j). Thus, there exists j ∈ {1, 2, . . . , k} such

that σ(t) ∈ co({x0, x1, . . . , xn})
⋂

G(xi j) and consequently, t ∈ Ei j . By applying the classical KKM
principle to the family {Ei}

n
i=0, there exists t0 ∈ co({e0, e1, . . . , en}) such that t0 ∈

⋂n
i=0 Ei and so, σ(t0) ∈⋂n

i=0 G(xi), which implies that the family {G(x) : x ∈ X} has the finite intersection property. Therefore,
as a consequence of Theorem 6.2, (GWIIP) is solvable, that is, there exists x̂ ∈ K such that x̂ ∈ A(x̂)
and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which u ∈ H(x̂, z). This completes the proof.

In Theorem 6.2, if A(x) = B(x) ≡ X for every x ∈ X, then we have the following existence result of
solutions for (GIIP).
Theorem 6.4. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and Z
be a nonempty set. Let G : X → 2Z and H : X × Z → 2X be two set-valued mappings satisfying

(i) for each u ∈ X, the set {x ∈ X : u < H(x, z) for every z ∈ G(x)} is open in X;
(ii) for each x ∈ X, x < Γ-co({u ∈ X : u < H(x, z) for every z ∈ G(x)});
(iii) one of the following conditions holds:
(iii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u < H(x, z) for every z ∈ G(x);
(iii)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 < H(x, z) for every z ∈ G(x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (GIIP) is solvable, that is, there exists x̂ ∈ K such that for

each u ∈ X, there exists z ∈ G(x̂) for which u ∈ H(x̂, z).
In Theorem 6.2, if X = Z and G is the identity mapping on X, then we obtain the following existence

theorem of solutions for (EWIP).
Theorem 6.4. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and let
A, B : X → 2X, and H : X × X → 2X be three set-valued mappings satisfying

(i) for each x ∈ X, B(x) ⊆ A(x);
(ii) B has nonempty Γ-convex values and open lower sections;
(iii) the set F = {x ∈ X : x ∈ A(x)} is closed in X;
(iv) for each u ∈ X, the set {x ∈ X : u < H(x, x)} is open in X;
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(v) for each x ∈ X, x < Γ-co({u ∈ X : u < H(x, x)});
(vi) one of the following conditions holds:
(vi)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and u < H(x, x);
(vi)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 ∈ B(x) and u0 < H(x, x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (EWIP) is solvable, that is, there exists x̂ ∈ K such that

x̂ ∈ A(x̂) and B(x̂) ⊆ H(x̂, x̂).
In Theorem 6.4, by setting A(x) = B(x) ≡ X for every x ∈ X, we have the following existence result

of solutions for (EIP).
Corollary 6.1. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and let
H : X × X → 2X be a set-valued mapping satisfying

(i) for each u ∈ X, the set {x ∈ X : u < H(x, x)} is open in X;
(ii) for each x ∈ X, x < Γ-co({u ∈ X : u < H(x, x)});
(iii) one of the following conditions holds:
(iii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u < H(x, x);
(iii)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 < H(x, x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (EIP) is solvable, that is, there exists x̂ ∈ K such that

X ⊆ H(x̂, x̂).
Remark 6.3. (1) Corollary 6.1 generalizes Theorem 3.4 of Wang and Huang [49] in the following
aspects: (a) from noncompact Hausdorff topological vector spaces to noncompact abstract convex
spaces without any linear and convex structure; (b) from one coercivity condition to two alternative
coercivity conditions; (c) (ii) of Corollary 6.1 is weaker than (i) and (ii) of Theorem 3.4 due to Wang
and Huang [49]. In addition, the proof of Corollary 6.1 is different from that of Theorem 3.4 due to
Wang and Huang [49]. In fact, Corollary 6.1 is proved based on the existence of maximal elements in
noncompact abstract convex spaces, while Theorem 3.4 of Wang and Huang [49] is proved using the
famous FKKM theorem.

(2) Corollary 6.1 is different from Theorem 2.3 of Fang and Huang [50] in the following two ways:
(a) X needs not be a Banach space; (b) the proof technique is different. Corollary 6.1 is established
based on the existence of maximal elements in noncompact abstract convex spaces, while the proof
of Theorem 2.3 of Fang and Huang [50] is proved by using the Kakutani-Fan-Glicksberg fixed point
theorem.

By Corollary 6.1, we have the following corollary which is an existence result of solutions for (IP).
Corollary 6.2. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and let
H : X → 2X be a set-valued mapping satisfying

(i) for each u ∈ X, the set {x ∈ X : u < H(x)} is open in X;
(ii) for each x ∈ X, x < Γ-co({u ∈ X : u < H(x)});
(iii) one of the following conditions holds:
(iii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u < H(x);
(iii)2 there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 < H(x).
If (X; Γ) satisfies 1X ∈ RC(X, X), then (IP) is solvable, that is, there exists x̂ ∈ K such that X ⊆ H(x̂).

Proof. Define a set-valued mapping H̃ : X × X → 2X by H̃(x, z) = H(x) for every (x, z) ∈ X × X. Then

AIMS Mathematics Volume 6, Issue 11, 12422–12459.



12451

we can see that all the conditions of Corollary 6.1 are fulfilled. Thus, it follows from Corollary 6.1 that
there exists x̂ ∈ K such that X ⊆ H̃(x̂, x̂) = H(x̂), that is, (IP) is solvable. This completes the proof.

Now, as applications of Theorem 6.2, we have the following existence theorems of solutions for
generalized set-valued implicit Stampacchia-type vector equilibrium problems and generalized set-
valued implicit weak vector equilibrium problems in the framework of noncompact abstract convex
spaces.
Theorem 6.5. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, Y be a
topological vector space, and Z be a nonempty set. Let A, B : X → 2X, C : X → 2Y , G : X → 2Z, and
F : X × Z × X → 2Y be five set-valued mappings satisfying

(i) for each x ∈ X, C(x) is a convex cone;
(ii) for each x ∈ X, B(x) ⊆ A(x);
(iii) B has nonempty Γ-convex values and open lower sections;
(iv) the set F = {x ∈ X : x ∈ A(x)} is closed in X;
(v) for each u ∈ X, the set {x ∈ X : F(x, z, u) ⊆ −C(x) \ {0} for every z ∈ G(x)} is open in X;
(vi) for each x ∈ X, x < Γ-co({u ∈ X : F(x, z, u) ⊆ −C(x) \ {0} for every z ∈ G(x)});
(vii) one of the following conditions holds:
(vii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and F(x, z, u) ⊆ −C(x) \ {0} for every
z ∈ G(x);

(vii)2 there exists u0 ∈ X such that for each x ∈ X\K, one has u0 ∈ B(x) and F(x, z, u0) ⊆ −C(x)\{0}
for every z ∈ G(x).

If (X; Γ) satisfies 1X ∈ RC(X, X), then the generalized set-valued implicit Stampacchia-type vector
equilibrium problem is solvable, that is, there exists x̂ ∈ K such that x̂ ∈ A(x̂) and for each u ∈ B(x̂),
there exists z ∈ G(x̂) for which F(x̂, z, u) * −C(x̂) \ {0}.
Proof. Define a set-valued mapping H : X × Z → 2X by H(x, z) = {u ∈ X : F(x, z, u) * −C(x) \ {0}}
for every (x, z) ∈ X ×Z. Then it is easy to see that all the conditions of Theorem 6.2 are satisfied. Thus,
by Theorem 6.2, there exists x̂ ∈ K such that x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists z ∈ G(x̂) for
which u ∈ H(x̂, z), that is, there exists x̂ ∈ K such that x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists
z ∈ G(x̂) for which F(x̂, z, u) * −C(x̂) \ {0}. This completes the proof.
Remark 6.4. Theorem 6.5 generalizes Theorem 4.6 of Wang and Huang [49] in the following aspects:
(a) from three set-valued mappings to five set-valued mappings; (b) from one coercivity condition to
two alternative coercivity conditions. And the K in Theorem 6.5 only needs to be compact, while the D
in Theorem 4.6 of Wang and Huang [49] needs to be compact convex; (c) (v) of Theorem 6.5 is weaker
than (ii) and (iii) of Theorem 4.6 due to Wang and Huang [49]; (d) concerns on the more general set
Z without any topological and linear structure instead of the nonempty set Y in Theorem 4.6 of Wang
and Huang [49], which is a subset of a Hausdorff topological vector space. In addition, the proof of
Theorem 6.5 is based on the existence of maximal elements in noncompact abstract convex spaces,
while Theorem 4.6 of Wang and Huang [49] is proved using the famous FKKM theorem. Therefore,
the proof technique of Theorem 6.5 is different from that of Theorem 4.6 of Wang and Huang [49].
Theorem 6.6. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, and Y
be a topological vector space. Let A, B : X → 2X, C : X → 2Y , and F : X × X → 2Y be four set-valued
mappings satisfying

(i) for each x ∈ X, C(x) is a convex cone;
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(ii) for each x ∈ X, B(x) ⊆ A(x);
(iii) B has nonempty Γ-convex values and open lower sections;
(iv) the set F = {x ∈ X : x ∈ A(x)} is closed in X;
(v) for each u ∈ X, the set {x ∈ X : F(x, u) ⊆ −C(x) \ {0}} is open in X;
(vi) for each x ∈ X, x < Γ-co({u ∈ X : F(x, u) ⊆ −C(x) \ {0}});
(vii) one of the following conditions holds:
(vii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and F(x, u) ⊆ −C(x) \ {0};
(vii)2 there exists u0 ∈ X such that for each x ∈ X \K, one has u0 ∈ B(x) and F(x, u0) ⊆ −C(x)\ {0}.
If (X; Γ) satisfies 1X ∈ RC(X, X), then the generalized set-valued Stampacchia-type vector

equilibrium problem is solvable, that is, there exists x̂ ∈ K such that x̂ ∈ A(x̂) and
F(x̂, u) * −C(x̂) \ {0} for every u ∈ B(x̂).
Proof. Let Z = X. Then we define two set-valued mappings F̃ : X × Z × X → 2Y and G : X → 2Z by
F̃(x, z, u) = F(x, u) for every (x, z, u) ∈ X×Z×X and G(x) = {x} for every x ∈ X, respectively. It is easy
to see that all the requirements of Theorem 6.5 are fulfilled. Therefore, it follows from Theorem 6.5
that the conclusion of Theorem 6.6 holds. This completes the proof.
Remark 6.5. Theorem 6.6 generalizes Theorem 2.1 of Kazmi and Khan [52] in the following
aspects: (a) from real Bananch spaces to noncompact abstract convex spaces without any linear and
convex structure; (b) from a single-valued mapping to four set-valued mappings; (c) concerns the
more general generalized set-valued Stampacchia-type vector equilibrium problems with movable
convex cones instead of the generalized system problems with a fixed solid, pointed, closed and
convex cone with apex at the origin; (d) in Theorem 6.6, the topological spaces X and Y need not to be
Hausdorff spaces, while the spaces X and Y in Theorem 2.1 of Kazmi and Khan [52] have Hausdorff
property. In fact, It can be seen from the proof of Theorem 2.1 of Kazmi and Khan [52] that the
Hausdorff property of X is indispensable. In addition, the proof of Theorem 6.6 is essentially based on
the existence of maximal elements in noncompact abstract convex spaces, while Theorem 2.1 of
Kazmi and Khan [52] is proved by using the famous Brouwer’s fixed point theorem. Thus, the proof
method of Theorem 6.6 is different from that of Theorem 2.1 of Kazmi and Khan [52].
Theorem 6.7. Let (X; Γ) be an abstract convex space, K be a nonempty compact subset of X, Y be a
topological vector space, and Z be a topological space. Let A, B : X → 2X, C : X → 2Y , G : X → 2Z,
and F : X × X → 2Y be five set-valued mappings. Let ζ : X × Z → X be a continuous mapping and
η : X × X → X be a continuous mapping in the first argument. Suppose that:

(i) for each x ∈ X, C(x) is a convex cone with intC(x) , ∅ and the set-valued mapping W : X → 2Y

defined by W(x) = Y \ {−intC(x)} for every x ∈ X, is closed;
(ii) G and F are two upper semicontinuous set-valued mappings with compact values;
(iii) for each x ∈ X, B(x) ⊆ A(x);
(iv) B has nonempty Γ-convex values and open lower sections;
(v) the set F = {x ∈ X : x ∈ A(x)} is closed in X;
(vi) for each x ∈ X, x < Γ-co({u ∈ X : F(ζ(x, z), η(x, u)) ⊆ −intC(x) for every z ∈ G(x)});
(vii) one of the following conditions holds:
(vii)1 for each N0 ∈ 〈X〉, there exists a compact Γ-convex subset LN0 of (X; Γ) containing N0 such

that for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and F(ζ(x, z), η(x, u)) ⊆ −intC(x) for
every z ∈ G(x);
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(vii)2 there is u0 ∈ X such that for each x ∈ X \ K, one has u0 ∈ B(x) and F(ζ(x, z), η(x, u0)) ⊆
−intC(x) for every z ∈ G(x).

If (X; Γ) satisfies 1X ∈ RC(X, X), then the generalized set-valued implicit weak vector equilibrium
problem is solvable, that is, there exists x̂ ∈ K such that x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists
z ∈ G(x̂) for which F(ζ(x̂, z), η(x̂, u)) * −intC(x̂).
Proof. Define a set-valued mapping H : X × Z → 2X by H(x, z) = {u ∈ X : F(ζ(x, z), η(x, u)) *
−intC(x)} for every (x, z) ∈ X × Z. By (vi), we get x < Γ-co({u ∈ X : u < H(x, z) for every z ∈ G(x)})
for every x ∈ X. Now, we show that the set {x ∈ X : there exists z ∈ G(x) such that u ∈ H(x, z)} = {x ∈
X : there exists z ∈ G(x) such that F(ζ(x, z), η(x, u)) * −intC(x)} is closed in X for every u ∈ X. In fact,
let {xα} be an arbitrary net of {x ∈ X : there exists z ∈ G(x) such that F(ζ(x, z), η(x, u)) * −intC(x)}
such that xα → x0. Then for each α, there exists zα ∈ G(xα) such that F(ζ(xα, zα), η(xα, u)) * −intC(xα)
and thus, for each α, there exists ϑα ∈ F(ζ(xα, zα), η(xα, u)) such that ϑα < −intC(xα), which implies
that ϑα ∈ Y \ {−intC(xα)} = W(xα). Since G is upper semicontinuous with compact vales by (ii), it
follows from Lemma 2.4 that there exist z0 ∈ G(x0) and a subnet {zβ} of {zα} such that zβ → z0. Further,
Since F is upper semicontinuous with compact vales by (ii) again, ζ is continuous and η is continuous
in the first argument, by Lemma 2.4 again, there exist ϑ0 ∈ F(ζ(x0, z0), η(x0, u)) and a subnet {ϑγ} of
{ϑβ} such that ϑγ → ϑ0. Therefore, we have (xγ, ϑγ) → (x0, ϑ0) and ϑγ ∈ W(xϑ) for every γ. Since the
graph of W is closed in X × Y by (i), it follows that ϑ0 ∈ W(x0) = Y \ {−intC(x0)}. Combining the fact
that ϑ0 ∈ F(ζ(x0, z0), η(x0, u)), we know that F(ζ(x0, z0), η(x0, u)) * −intC(x0). Thus, we have

x0 ∈ {x ∈ X : there exists z ∈ G(x) such that u ∈ H(x, z)},

which implies that the set {x ∈ X : there exists z ∈ G(x) such that u ∈ H(x, z)} is closed in X for every
u ∈ X. Thus, (iv) of Theorem 6.2 is satisfied. By (vii) and the definition of H, we know that one of the
following two conditions holds:
• for each N0 ∈ 〈X〉, there exist a compact Γ-convex subset LN0 of (X; Γ) containing N0 such that

for each x ∈ LN0 \ K, there exists u ∈ LN0 such that u ∈ B(x) and u < H(x, z) for every z ∈ G(x).
• there exists u0 ∈ X such that for each x ∈ X \ K, one has u0 ∈ B(x) and u0 < H(x, z) for every

z ∈ G(x).
Combining (iii)-(v), we can see that all the requirements of Theorem 6.2 are fulfilled. Thus, it

follows from Theorem 6.2 that there exists x̂ ∈ K such that x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists
z ∈ G(x̂) for which u ∈ H(x̂, z), that is, x̂ ∈ A(x̂) and for each u ∈ B(x̂), there exists z ∈ G(x̂) for which
F(ζ(x̂, z), η(x̂, u)) * −intC(x̂). This completes the proof.
Remark 6.6. Wang and Huang [49] studied the implicit set-valued weak vector equilibrium problem in
the setting of Hausdorff topological vector spaces. Under some linear and convex assumptions, Wang
and Huang [49] obtained an existence theorem of solutions for the implicit set-valued weak vector
equilibrium problem. However, in the setting of noncompact abstract convex spaces without any linear
and convex structure, Theorem 6.7 characterizes the existence of solutions for the generalized set-
valued implicit weak vector equilibrium problem which is more general than the implicit set-valued
weak vector equilibrium problem studied by Wang and Huang [49].
Remark 6.7. (vi) of Theorem 6.7 can be replaced by the following two conditions:

(vi)′ for each x ∈ X and each z ∈ G(x), F(ζ(x, z), ·) is C(x)-Γ-quasiconvex in the second argument
of η.

(vi)′′ for each x ∈ X, there exists z ∈ G(x) such that F(ζ(x, z), η(x, x)) * −intC(x).
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Indeed, we first show that the set D = {u ∈ X : F(ζ(x, z), η(x, u)) ⊆ −intC(x) for every z ∈ G(x)} is
Γ-convex for every x ∈ X. In fact, let A = {u0, u1, . . . , un} ∈ 〈D〉 and u ∈ Γ(A) be given arbitrarily. Then
by (vi)′, there exists j ∈ {0, 1, . . . , n} such that for each x ∈ X and each z ∈ G(x), we have

F(ζ(x, z), η(x, u)) ⊆ F(ζ(x, z), η(x, u j)) −C(x)
⊆ −intC(x) −C(x)
⊆ −intC(x),

which implies that
Γ(A) ⊆ D.

Then it follows that the set D = {u ∈ X : F(ζ(x, z), η(x, u)) ⊆ −intC(x) for every z ∈ G(x)} is Γ-
convex for every x ∈ X. Secondly, by this fact and (vi)′′, we have x < {u ∈ X : F(ζ(x, z), η(x, u)) ⊆
−intC(x) for every z ∈ G(x)} = Γ-co({u ∈ X : F(ζ(x, z), η(x, u)) ⊆ −intC(x) for every z ∈ G(x)}) for
every x ∈ X.

Finally, by using Theorem 3.4 and the same arguments as in Theorem 6.1, we obtain the following
existence theorem of solutions for (SGWIIP).
Theorem 6.8. Let (X; Γ1) and (Y; Γ2) be two abstract convex spaces such that (X × Y; Γ1 × Γ2) is an
abstract convex space defined as in Lemma 2.5. Let K be a nonempty compact subset of X × Y and Z
be a nonempty set. Let A, B : X → 2X, F : X → 2Y , G : X → 2Z, and H : Y ×Z → 2X be five set-valued
mappings satisfying

(i) for each x ∈ X, B(x) ⊆ A(x);
(ii) B and F have nonempty Γ1-convex and Γ2-convex values and open lower sections;
(iii) the set F = {(x, y) ∈ X × Y : x ∈ A(x) and y ∈ F(x)} is closed in X × Y;
(iv) for each u ∈ X, the set {(x, y) ∈ X × Y : u < H(y, z) for some z ∈ G(x)} is open in X × Y;
(v) for each x ∈ X and each y ∈ F(x), x < Γ1-co({u ∈ X : u < H(y, z) for some z ∈ G(x)});
(vi) one of the following conditions holds:
(vi)1 for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing

N0 and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 and for
each (x, y) ∈ L \ K, there exists (u, v) ∈ L such that u ∈ B(x), v ∈ F(x), and u < H(y, z) for some
z ∈ G(x);

(vi)2 there exists (u0, v0) ∈ X ×Y such that for each (x, y) ∈ X ×Y \K, one has u0 ∈ B(x), v0 ∈ F(x),
and u0 < H(y, z) for some z ∈ G(x).

If (X × Y; Γ1 × Γ2) satisfies 1X×Y ∈ RC(X × Y, X × Y), then (SGWIIP) is solvable, that is, there exists
(x̂, ŷ) ∈ K such that x̂ ∈ A(x̂), ŷ ∈ F(x̂), and u ∈ H(̂y, z) for every u ∈ B(x̂) and every z ∈ G(x̂).
Proof. By using the same arguments as in Theorem 6.1, we can show that the set F is nonempty. Define
a set-valued mapping J : X × Y → 2X is defined by J(x, y) = {u ∈ X : u < H(y, z) for some z ∈ G(x)}
for every (x, y) ∈ X × Y . Further, let us define a set-valued mapping T : X × Y → 2X×Y by setting, for
each (x, y) ∈ X × Y ,

T (x, y) =

{
(B(x)

⋂
J(x, y)) × F(x), if (x, y) ∈ F,

B(x) × F(x), if (x, y) ∈ X × Y \ F.

For each (u, v) ∈ X × Y , we have

T−1(u, v) =

(
(X × Y \ F)

⋂
(B−1(u) × Y)

⋂
(F−1(v) × Y)

)
AIMS Mathematics Volume 6, Issue 11, 12422–12459.



12455⋃ (
J−1(u)

⋂
(B−1(u) × Y)

⋂
(F−1(v) × Y)

)
.

By (iv), the set J−1(u) is open in X × Yfor every u ∈ X. Thus, it follows from (ii) and (iii) that
T−1(u, v) is open in X × Y for every (u, v) ∈ X × Y . By (v) and using the same arguments as in Theorem
6.1, we can deduce that (x, y) < Γ1 × Γ2-co(T (x, y)) for every (x, y) ∈ X × Y . By (vi), it follows that one
of the following two conditions holds:
• for each N0 × N1 ∈ 〈X × Y〉, there exist a compact Γ1-convex subset LN0 of (X; Γ1) containing N0

and a compact Γ2-convex subset LN1 of (Y; Γ2) containing N1 such that for L := LN0 × LN1 , we have
L \ K ⊆

⋃
(u,v)∈L T−1(u, v).

• there exists (u0, v0) ∈ X × Y such that X × Y \ T−1(u0, v0) ⊆ K.
Thus, by Theorem 3.4 and Remark 3.4, there exists (x̂, ŷ) ∈ K such that T (x̂, ŷ) = ∅. Since B and F have
nonempty values, we can conclude that (x̂, ŷ) ∈ F. Thus, x̂ ∈ A(x̂), ŷ ∈ F(x̂), and B(x̂)

⋂
J(x̂, ŷ) = ∅.

Therefore, u ∈ H(̂y, z) for every u ∈ B(x̂) and every z ∈ G(x̂). This completes the proof.
Remark 6.8. (1) (v) of Theorem 6.8 can be replaced by the following stronger condition:

(v)′ H is strong Γ1-quasiconvex-like with respect to F and G.
In fact, suppose to the contrary that there exist x ∈ X and y ∈ F(x) such that x ∈ Γ1-co({u ∈ X :

u < H(y, z) for some z ∈ G(x)}). Then it follows from Lemma 2.7 that there exists {u0, u1, . . . , un} ∈

〈{u ∈ X : u < H(y, z) for some z ∈ G(x)}〉 such that x ∈ Γ1-co({u0, u1, . . . , un}). By (v)′, there exists
j ∈ {0, 1, . . . , n} and u j ∈ H(y, z) for every z ∈ G(x), which contradicts that u j < H(y, z) for some
z ∈ G(x). Therefore, (v)′ implies (v) of Theorem 6.5.

(2) the following two conditions imply that (v)′ holds.
(a) for each x ∈ X and each y ∈ F(x), the set {u ∈ X : u < H(y, z) for some z ∈ G(x)} is Γ1-convex.
(b) for each x ∈ X and each y ∈ F(x), x ∈ H(y, z) for every z ∈ G(x).
Indeed, by way of contradiction, suppose that for some N = {u0, u1, . . . , un} ∈ 〈X〉, some x ∈

Γ-co(N), there exists a point y ∈ F(x) such that for each j ∈ {0, 1, . . . , n}, u j < H(y, z) for some
z ∈ G(x). By (a), we have x < H(y, z), which contradicts (b).

(3) If we assume that Z is a topological space, then (iv) of Theorem 6.8 can be replaced by the
following condition:

(iv)′ G is a lower semicontinuous set-valued mapping and H is closed.
In fact, it is sufficient to prove that the set {(x, y) ∈ X × Y : u ∈ H(y, z) for every z ∈ G(x)} is

closed in X × Y for every u ∈ X. Let (x∗, y∗) ∈ cl({(x, y) ∈ X × Y : u ∈ H(y, z) for every z ∈ G(x)})
any given. Then there is a net {(xα, yα)} ⊆ {(x, y) ∈ X × Y : u ∈ H(y, z) for every z ∈ G(x)} such
that (xα, yα) → (x∗, y∗). Therefore, we have u ∈ H(yα, zα) for every z′ ∈ G(xα). Since G is a lower
semicontinuous set-valued mapping, it follows from Lemma 2.2 that for each z ∈ G(x∗), there exists
zα ∈ G(xα) such that zα → z. Since H is closed, we have u ∈ H(y∗, z). This shows that (x∗, y∗) ∈ {(x, y) ∈
X × Y : u ∈ H(y, z) for every z ∈ G(x)} and so, the set {(x, y) ∈ X × Y : u ∈ H(y, z) for every z ∈ G(x)}
is closed in X × Y for every u ∈ X. Thus, the set {(x, y) ∈ X × Y : u < H(y, z) for some z ∈ G(x)} is open
in X × Y for every u ∈ X.

7. Conclusions

In this paper, based on the KKM theory and the properties of Γ-convexity and RC-mapping, we
have dealt with the existence of collectively fixed points in the framework of noncompact abstract
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convex spaces and provided applications to some existence theorems of generalized weighted Nash
equilibria and generalized Pareto Nash equilibria for constrained multiobjective games, some
nonempty intersection theorems for sets with abstract convex sections, and some existence theorems
of solutions for generalized weak implicit inclusion problems. In our view, future research should
focus on considering how to further generalize and improve the collectively fixed point theorems
obtained in this paper in the framework of noncompact abstract convex spaces. Furthermore, on this
basis, the existence of generalized weighted Nash equilibria and generalized Pareto Nash equilibria
for constrained multiobjective games with infinite players and the existence of solutions for systems
of generalized vector quasi-variational equilibrium problems should be investigated.
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