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1. Introduction

Multi-objective games are games with vector-valued payoffs, which were first studied by
Zeleny [56]. Since then, many scholars have begun to pay attention to multi-objective games;
see [16, 44, 52, 54]. Yu and Yuan [52] used Ky Fan’s minimax inequality and the Fan-Glicksberg
fixed point theorem to study the existence of Pareto equilibria in multi-objective games. Considering
the feasible strategy correspondence in the multi-objective game, the constrained multi-objective game
can be obtained. Ding [15] first proved the existence of Pareto equilibria in constrained multi-objective
games by using the quasi-equilibrium existence theorem, and the results were extended in [52].
Subsequently, some scholars have focused on the existence of equilibria and the stability of equilibrium
sets in constrained multi-objective games; see [14, 29, 41] and references therein.

The main limitation of traditional non-cooperative games is that all data in the game are assumed
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to be known accurately by the players. In real-world games, players often cannot accurately assess
the payoffs of different strategies or their own and other players’ preferences. Usually, the uncertainty
involved in the game includes fuzziness, randomness and fuzzy randomness.

Zadeh [55] first introduced fuzzy set theory. Subsequently, Butnariu [8] introduced fuzzy sets in
non-cooperative games. Campos [9] proposed a fuzzy linear programming method to solve the fuzzy
two-player zero-sum matrix game. This method is more suitable for solving the problem that the payoff

is a triangular fuzzy number. Based on the literature [23, 39], Clemente [12] introduced the standard
fuzzy orders to compare the fuzzy payoffs and studied the Pareto equilibrium of the fuzzy matrix game.
Buckley [7] used the decision principles of Bellman and Zadeh [4] in fuzzy environments to formulate
multi-objective non-cooperative games under uncertainty. Kim and Lee [25] extended generalized
games to generalized fuzzy games and established the existence of fuzzy equilibria for generalized
fuzzy games. For generalized games and generalized multi-objective games, in addition to the
ambiguity of payoffs, the ambiguity of strategy choice is also studied; see [19, 24]. For more literature
on fuzzy matrix games and generalized fuzzy games; see [6, 26, 37, 40, 47] and references therein.

Since the α-cut of a fuzzy number is a compact interval, we need to investigate the properties
of fuzzy games with the help of interval analysis. Moore [35] systematically introduced the theory
of interval analysis for the first time. Subsequently, many scholars further developed the theory
of interval arithmetic and interval-valued functions; see [1, 10, 36, 42] and references therein. Li
et al. [28] discussed the weak Pareto-Nash equilibria of generalized interval-valued multi-objective
games with fuzzy mappings and gave the existence theorem of weak Pareto-Nash equilibrium. In
game theory, the current application of interval analysis is mainly to discuss the existence of equilibria
of interval-valued matrix games and their calculation methods; see, e.g., [13, 27, 28, 30]. Stefanini and
Bede [42] introduced the concept of gH-difference, which is a generalization of H-difference. The gH-
difference is applied to several topics in interval mathematical analysis, such as interval optimization
problems [20, 21, 38, 46], interval differential equations [31, 42, 43] and so on.

Anderlini and Canning [2] established a kind of model with abstract rational function in a general
decision environment as follows:

Definition 1.1. A bounded rationality modelM consists of a quadruple {Γ, X,K,R} with the following
interpretation.

(1) Γ is a nonempty parameter space;

(2) X is an action space;

(3) K : Γ × X ⇒ X is a feasibility correspondence, and K induces a further correspondence k : Γ⇒ X
defined by k(γ) = {x ∈ X | x ∈ K(γ, x)} for γ ∈ Γ;

(4) R : Graph(k) → R+ is a rationality function with R(γ, x) = 0 corresponding to perfect rationality,
where Graph(k) = {(γ, x) ∈ Γ × X | x ∈ k(γ)} is the graph of k.

For any γ ∈ Γ and ε ≥ 0, the set of all ε-equilibria of γ is defined as E(γ, ε) = {x ∈ k(γ) | R(γ, x) ≤ ε},
and E(γ) = E(γ, 0) = {x ∈ k(γ) | R(γ, x) = 0} is the set of all equilibria of γ. The notions of structural
stability and robustness to ε-equilibria for a bounded rationality model were introduced in [2]. A model
is structurally stable if the equilibrium set (given fully rational agents) varies continuously with the
parameter values of the model. A model is robust to ε-equilibria if small deviations from rationality
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result can lead to only small changes in the equilibrium set. Since then, many researchers began to
discuss structural stability and robustness to ε-equilibrium for the bounded rationality model. They
presented a series of applications to non-cooperative games and fixed point problems; see, e.g., [33,48,
49, 51, 53].

Hung et al. [24] discussed the existence of fuzzy equilibria in generalized multi-objective games
with fuzzy mappings when the payoff space is a Hausdorff topological vector space and investigated
the structural stability and robustness of ε-equilibrium for this class of games in the framework of
bounded rationality. Furthermore, when the payoff space is a Banach space, with the help of an abstract
rationality function, a bounded rationality model for generalized multi-objective games with fuzzy
mappings was constructed. However, Wang et al. [45] pointed out that the space of fuzzy vectors
is a quasi-linear space, not a linear space. Therefore, it is impossible to directly obtain the fuzzy
constrained multi-objective game with fuzzy payoffs by using the conclusions in [24].

Motivated by [24, 28], we are concerned in this paper with a class of fuzzy constrained multi-
objective games with fuzzy payoffs. With the help of the α-cuts of fuzzy vectors and the partial
order of interval vectors, we establish the partial order of fuzzy vectors. Moreover, the definitions of
fuzzy Pareto-Nash equilibrium and fuzzy α-Pareto-Nash equilibrium are introduced. Based on Berge’s
maximum theorem for fuzzy-valued functions (interval-valued functions) and the Fan-Glicksberg fixed
point theorem, the existence of a fuzzy Pareto-Nash equilibrium (fuzzy α-Pareto-Nash equilibrium) for
the FCMGFP is investigated. Furthermore, the bounded rationality model is applied to a new class of
FCMGFPs.

This article is organized as follows. In Section 2, we review some basic terminology and related
facts. In Section 3, we first discuss the semi-continuity and generalized quasi-concavity for fuzzy
vector-valued functions. Moreover, we get Berge’s maximum theorem for the fuzzy-vector-valued
function. Second, we obtain two existence theorems of fuzzy Pareto-Nash equilibria and fuzzy α-
Pareto-Nash equilibria for FCMGFPs. These new results directly yield the existence theorems of
fuzzy Pareto-Nash equilibria and fuzzy α-Pareto-Nash equilibria for fuzzy constrained games with
fuzzy payoffs (FCGFPs). In Section 4, we construct the rationality functions for FCMGFPs with the
help of the nonlinear scalarization function of interval vectors. A further discussion approaches the
structural stability ((γ, ε)-stability) and the robustness to ε-equilibria ((γ, ε)-robustness) for this class
of games. Finally, the conclusion is made in Section 5.

2. Preliminaries and terminology

Throughout this paper, we write R for the set of all real numbers, R+ for the set of all nonnegative
real numbers, N for the set of all natural numbers and Rd for d-dimensional Euclidean space. We recall
basic terminology and some related conclusions in this section.

2.1. Interval vectors and interval-vector-valued functions

We now review the relevant properties of interval vectors and interval vector-valued functions.
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2.1.1. Interval vectors

Let I(R)d be the family of all d-dimensional interval vectors, and let

I(R+)d = {(A1, . . . , Ad) | Ai ∈ I(R+), i = 1, . . . , d} ,

where I(R+) is the family of all compact intervals contained in [0,+∞). For A = (A1, . . . , Ad), B =

(B1, . . . , Bd) ∈ I(R)d and t ∈ R, A + B = (A1 + B1, . . . , Ad + Bd), and t · A = (t · A1, . . . , t · Ad). The gH-
difference between A and B, A 	 B, is defined by A 	 B = (A1 	 B1, . . . , Ad 	 Bd), where Ai = [ai, ai],
Bi = [bi, bi], and Ai	Bi = [min{ai−bi, ai−bi},max{ai−bi, ai−bi}]. In particular, (−1) ·(A	B) = B	A.

Definition 2.1. (See [28]) For A = (A1, . . . , Ad) ∈ I(R)d, the function ‖ · ‖I(R)d : I(R)d → R+ defined

by ‖A‖I(R)d =
(∑d

i=1 ‖Ai‖
2
I(R)

)1/2
is called a norm on I(R)d, where ‖Ai‖I(R) = max{|ai|, |ai|}.

The set of all interval vectors I(R)d equipped with the norm ‖ · ‖I(R)d is a normed quasilinear
space with respect to the operations {+,	, .}, and (I(R)d, ‖ · ‖I(R)d ) is a complete normed quasilinear
space. With the topology induced by norm ‖ · ‖I(R)d on I(R)d, it follows that intI(R+)d =

{A = (A1, . . . , Ad) | Ai ∈ intI(R+), i = 1, . . . , d}.

Lemma 2.2. (See [28]) For two convergent sequences {Am} and {Bm} in I(R)d,

lim
m→∞

(Am 	 Bm) = lim
m→∞

Am 	 lim
m→∞

Bm.

It is noteworthy that although + is associative in I(R), for A, B ∈ I(R), the interval (A 	 B) + B is
not always equal to A. Ghosh et el. [21] verified that

‖A 	 B‖I(R) ≤ ‖A 	C‖I(R) + ‖C 	 B‖I(R), for all A, B,C ∈ I(R). (2.1)

Lemma 2.3. For all A, B,C ∈ I(R)d, ‖A 	 B‖I(R)d ≤ ‖A 	 C‖I(R)d + ‖C 	 B‖I(R)d .

Proof. See Appendix A. �

Definition 2.4. (See [28]) Let A = (A1, . . . , Ad) and B = (B1, . . . , Bd) be two elements of I(R)d.

(1) A is said to be dominated by B from below if A	B ∈ I(R+)d, and then we write B � A. Otherwise,
we write B � A.

(2) A is said to be strictly dominated by B from below if A	B ∈ intI(R+)d, and then we write B ≺ A.
Otherwise, we write B ⊀ A.

2.1.2. Interval-vector-valued functions

Let X be a Hausdorff topological space, and let F = { f1, . . . , fd} : X → I(R)d be an interval-vector-
valued function. F is upper semi-continuous (resp., lower semi-continuous) provided that for each
x ∈ X and for each ε > 0, there exists an open neighborhood o(x) of x such that for each x′ ∈ o(x),
F(x′) 	 F(x) ∈ Vd

ε − I(R+)d (resp., F(x′) 	 F(x) ∈ Vd
ε + I(R+)d), where Vd

ε = {(A1, . . . , Ad) | Ai ⊂

(−ε, ε), i = 1, . . . , d}. Furthermore, F is continuous if it is both lower and upper semi-continuous.
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Definition 2.5. (See [28]) Let K be a nonempty convex subset of a Hausdorff topological space Y,
and let F = { f1, . . . , fd} : K → I(R)d be an interval-vector-valued function. Then, F is said to be
generalized I(R+)d-quasi-concave on K provided that for x1, x2 ∈ K , A ∈ I(R)d, and for λ ∈ [0, 1], if
A 	 F(xi) < intI(R+)d with i = 1, 2, we have A 	 F(λx1 + (1 − λ)x2) < intI(R+)d.

Lemma 2.6. (See [28]) Let C be a nonempty compact subset of a Hausdorff topological space X and
F = { f1, . . . , fd} : C → I(R)d be an interval-vector-valued function. If there exists i ∈ {1, . . . , d} such
that fi is upper semi-continuous on C, then there is x∗ ∈ C such that F(x∗) ⊀ F(x) for all x ∈ C.

Definition 2.7. (See [28]) Let F = { f1, . . . , fd} : K ⊂ R→ I(R)d be an interval-vector-valued function.
Then, F is said to be non-decreasing (resp., non-increasing) on K if, for x1, x2 ∈ K and x1 < x2, we
have F(x1) � F(x2) (resp., F(x2) � F(x1)).

Lemma 2.8. (See [28]) An interval-vector-valued function F = { f1, . . . , fd} : K ⊂ R → I(R)d is non-
decreasing (resp., non-increasing) if and only if f

i
and f i are non-decreasing (resp., non-increasing)

for each i.

2.2. Fuzzy sets and fuzzy mapping

Let X denote a universal set. A fuzzy subset ã of X is defined by its membership function µã :
X → [0, 1], which assigns to each element x ∈ X a real number µã(x) in the interval [0, 1]. Especially,
µã(x) is the grade of membership of x in the set ã. The α-cut of ã, denoted by ãα, is a set defined by
ãα = {x ∈ X | µã(x) ≥ α}, when α ∈ (0, 1], and ã0 = cl{x ∈ X | µã(x) > 0}, where cl represents the
closure of sets. For more detail, see [17, 55].

Definition 2.9. (See [17]) A fuzzy number Ĩ is a fuzzy set on R, whose membership function µĨ(·) :
R→ [0, 1] satisfies the following conditions:

(1) µĨ(x) = 0 for all x ∈ (−∞, c],

(2) µĨ(·) is strictly increasing and continuous on [c, a],

(3) µĨ(x) = 1 for all x ∈ [a, b],

(4) µĨ(·) is strictly decreasing and continuous on [b, d],

(5) µĨ(x) = 0 for all x ∈ [d,+∞),

where −∞ < c ≤ a ≤ b ≤ d < +∞.

As usual, write F (R) for the family of all fuzzy numbers, and F (R)d for the family of all d-
dimensional fuzzy vectors. We use Ã, B̃, C̃, · · · to denote the elements of F (R)d. Given Ã =

(Ã1, . . . , Ãd) ∈ F (R)d and α ∈ [0, 1], the α-cut of Ã is an interval vector Ã
α

= (Ãα
1 , . . . , Ã

α
d ) ∈ I(R)d,

where Ãα
i is the α-cut of Ãi for i = 1, ..., d.

Let X and Y be two Hausdorff topological vector spaces and X ⊂ X, Y ⊂ Y be two nonempty
convex subsets. A mapping S̃ : X → F (Y) is called a fuzzy mapping where F (Y) denotes the
collection of fuzzy sets on Y . If S̃ is a fuzzy mapping, S̃ (x) (denoted by S̃ x) is a fuzzy set, and S̃ x(y) is
the membership function of y in S̃ x.
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Definition 2.10. (See [11]) A fuzzy mapping S̃ : X → F (Y) is convex if, for every x ∈ X, y, z ∈ Y and
λ ∈ [0, 1], we have S̃ x(λy + (1 − λ)z) ≥ min{S̃ x(y), S̃ x(z)}.

Lemma 2.11. (See [11]) Let s : X → [0, 1] be a function. If S̃ : X → F (Y) is convex, and S : X ⇒ Y
is defined by S (x) = (S̃ x)s(x) for x ∈ X, then S is a correspondence with convex values.

2.3. Set valued analysis

Let X and Y be two Hausdorff topological spaces and F : X ⇒ Y be a correspondence. F is upper
semi-continuous (resp., lower semi-continuous) if, for each x ∈ X and for each open set G ⊂ Y with
F(x) ⊂ G (resp., F(x) ∩ G , ∅), there exists a neighborhood o(x) of x such that F(x′) ⊂ G (resp.,
F(x′) ∩G , ∅) for each x′ ∈ o(x). F is continuous if it is both lower and upper semi-continuous. The
graph of F is Graph(F) = {(x, y) ∈ X × Y | y ∈ F(x)}, and F is closed if Graph(F) is closed on X × Y .
For more details, see [3, 18, 22, 50].

Lemma 2.12. (See [50]) Let X and Y be two Hausdorff topological spaces, and Y be compact. Then,
F : X ⇒ Y is upper semi-continuous with nonempty and compact values if and only if it is closed.

Lemma 2.13. (See [50]) Let F,G : X ⇒ Y be two correspondences with F(x)∩G(x) , ∅ for all x ∈ X.
If F is closed, and G is upper semi-continuous with nonempty and compact values, then F∩G is upper
semi-continuous.

Theorem 2.14. (Fan-Glicksberg [18, 22]) Let V be a locally convex Hausdorff topological vector
space, and let X be a nonempty compact subset of V. If Φ : X ⇒ X is upper semi-continuous with
nonempty, convex and compact values, then there exists x∗ ∈ X such that x∗ ∈ Φ(x∗).

2.4. Structural stability and robustness

Let us recall the structural stability and robustness of the bounded rationality model according
to [2, 48, 49].

Definition 2.15. (See [2]) Let (Γ, ρ) be a metric space.

(1) The model M is said to be structurally stable at γ ∈ Γ if the equilibrium correspondence E :
Γ × R+ ⇒ X is continuous at γ ∈ Γ.

(2) The modelM is said to be robust to ε-equilibria at γ ∈ Γ if for any δ > 0, there exists ε̂ > 0 such
that H(E(γ′, ε), E(γ′)) < δ, for any γ′ ∈ Γ with ε < ε̂ and ρ(γ, γ′) < ε̂, where H is the Hausdorff
distance defined on X.

Definition 2.16. (See [34]) Let (Γ, ρ) be a metric space.

(1) The model M is said to be (γ, ε)-stable if the equilibrium correspondence E : Γ × R+ ⇒ X is
continuous at (γ, ε) ∈ Γ × R+.

(2) The model M is said to be (γ, ε)-robust if for any δ > 0, there exists ε̂ > 0 such that
H(E(γ′, ε), E(γ′, ε′)) < δ, for any (γ′, ε′) ∈ Γ × R+ with |ε − ε′| < ε̂ and ρ(γ, γ′) < ε̂, where H
is the Hausdorff distance defined on X.
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In particular, taking ε′ = 0 in Definition 2.16 (2), we can get the definition of robustness to ε-
equilibria. A model that is (γ, 0)-stable is structurally stable, that is, E : Γ ⇒ X is continuous at
γ ∈ Γ.

Lemma 2.17. (See [34,48,49,53]) Let Γ be a complete metric space and X be a compact metric space.
Let k : Γ ⇒ X be an upper semi-continuous correspondence, and let R : Graph(k) → R+ be a lower
semi-continuous function. For any γ ∈ Γ, E(γ) , ∅,

(1) the correspondence E : Γ⇒ X is upper semi-continuous;

(2) there exists a dense Gδ subset Q of Γ such thatM is structurally stable at every γ ∈ Q;

(3) if the modelM is structurally stable at γ ∈ Γ, thenM is robust to ε-equilibria at γ ∈ Γ, andM is
robust to ε-equilibria at γ ∈ Q;

(4) if γ ∈ Q, γm → γ, and εm → 0, then H(E(γm, εm), E(γ))→ 0;

(5) if E(γ) is a singleton set, thenM is structurally stable and robust to ε-equilibria at γ ∈ Γ;

(6) if the modelM is (γ, ε)-stable, thenM is (γ, ε)-robust.

3. Existence of fuzzy Pareto-Nash equilibria

In this section, we focus on the fuzzy Pareto-Nash equilibria of the FCMGFP. We first discuss the
semi-continuity and generalized quasi-concavity of fuzzy-vector-valued functions. Then, we obtain
Berge’s maximum theorem for fuzzy-vector-valued functions. Based on this theorem, we establish two
existence theorems of fuzzy Pareto-Nash equilibria and fuzzy α-Pareto-Nash equilibria for FCMGFP.
Throughout this section, we write X for a Hausdorff topological space, Y for a Hausdorff topological
vector space andVi for a locally convex Hausdorff topological vector space.

3.1. Fuzzy-vector-valued functions

Let F̃ = { f̃1, ..., f̃d} : X → F (R)d be a fuzzy-vector-valued function. By the α-cuts of fuzzy vectors,
we can obtain the interval-vector-valued function F̃α = { f̃ α1 , ..., f̃ αd } : X × [0, 1] → I(R)d, defined for
(x, α) ∈ X × [0, 1] by F̃α(x) = ( f̃ α1 (x), ..., f̃ αd (x)).

We use the related properties of interval-vector-valued functions to establish the semi-continuity
and generalized quasi-concavity of fuzzy-vector-valued functions.

Definition 3.1. A fuzzy-vector-valued function F̃ = { f̃1, ..., f̃d} : X → F (R)d is upper semi-continuous
(resp., lower semi-continuous, continuous) if the corresponding interval-vector-valued function F̃α =

{ f̃ α1 , ..., f̃ αd } : X × [0, 1]→ I(R)d is upper semi-continuous (resp., lower semi-continuous, continuous).

Remark 3.2. A fuzzy-vector-valued function F̃ = { f̃1, ..., f̃d} : X → F (R)d is upper semi-continuous
(resp., lower semi-continuous, continuous) if and only if each f̃i : X → F (R) is upper semi-continuous
(resp., lower semi-continuous, continuous).

Assume that F0(R) is the family of all triangular fuzzy numbers. Let Ã = (a, b, c) ∈ F0(R) and
α ∈ [0, 1]. Then, the α-cut of Ã is an interval Ãα = [a + α(b − a), c − α(c − b)].
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Example 3.3. Consider the fuzzy-vector-function F̃(x) = ( f̃1(x), f̃2(x)), where f̃1(x) = (2, 3, 4)x +

(3, 4, 5), and f̃2(x) = (1, 2, 3)x2 + (2, 3, 4) for x ∈ R. Since f̃ α1 (x) = [2 + α, 4 − α]x + [3 + α, 5 − α] and
f̃ α2 (x) = [1+α, 3−α]x2+[2+α, 4−α] are continuous on R×[0, 1], F̃ is a continuous fuzzy-vector-valued
function.

Based on the partial order of interval vectors, we use α-cuts to establish the following partial order
of fuzzy vectors.

Definition 3.4. Let Ã and B̃ be two elements of F (R)d.

(1) Ã is said to be dominated by B̃ from below if B̃
α
� Ã

α
for all α ∈ [0, 1], and we rewrite this

property as B̃ � Ã. Otherwise, we write B̃ � Ã.

(2) Ã is said to be strictly dominated by B̃ from below if B̃
α
≺ Ã

α
for all α ∈ [0, 1], and we rewrite

this property as B̃ ≺ Ã. Otherwise, we write B̃ ⊀ Ã.

In particular, when d = 1, the partial order � in Definition 3.4 is equivalent to the fuzzy maximum
order in [32, 39]. According to Definitions 2.4 and 3.4, the following lemma is obvious.

Lemma 3.5. For two elements Ã and B̃ of F (R)d, the following assertions hold:

(1) B̃ � Ã if and only if Ã
α
	 B̃

α
∈ I(R+)d for all α ∈ [0, 1].

(2) B̃ ⊀ Ã if and only if there is α ∈ [0, 1] such that Ã
α
	 B̃

α
< intI(R+)d.

Definition 3.6. Let K be a nonempty convex subset of Y. A fuzzy-vector-valued function F̃ =

{ f̃1, ..., f̃d} : K → F (R)d is said to be generalized quasi-concave onK provided that for x1, x2 ∈ K and
λ ∈ [0, 1], and for Ã ∈ F (R)d, if F̃(xi) ⊀ Ã with i = 1, 2, we have

F̃(λx1 + (1 − λ)x2) ⊀ Ã.

Lemma 3.7. Let F̃ = { f̃1, ..., f̃d} : K ⊂ R → F (R)d be a fuzzy-vector-valued function. If F̃α : K →
I(R)d is non-decreasing (or non-increasing) for each α ∈ [0, 1], then F̃ is generalized quasi-concave.

Proof. See Appendix B. �

In Example 3.3, for each α ∈ [0, 1], since f̃ α1 (x) = (2 + α)x + (3 + α), f̃ α1 (x) = (4 − α)x + (5 − α),

f̃ α2 (x) = (1 + α)x2 + (2 + α) and f̃ α2 (x) = (3 − α)x2 + (4 − α) are non-decreasing on [0,+∞), from

Lemma 3.7, it follows that F̃ is generalized quasi-concave on [0,+∞).

3.2. Existence of fuzzy Pareto-Nash equilibria

We now consider a fuzzy constrained multi-objective game with fuzzy payoffs (FCMGFP) as
follows:

γ = (Xi, S̃ i, si, F̃i)i∈N

which has the following assumptions:

(1) N = {1, 2, ..., n} is a set of players;
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(2) Xi is player i’s strategy space;

(3) S̃ i : X−i → F (Xi) is player i’s fuzzy constraint mapping;

(4) si : X−i → [0, 1] is player i’s feasible function, where si(x−i) represent the feasible degree on
strategy profile x−i ∈ X−i for player i;

(5) F̃i = { f̃ i
1, . . . , f̃ i

d} : X =
∏

i∈N Xi → F (R)d is player i’s payoff function.

As usual, for each player i ∈ N, write

−i = N \ {i} and X−i =
∏
j,i

X j,

where the latter is endowed with the product topology.

Definition 3.8. A point x∗ = (x∗i , x
∗
−i) ∈ X is called a fuzzy Pareto-Nash equilibrium of γ if for each

i ∈ N, S̃ ix∗
−i

(x∗i ) ≥ si(x∗
−i), and for each ui with S̃ ix∗

−i
(ui) ≥ si(x∗

−i), we have

F̃i(x∗i , x
∗
−i) ⊀ F̃i(ui, x∗−i). (3.1)

Definition 3.9. Let α = (α1, . . . , αn) ∈ [0, 1]n. A point x∗ = (x∗i , x
∗
−i) ∈ X is called a fuzzy α-Pareto-

Nash equilibrium of γ if for each i ∈ N, S̃ ix∗
−i

(x∗i ) ≥ si(x∗
−i), and for each ui with S̃ ix∗

−i
(ui) ≥ si(x∗

−i), we
have

F̃αi
i (ui, x∗−i) 	 F̃αi

i (x∗i , x
∗
−i) < intI(R+)d, (3.2)

where [0, 1]n = [0, 1] × · · · × [0, 1].

For α = (α1, . . . , αn) ∈ [0, 1]n, we observed that a fuzzy α-Pareto-Nash equilibrium of γ must be
a fuzzy Pareto-Nash equilibrium of γ, but a fuzzy Pareto-Nash equilibrium of γ is not necessarily a
fuzzy α-Pareto-Nash equilibrium of γ.

Using the fuzzy mapping S̃ i and the corresponding feasibility function si, we consider the
correspondence S i : X−i ⇒ Xi as follows: For all x−i ∈ X−i,

S i(x−i) = (S̃ ix−i)
si(x−i) = {xi ∈ Xi | S̃ ix−i(xi) ≥ si(x−i)}.

In what follows, S i is called a correspondence induced by the fuzzy mapping S̃ i. Then, a strategy
profile x∗ = (x∗i , x

∗
−i) ∈ X is called a fuzzy Pareto-Nash equilibrium of γ if for each i ∈ N, x∗i ∈ S i(x∗

−i),
and for each ui ∈ S i(x∗

−i), F̃(x∗i , x
∗
−i) ⊀ F̃i(ui, x∗−i). A strategy profile x∗ = (x∗i , x

∗
−i) ∈ X is called a fuzzy

α-Pareto-Nash equilibrium of γ if for each i ∈ N, x∗i ∈ S i(x∗
−i), and for each ui ∈ S i(x∗

−i),

F̃αi
i (ui, x∗−i) 	 F̃αi

i (x∗i , x
∗
−i) < intI(R+)d. (3.3)

In order to prove the existence of fuzzy Pareto-Nash equilibria, we need the following lemma.

Theorem 3.10. Let X1 and X2 be two Hausdorff topological spaces, let F̃ = { f̃1, . . . , f̃d} : X1 ×

X2 → F (R)d be a continuous fuzzy-vector-valued function, and let S : X2 ⇒ X1 be a continuous
correspondence with nonempty and compact values. Moreover, for all y ∈ X2, let

Φ(y) = {x ∈ S (y) | F̃(x, y) ⊀ F̃(u, y), for all u ∈ S (y)}.

Then Φ : X2 ⇒ X1 is an upper semi-continuous correspondence with nonempty and compact values.
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Proof. Let y ∈ X2, and then
Φ(y) =

⋃
α∈[0,1]

Φα(y), (3.4)

where Φα(y) = {x ∈ S (y) | F̃α(u, y) 	 F̃α(x, y) < intI(R+)d, for all u ∈ S (y)}.
Since S (y) is nonempty and compact. Meanwhile, the continuity of F̃ yields that of each f̃ αi . So,

from Definition 2.4 and Lemma 2.6, it follows that Φα(y) , ∅ for each α ∈ [0, 1]. Consequently,
Φ(y) , ∅.

Next, we verify the compactness of Φ(y). Since Φ(y) and S (y) are compact, and Φ(y) ⊂ S (y), we
need only to show that Φ(y) is closed. For this aim, consider a net {xτ}τ∈D ⊂ Φ(y) having the properties
xτ → x and x < Φ(y). Then, there exists u0 ∈ S (y) such that

F̃(x, y) ≺ F̃(u0, y). (3.5)

Since xτ ∈ Φ(y), from (3.4) there is ατ ∈ [0, 1] such that for all u ∈ S (y),

F̃ατ(u, y) 	 F̃ατ(xτ, y) < intI(R+)d. (3.6)

Furthermore, there is a subnet {ατ′} of {ατ} such that ατ′ → α ∈ [0, 1]. From the compactness of S (y)
and u0 ∈ S (y), there is a net {uτ}τ∈D such that uτ ∈ S (y) and uτ → u0. Then, from the continuity of
F̃, (3.6) and Lemma 2.2, it follows that

F̃α(u0, y) 	 F̃α(x, y) < intI(R+)d,

which contradicts the formula (3.5). Therefore, Φ(y) is compact.
Finally, we prove that Φ is upper semi-continuous. Note that

Φ(y) = S (y)
⋂{

x ∈ X1 | F̃(x, y) ⊀ F̃(u, y), for all u ∈ S (y)
}
,

and by Lemma 2.13, we turn to verify the closeness of the correspondence T : X2 ⇒ X1, which is
defined for y ∈ X2 by

T (y) =
{
x ∈ X1 | F̃(x, y) ⊀ F̃(u, y), for all u ∈ S (y)

}
.

For this aim, assume that {yτ}τ∈D ⊂ X2 with yτ → y, and xτ ∈ T (yτ) with xτ → x ∈ X1. It suffices to
show that x ∈ T (y).

We argue by contradiction and assume x < T (y). Then, there exists u0 ∈ S (y), such that

F̃(x, y) ≺ F̃(u0, y). (3.7)

On the other hand, since xτ ∈ T (yτ), this implies that xτ ∈ X1, and for all u ∈ S (yτ), we have F̃(xτ, yτ) ⊀
F̃(u, yτ). In other words, there is ατ ∈ [0, 1], such that

F̃ατ(u, yτ) 	 F̃ατ(xτ, yτ) < intI(R+)d. (3.8)

Furthermore, there is a subnet {ατ′} of {ατ} such that ατ′ → α ∈ [0, 1]. Guaranteed by the lower semi-
continuity of S , there is a net {uτ}τ∈D such that uτ ∈ S (yτ) and uτ → u0. Then, from the continuity of
F̃, (3.8) and Lemma 2.2, it follows that

F̃α(u0, y) 	 F̃α(x, y) < intI(R+)d,

which contradicts the formula (3.7). Hence, Φ is closed. The proof is completed. �
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A special result of Theorem 3.10 is the following corollary, which was first proved by Li et al. [28].

Corollary 3.11. Let X1 and X2 be two Hausdorff topological spaces, let F = { f1, . . . , fd} : X1 ×

X2 → I(R)d be a continuous interval-vector-valued function, and let S : X2 ⇒ X1 be a continuous
correspondence with nonempty and compact values. Moreover, for each y ∈ X2, let

Φ(y) = {x ∈ S (y) | F(u, y) 	 F(x, y) < intI(R)d
+, for all u ∈ S (y)}.

Then, Φ : X2 ⇒ X1 is an upper semi-continuous correspondence with nonempty compact values.

It is noted that for the case d = 1 in Corollary 3.11, if F : X1 × X2 → R is continuous, and
S : X2 ⇒ X1 is a continuous correspondence with nonempty and compact values, then Corollary 3.11
becomes Berge’s maximum theorem (see [5]).

Theorem 3.12. Let γ = (Xi, S̃ i, si, F̃i)i∈N be an FCMGFP, where Xi is a nonempty, convex and compact
subset of Vi. Then, γ has at least one fuzzy Pareto-Nash equilibrium if the following conditions are
fulfilled: For each i ∈ N,

(1) S̃ i is a convex fuzzy mapping, and S i is continuous with nonempty and compact values;

(2) there is ki ∈ {1, . . . , d} such that f̃ i
ki

: X → F (R) is continuous;

(3) for each x−i ∈ X−i, xi 7→ f̃ i
ki

(xi, x−i) is generalized quasi-concave.

Proof. Let Φ : X ⇒ X be the correspondence defined for x = (x1, ..., xn) ∈ X by

Φ(x) =
∏
i∈N

Φi(x−i).

Here, for i ∈ N and x−i ∈ X−i, we have

Φi(x−i) =
{
ai ∈ S i(x−i) | f̃ i

ki
(ai, x−i) ⊀ f̃ i

ki
(ui, x−i), for all ui ∈ S i(x−i)

}
.

According to Theorem 3.10, each Φi : X−i ⇒ Xi is upper semi-continuous with nonempty compact
values.

Next, we verify the convexity of Φi(x−i). For this aim, let a1, a2 ∈ Φi(x−i) and λ ∈ [0, 1]. That is, for
a1, a2 ∈ S i(x−i) and for all ui ∈ S i(x−i), it follows that

f̃ i
ki

(a1, x−i) ⊀ f̃ i
ki

(ui, x−i) and f̃ i
ki

(a2, x−i) ⊀ f̃ i
ki

(ui, x−i).

Since the fuzzy mapping S̃ i is convex, from Lemma 2.11 it follows that S i(x−i) is convex. So, λa1 +

(1 − λ)a2 ∈ S i(x−i). Since xi 7→ f̃ i
ki

(xi, x−i) is generalized quasi-concave, we have

f̃ i
ki

(λa1 + (1 − λ)a2, x−i) ⊀ f̃ i
ki

(ui, x−i).

That is, λa1 + (1 − λ)a2 ∈ Φi(x−i). Therefore, Φi(x−i) is convex.
Recall that each Φi is upper semi-continuous with nonempty convex compact values, and so is Φ.

According to Theorem 2.14, there exists x∗ ∈ X such that x∗ ∈ Φ(x∗). In other words, for each i ∈ N,
x∗i ∈ S i(x∗

−i), and for all ui ∈ S i(x∗
−i), f̃ i

ki
(x∗i , x

∗
−i) ⊀ f̃ i

ki
(ui, x∗−i), that is, F̃i(x∗i , x

∗
−i) ⊀ F̃i(ui, x∗−i). This

completes the proof. �
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It should be noted that if, for each i ∈ N, F̃i : X → Rd and si(x−i) = 1 (x−i ∈ X−i) in Theorem 3.12,
then the FCMGFP becomes a constrained multi-objective game (see [48]). When each player has only
one objective in an FCMGFP, the FCMGFP degenerates into a fuzzy constrained game with fuzzy
payoffs (FCGFP). Letting d = 1 within Theorem 3.12, we obtain the following corollary.

Corollary 3.13. Let γ′ = (Xi, S̃ i, si, f̃i)i∈N be an FCGFP, where Xi is a nonempty, convex and compact
subset of Vi. Then, γ′ has at least one fuzzy Pareto-Nash equilibrium if the following conditions are
fulfilled: For each i ∈ N,

(1) S̃ i is a convex fuzzy mapping, and S i is continuous with nonempty and compact values;

(2) f̃i : X → F (R) is a continuous fuzzy-valued function;

(3) for each x−i ∈ X−i, xi 7→ f̃i(xi, x−i) is generalized quasi-concave.

Through Theorem 3.12 and Corollary 3.13, we can get the following conclusion that a fuzzy Pareto-
Nash equilibrium of FCMGFP (Xi, S̃ i, si, F̃i)i∈N must be a fuzzy Pareto-Nash equilibrium of a certain
FCGFP (Xi, S̃ i, si, f̃ i

ki
)i∈N (ki ∈ {1, . . . , d}). Therefore, the fuzzy Pareto-Nash equilibria of FCMGFP can

be transformed into the fuzzy Pareto-Nash equilibria of the FCGFP.

Theorem 3.14. Let γ = (Xi, S̃ i, si, F̃i)i∈N be an FCMGFP, where Xi is a nonempty, convex, and compact
subset of Vi, and let α = (α1, . . . , αn) ∈ [0, 1]n. Then, γ has at least one fuzzy α-Pareto-Nash
equilibrium if the following conditions are fulfilled: For each i ∈ N,

(1) S̃ i is a convex fuzzy mapping, and S i is continuous with nonempty and compact values;

(2) there is ki ∈ {1, . . . , d} such that f̃ iαi
ki

: X → I(R) is continuous;

(3) for each x−i ∈ X−i, xi 7→ f̃ iαi
ki

(xi, x−i) is generalized I(R+)-quasi-concave.

Proof. By Corollary 3.11 and the proof method of Theorem 3.12, we prove Theorem 3.14. �

In real-world games, decision makers often determine the membership degrees of each player’s
fuzzy payoffs according to their needs, that is, determine the α-cuts of fuzzy vectors. Given an α =

(α1, . . . , αn) ∈ [0, 1]n, we can obtain a corresponding fuzzy constrained multi-objective game with
interval payoffs (FCMGIP) (Xi, S̃ i, si, F̃

αi
i )i∈N from (Xi, S̃ i, si, F̃i)i∈N in Theorem 3.14. When each player

has only one objective in an FCMGIP, the FCMGIP degenerates into a fuzzy constrained game with
interval payoffs (FCGIP). Letting d = 1 within Theorem 3.14, we obtain the following corollary.

Corollary 3.15. Let γ′ = (Xi, S̃ i, si, f̃i)i∈N be an FCGFP, where Xi is a nonempty, convex and compact
subset of Vi, and let α = (α1, . . . , αn) ∈ [0, 1]n. Then, γ′ has at least one fuzzy α-Pareto-Nash
equilibrium if the following conditions are fulfilled: For each i ∈ N,

(1) S̃ i is a convex fuzzy mapping, and S i is continuous with nonempty and compact values;

(2) there is ki ∈ {1, . . . , d} such that f̃ αi
i : X → I(R) is continuous;

(3) for each x−i ∈ X−i, xi 7→ f̃ αi
i (xi, x−i) is generalized I(R+)-quasi-concave.
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According to Theorems 3.12 and 3.14, Corollaries 3.13 and 3.15, we can get that the fuzzy Pareto-
Nash equilibrium and fuzzy α-Pareto-Nash equilibrium of an FCMGFP can be transformed into weak
Pareto-Nash equilibrium of an FCGIP. The specific relationship is shown in Figure 1. It should be
noted that the membership degrees α and α′ of fuzzy payoffs can be the same or different in Figure 1.

FCMGFP (Xi, S̃ i, si, F̃i)i∈N FCGFP (Xi, S̃ i, si, f̃ i
ki

)i∈N

FCGIP (Xi, S̃ i, si, f̃ iαi
ki

)i∈NFCMGIP (Xi, S̃ i, si, F̃
αi
i )i∈N

Theorem 3.12

α = (α1, . . . , αn)

Theorem 3.14

α′ = (α1, . . . , αn)

Figure 1. The relationship between fuzzy Pareto-Nash equilibrium and fuzzy α-Pareto-Nash
equilibrium for an FCMGFP.

Example 3.16. Consider a two-player fuzzy constrained multi-objective game with fuzzy payoffs
(Xi, S̃ i, si, F̃i)i∈{1,2} as follows: For i = 1, 2,

(1) Xi = [0, 3],

(2) S̃ i : [0, 3]→ F ([0, 3]) is player i’s fuzzy constraint mapping given by

S̃ 1x2(x1) =

3
5 , if x2 ∈ [0, 3], x1 ∈ [0, 2],
0, otherwise,

and

S̃ 2x1(x2) =

4
5 , if x1 ∈ [0, 3], x2 ∈ [1, 3],
0, otherwise,

(3) si : [0, 3] → [0, 1] is defined by s1(x2) = 1
2 and s2(x1) = 3

4 , for x1, x2 ∈ [0, 3], that is, the feasible
degree on strategy x2 ∈ [0, 3] is 1

2 for player 1, and the feasible degree on strategy x1 ∈ [0, 3] is 3
4

for player 2.

(4) F̃i : [0, 3] × [0, 3] → F0(R)2 is the triangular fuzzy-vector-valued function given for (x1, x2) ∈
[0, 3] × [0, 3] by

F̃i(x1, x2) = ( f̃i1(x1, x2), f̃i2(x1, x2)),

where
f̃11(x1, x2) = (2, 3, 4)x1 − (3, 4, 5)x2, f̃12(x1, x2) = (1, 2, 3)x2

2 − (2, 3, 4)x2
1.

f̃21(x1, x2) = (3, 4, 5)x2 − (2, 3, 4)x1, f̃22(x1, x2) = (2, 3, 4)x2
1 − (1, 2, 3)x2

2.

For such a game, the conditions within Theorem 3.12 are satisfied.
First, for i = 1, 2, it is not difficult to verify the convexity of S̃ i. The correspondence S i : [0, 3] ⇒

[0, 3] induced by the fuzzy mapping S̃ i is precisely given by

S 1(x2) = (S̃ 1x2)
s1(x2) = {x1 ∈ [0, 3] | S̃ 1x2(x1) ≥ s1(x2)} = [0, 2], for x2 ∈ [0, 3],
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S 2(x1) = (S̃ 2x1)
s2(x1) = {x2 ∈ [0, 3] | S̃ 2x1(x2) ≥ s2(x1)} = [1, 3], for x1 ∈ [0, 3].

Obviously, S i is continuous with nonempty convex compact values.
Second, for all (x1, x2, α) ∈ [0, 2] × [1, 3] × [0, 1], observe that

f̃ α11(x1, x2) = [2 + α, 4 − α]x1 − [3 + α, 5 − α]x2,

f̃ α12(x1, x2) = [1 + α, 3 − α]x2
2 − [2 + α, 4 − α]x2

1,

f̃ α21(x1, x2) = [3 + α, 5 − α]x2 − [2 + α, 4 − α]x1,

f̃ α22(x1, x2) = [2 + α, 4 − α]x2
1 − [1 + α, 3 − α]x2

2.

We see that f̃ α11(x1, x2) = (2+α)x1− (3+α)x2 and f̃ α11(x1, x2) = (4−α)x1− (5−α)x2 are both continuous.

So, f̃ α11 is continuous. Similarly, we can also verify the continuity of f̃ α21. According to Definition 3.1,
the second condition of Theorem 3.12 is fulfilled.

Finally, for α ∈ [0, 1], by Lemma 2.6, x1 7→ f̃ α11(x1, x2) is non-decreasing for each x2 ∈ [1, 3],
and x2 7→ f̃ α21(x1, x2) is non-decreasing for each x1 ∈ [0, 2]. From Lemma 3.7, the considered game
also fulfills the last condition of Theorem 3.12. By calculation, we can deduce that (2, 3) is a fuzzy
Pareto-Nash equilibrium of the game (Xi, S̃ i, si, f̃i1)i∈{1,2}.

In fact, for α ∈ [0, 1], u1 ∈ [0, 2], u2 ∈ [1, 3], we immediately arrive at the following consequences:

f̃ α11(u1, 3) 	 f̃ α11(2, 3) = [(4 − α)(u1 − 2), (2 + α)(u1 − 2)] < intI(R+),

f̃ α21(2, u2) 	 f̃ α21(2, 3) = [(5 − α)(u2 − 3), (3 + α)(u2 − 3)] < intI(R+).

Furthermore, for all u1 ∈ [0, 2], u2 ∈ [1, 3], f̃11(2, 3) ⊀ f̃11(u1, 3), and f̃21(2, 3) ⊀ f̃21(2, u2). From
Definition 3.8, (2, 3) is a fuzzy Pareto-Nash equilibrium of the game (Xi, S̃ i, si, f̃i1)i∈{1,2}.

Similarly, f̃ α12 and f̃ α22 are continuous. At the same time, for α ∈ [0, 1], by Lemma 2.8, x1 7→

f̃ α12(x1, x2) is non-increasing for each x2 ∈ [1, 3], and x2 7→ f̃ α22(x1, x2) is non-increasing for each
x1 ∈ [0, 2]. For all u1 ∈ [0, 2], u2 ∈ [1, 3],

f̃ α12(u1, 1) 	 f̃ α12(0, 1) = [(4 − α)(0 − u2
1), (2 + α)(0 − u2

1)] < intI(R+),

f̃ α22(0, u2) 	 f̃ α22(0, 1) = [(3 − α)(1 − u2
2), (1 + α)(1 − u2

2)] < intI(R+),

that is, f̃12(0, 1) ⊀ f̃12(u1, 1), and f̃22(0, 1) ⊀ f̃22(1, u2). Hence, (0, 1) is a fuzzy Pareto-Nash equilibrium
of the game (Xi, S̃ i, si, f̃i2)i∈{1,2}. In the same way, we can verify that (2, 1) and (0, 3) are two fuzzy
Pareto-Nash equilibria of the games (Xi, S̃ i, si, f̃ii)i∈{1,2} and (Xi, S̃ i, si, f̃i j( j,i))i∈{1,2}. Therefore, (2, 3),
(0, 1), (2, 1) and (0, 3) are four fuzzy Pareto-Nash equilibria of the game (Xi, S̃ i, si, F̃i)i∈{1,2}. �

Remark 3.17. For any given α = (α1, α2) ∈ [0, 1]2, from Definition 3.9, (2, 3), (0, 1), (2, 1) and (0, 3)
are not only four fuzzy Pareto-Nash equilibria of (Xi, S̃ i, si, F̃i)i∈{1,2} but also four fuzzy α-Pareto-Nash
equilibria of (Xi, S̃ i, si, F̃i)i∈{1,2} in Example 3.16.
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4. Stability of the fuzzy Pareto-Nash equilibria set

The last section presents a comprehensive discussion on a bounded rationality model for FCMGFPs.
First, we construct a metric space of all FCMGFPs with fuzzy Pareto-Nash equilibria. Then, we
verify the completeness of the metric space. Furthermore, with the help of the nonlinear scalarization
function, we introduce a rationality function for FCMGFP. Finally, we prove that the structural stability
((γ, ε)-stability) of this model implies its robustness to ε-equilibria ((γ, ε)-robustness).

4.1. The metric space of all FCMGFPs with fuzzy Pareto-Nash equilibria

For each i ∈ N, let (Xi, di) be a compact metric space, and let Γ be the set of all FCMGFPs, where
each γ = (Xi, S̃ i, si, F̃i)i∈N satisfies the following conditions:

(1) S i : X−i ⇒ Xi is a continuous correspondence with nonempty and compact values induced by S̃ i;

(2) F̃i : X → F (R)d is continuous on X with

sup
(x,α)∈X×[0,1]

n∑
i=1

‖F̃α
i (x)‖I(R)d < +∞;

(3) there exists x = (x1, . . . , xn) ∈ X, for each i ∈ N, xi ∈ S i(x−i), and for each ui ∈ S i(x∗
−i), F̃(x∗i , x

∗
−i) ⊀

F̃i(ui, x∗−i).

Denote by E(γ) all fuzzy Pareto-Nash equilibria of γ ∈ Γ. Clearly, E : Γ⇒ X is a correspondence, and
E(γ) , ∅.

For γ j = (Xi, S i j, F̃i j)i∈N ∈ Γ with j = 1, 2, define

ρ(γ1, γ2) = sup
(x,α)∈X×[0,1]

n∑
i=1

‖F̃α
i1(x) 	 F̃α

i2(x)‖I(R)d + sup
x∈X

n∑
i=1

Hi(S i1(x−i), S i2(x−i))

where Hi denotes the Hausdorff distance on K0(Xi), the set of all nonempty compact subsets in Xi. It is
easy to show that (Γ, ρ) is a metric space.

Lemma 4.1. The metric space (Γ, ρ) is complete.

Proof. Let {γm}m be a Cauchy sequence in Γ, where γm = (Xi, S im, F̃im)i∈N for each m ∈ N. Then, for
ε > 0, there is Z ∈ N such that for all m, p > Z,

ρ(γm, γp) = sup
(x,α)∈X×[0,1]

n∑
i=1

‖F̃α
im(x) 	 F̃α

ip(x)‖I(R)d + sup
x∈X

n∑
i=1

Hi(S im(x−i), S ip(x−i)) < ε.

Associated with each i ∈ N are the following consequences. First, for each (x, α) ∈ X × [0, 1], the
sequence {F̃α

im(x)}m is a Cauchy sequence in I(R)d. Second, for each x−i ∈ X−i, the sequence {S im(x−i)}m
is a Cauchy sequence in Xi .

In order to prove the existence of a limit γ ∈ Γ of {γm}m, we divide our proof into three steps in the
following.

Step I. We show that there is S i : X−i ⇒ Xi such that S im → S i, and S i is continuous with convex
compact values on X−i.
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From the completeness of (K0(Xi),Hi), there is S i : X−i ⇒ Xi such that S im(x−i) → S i(x−i) for all
x−i ∈ X−i. Recall that each S im is continuous with convex compact values on X−i, and so is S i.

Step II. We prove that there is F̃i : X → F (R)d such that F̃im → F̃i, and F̃i is continuous on X with

sup
(x,α)∈X×[0,1]

n∑
i=1

‖F̃α
i (x)‖I(R)d < +∞. (4.1)

Since (I(R)d, ‖ · ‖I(R)d ) is complete, for each α ∈ [0, 1], there is F̃α
i : X → I(R)d such that F̃α

im(x)→
F̃α

i (x) for all x ∈ X.
As for the continuity of F̃i on X, notice that for any {(xm, αm)}m ⊂ X × [0, 1], we have

(xm, αm)→ (x, α), as m→ ∞.

Since F̃α
im(x) is continuous on X × [0, 1], by Lemma 2.3, we have

‖F̃αm
i (xm) 	 F̃α

i (x)‖I(R)d ≤ ‖F̃αm
i (xm) 	 F̃αm

im (xm)‖I(R)d + ‖F̃αm
im (xm) 	 F̃α

i (x)‖I(R)d

≤ ‖F̃αm
i (xm) 	 F̃αm

im (xm)‖I(R)d + ‖F̃αm
im (xm) 	 F̃α

im(x)‖I(R)d

+ ‖F̃α
im(x) 	 F̃α

i (x)‖I(R)d

≤ 2 sup
(x,α)∈X×[0,1]

‖F̃α
im(x) 	 F̃α

i (x)‖I(R)d + ‖F̃αm
im (xm) 	 F̃α

im(x)‖I(R)d

→ 0 as m→ ∞.

That is, F̃i is continuous for all i ∈ N.
Finally, (4.1) follows from the estimate

sup
(x,α)∈X×[0,1]

n∑
i=1

‖F̃α
im(x)‖I(R)d < +∞

together with the convergence F̃α
im(x)→ F̃α

i (x) for all (x, α) ∈ X × [0, 1].
Step III. We now verify that there exists x∗ ∈ X, for each i ∈ N, x∗i ∈ S i(x∗

−i), and for each
ui ∈ S i(x∗

−i), F̃(x∗i , x
∗
−i) ⊀ F̃i(ui, x∗−i).

In fact, from {γm}m ⊂ Γ it follows that there exists a sequence {xm}m ⊂ X such that each xm is a
fuzzy Pareto-Nash equilibrium of γm. In other words, for each i ∈ N, xm

i ∈ S im(xm
−i), and for each

ui ∈ S im(xm
−i), F̃im(xm

i , x
m
−i) ⊀ F̃im(ui, xm

−i). That is, there is αim ∈ [0, 1] such that for each ui ∈ S im(xm
−i),

F̃αim
im (ui, xm

−i) 	 F̃αim
im (xm

i , x
m
−i) < intI(R+)d. (4.2)

Because of the compactness of X, without loss of generality, we may assume xm → x∗ ∈ X. Since

Hi(S im(xm
−i), S i(x∗−i)) ≤ Hi(S im(xm

−i), S i(xm
−i)) + Hi(S i(xm

−i), S i(x∗−i)),

from the continuity of S i, it follows that Hi(S im(xm
−i), S i(x∗

−i))→ 0 as m→ ∞. Thus, we have

di(x∗i , S i(x∗−i)) ≤ di(x∗i , x
m
i ) + di(xm

i , S im(xm
−i)) + Hi(S im(xm

−i), S i(x∗−i))
= di(x∗i , x

m
i ) + Hi(S im(xm

−i), S i(x∗−i))→ 0,
(4.3)
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which implies that x∗i ∈ S i(x∗
−i).

For all ui ∈ S i(x∗
−i), we note that the sets S i(x∗

−i) and S im(x∗
−i) are both compact. Thus, from the

convergence S im(xm
−i) → S i(x∗

−i), there is um
i ∈ S im(xm

−i) such that um
i → ui as m → ∞. Then, by (4.2),

we obtain
F̃αim

im (um
i , x

m
−i) 	 F̃αim

im (xm
i , x

m
−i) < intI(R+)d. (4.4)

Moreover, there is a subsequence of {αim} such that αim → αi (for the sake of simplicity, {αim} also
denotes its subsequence). Since F̃im is continuous, from Lemma 2.3, it follows that

‖(F̃αim
im (xm

i , x
m
−i)) 	 F̃αi

i (x∗i , x
∗
−i)‖I(R)d ≤ ‖(F̃αim

im (xm
i , x

m
−i)) 	 F̃αim

i (xm
i , x

m
−i)‖I(R)d

+ ‖F̃αim
i (xm

i , x
m
−i) 	 F̃αi

i (x∗i , x
∗
−i)‖I(R)d

≤ sup
(x,α)∈X×[0,1]

‖F̃α
im(x) 	 F̃α

i (x)‖I(R)d

+ ‖F̃αim
i (xm

i , x
m
−i) 	 F̃αi

i (x∗i , x
∗
−i)‖I(R)d

→ 0 as m→ ∞.

(4.5)

Thus, as m→ ∞,
F̃αim

im (xm
i , x

m
−i)→ F̃αi

i (x∗i , x
∗
−i). (4.6)

Similarly, it can be verified that as m→ ∞,

F̃αim
im (um

i , x
m
−i)→ F̃αi

i (ui, x∗−i). (4.7)

Then, combining (4.4), (4.6) and (4.7), finish Step III. The proof is completed. �

4.2. The bounded rationality model for FCMGFPs

In order to construct the bounded rationality model for FCMGFPs, we first establish a nonlinear
scalarization function for an interval vector by the Minkowski functional. This nonlinear scalarization
function yields a principle of constructing bounded rationality functions.

Definition 4.2. For any fixed e = (e1, . . . , ed) ∈ intI(R+)d, the nonlinear scalarization function ξe :
I(R)d → R+ is defined for A = (A1, . . . , Ad) ∈ I(R)d by

ξe(A) = inf{ r ∈ R+ | A < r · e + intI(R+)d}.

Clearly, ξe(A) = min{ξe1(A1), . . . , ξed (Ad)}.

Lemma 4.3. The nonlinear scalarization function ξe : I(R)d → R+ has the following properties:

(1) ξe is positively homogeneous and continuous.

(2) ξe(A) ≤ r if and only if A < r · e + intI(R+)d.

Proof. See Appendix C. �

Next, we consider the bounded rationality model for FCMGFPsM = {Γ, X,K,R} as follows:

(1) (Γ, ρ) is a complete metric space;
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(2) X is a compact metric space;

(3) K : Γ × X ⇒ X is defined by
K(γ, x) =

∏
i∈N

S i(x−i),

for all (γ, x) ∈ Γ × X;

(4) k : Γ⇒ X is defined by
k(γ) = {x ∈ X | x ∈ K(γ, x)}

for all γ ∈ Γ;

(5) R : Graph(k) → R+ is a rationality function, given by choosing e ∈ intI(R+)d and then for each
x ∈ k(γ) defining

R(γ, x) = max
i∈N

min
α∈[0,1]

max
ui∈S i(xî)

ξe(F̃α
i (ui, x−i) 	 F̃α

i (xi, x−i)).

It is clear that R(γ, x) ≥ 0 for each γ ∈ Γ and x ∈ k(γ). From Lemma 4.3, R(γ, x) = 0 if and only if x is
a fuzzy Pareto-Nash equilibrium of γ.

For any γ ∈ Γ and ε ≥ 0, the set of all ε-equilibria of γ is defined as

E(γ, ε) = {x ∈ k(γ) | R(γ, x) ≤ ε}.

Lemma 4.4. Let γ ∈ Γ and ε ≥ 0 with x ∈ k(γ). Then, x ∈ E(γ, ε) if and only if for each i ∈ N, there is
αi ∈ [0, 1] such that for all ui ∈ S i(x−i),

F̃αi
i (ui, x−i) 	 F̃αi

i (xi, x−i) < ε · e + intI(R+)d. (4.8)

Consequently, E(γ, 0) = {x ∈ k(γ) | R(γ, x) = 0} , ∅ is the set of fuzzy Pareto-Nash equilibria of γ.

Proof. Assume that x ∈ E(γ, ε), i.e., R(γ, x) ≤ ε. Then,

max
i∈N

min
α∈[0,1]

max
ui∈S i(x−i)

ξe(F̃α
i (ui, x−i) 	 F̃α

i (xi, x−i)) ≤ ε.

So, for each i ∈ N, there is αi ∈ [0, 1] such that ξe(F̃
αi
i (ui, x−i) 	 F̃αi

i (xi, x−i)) ≤ ε for all ui ∈ S i(x−i).
Using Lemma 4.3, we obtain (4.8).

Conversely, if, for each i ∈ N, there is αi ∈ [0, 1] such that (4.8) holds for all ui ∈ S i(x−i), then from
Lemma 4.3, ξe(F̃

αi
i (ui, x−i) 	 F̃αi

i (xi, x−i)) ≤ ε for all ui ∈ S i(x−i), and thus, R(γ, x) ≤ ε. �

Theorem 4.5. The bounded rationality model for FCMGFPs M = {Γ, X,K,R} has the following
properties:

(1) The correspondence E : Γ⇒ X is upper semi-continuous;

(2) there exists a dense Gδ subset Q of Γ such thatM is structurally stable at every γ ∈ Q;

(3) if the modelM is structurally stable at γ ∈ Γ, thenM is robust to ε-equilibria at γ ∈ Γ, andM is
robust to ε-equilibria at γ ∈ Q;

(4) if γ ∈ Q, γn → γ and εn → 0, then H(E(γn, εn), E(γ))→ 0;
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(5) if E(γ) is a singleton set, thenM is structurally stable and robust to ε-equilibria at γ ∈ Γ;

(6) if the modelM is (γ, ε)-stable, thenM is (γ, ε)-robust.

To prove Theorem 4.5, we need the following lemmas.

Lemma 4.6. The correspondence k : Γ⇒ X is upper semi-continuous.

Proof. According to Lemma 2.12, we only need to show that k is closed on Γ. That is, the set
Graph(k) = {(γ, x) ∈ Γ × X | x ∈ k(γ)} is closed on Γ × X.

Assume that {(γm, xm)}m ⊂ Graph(k) with (γm, xm)→ (γ, x). We turn to show that (γ, x) ∈ Graph(k).
From the completeness of (Γ, ρ), it follows that γ ∈ Γ. Meanwhile, by xm ∈ k(γm), we obtain xm

i ∈

S im(xm
−i) for all i ∈ N. Moreover, in the same way as the proof of (4.3), we get xi ∈ S i(x−i) for all i ∈ N.

Thus, x ∈ k(γ) and (γ, x) ∈ Graph(k). �

Lemma 4.7. The rationality function R is lower semi-continuous at (γ, x) for any (γ, x) ∈ Γ × X.

Proof. Let r ∈ R, and we aim to prove the closeness of the lower level set

{(γ, x) ∈ Γ × X | R(γ, x) ≤ r}.

Suppose that {(γm, xm)}m ⊂ Γ × X with R(γm, xm) ≤ r for all m, and (γm, xm) → (γ, x). We turn to show
that R(γ, x) ≤ r.

Since R(γm, xm) ≤ r, for each i ∈ N, there is αi ∈ [0, 1] such that

max
ui∈S im(xm

−i)
ξe(F̃

αi
im(ui, xm

−i) 	 F̃αi
im(xm

i , x
m
−i)) ≤ r. (4.9)

Meanwhile, note that the sets S i(x−i) and S im(xm
−i) are both compact. For any ui ∈ S i(x−i), from

S im(xm
−i) → S i(x−i), there exists um

i ∈ S im(xm
−i) such that um

i → ui. Combining this with (4.9), we
obtain

ξe(F̃
αi
im(um

i , x
m
−i) 	 F̃αi

im(xm
i , x

m
−i)) ≤ r. (4.10)

By an argument analogous to the proof of (4.5), we can derive that

F̃αi
im(xm

i , x
m
−i)→ F̃αi

i (xi, x−i) (4.11)

and
F̃αi

im(um
i , x

m
−i)→ F̃αi

i (ui, x−i). (4.12)

Using the continuity of ξe, (4.11) and (4.12), let m→ ∞ within (4.10), and we get

ξe(F̃
αi
i (ui, x−i) 	 F̃αi

i (xi, x−i)) ≤ r.

By the definition of R, it follows that

R(γ, x) = max
i∈N

min
α∈[0,1]

max
ui∈S i(x−i)

ξe(F̃α
i (ui, x−i) 	 F̃α

i (xi, x−i)) ≤ r.

The proof is completed. �

Proof of Theorem 4.5. Combining Lemma 2.17 with Lemmas 4.1, 4.6 and 4.7, we can directly obtain
Theorem 4.5.
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5. Conclusions

In this paper, we investigate a new class of fuzzy constrained multi-objective games with fuzzy
payoffs. First, by α-cuts of fuzzy vectors, we establish the partial order of fuzzy vectors as well
as the continuity and generalized quasi-concavity of fuzzy vector-valued functions. Second, we
prove Berge’s maximum theorem for fuzzy vector-valued functions (Theorem 3.10). Combining
our result with the Fan-Glicksberg fixed point theorem leads to two existence theorems of fuzzy
Pareto-Nash equilibria and fuzzy α-Pareto-Nash equilibria for FCMGFPs (Theorems 3.12 and 3.14).
Finally, through a nonlinear scalar method, we construct the bounded rationality modelM, a class of
FCMGFPs with bounded rational functions. After verifying the lower semi-continuity of the bounded
rational function, a series of relevant conclusions about the structural stability ((γ, ε)-stability) and
the robustness to ε-equilibria ((γ, ε)-robustness) of the model are proved (Theorem 4.5). The results
obtained in this paper are generalizations and extensions of relevant conclusions in some of the
literature, such as in [24, 28, 44, 48, 52]. In the future, we will focus on the application of FCMGFPs
in practical problems. In addition, when considering mixed strategies, the multi-objective bi-matrix
game with fuzzy payoffs is a special case of the two-player multi-objective game with fuzzy payoffs.
The conditions for the existence and the specific calculation method of fuzzy Pareto-Nash equilibrium
for this game are the issues we will discuss in the future. This paper discussed the stability of the
FCMGFP in the framework of bounded rationality. Next, we intend to study the general stability of
fuzzy Pare-Nash equilibrium for the FCMGFP from the perspective of essential stability.

Appendix A. Proof of Lemma 2.3.

Proof. Let A = (A1, . . . , Ad), B = (B1, . . . , Bd), C = (C1, . . . ,Cd), by (2.1) and the Minkowski
inequality, we get

‖A 	 B‖I(R)d =

 d∑
i=1

‖Ai 	 Bi‖
2
I(R)

1/2

≤

 k∑
i=1

[‖Ai 	Ci‖I(R) + ‖Ci 	 Bi‖I(R)]2

1/2

≤

 k∑
i=1

‖Ai 	Ci‖
2
I(R)

1/2

+

 k∑
i=1

‖Ci 	 Bi‖
2
I(R)

1/2

= ‖A 	 C‖I(R)d + ‖C 	 B‖I(R)d .

�

Appendix B. Proof of Lemma 3.7.

Proof. Let Ã ∈ F (R)d, let x1, x2 ∈ X, and let λ ∈ [0, 1]. Suppose that

F̃(x1) ⊀ Ã and F̃(x2) ⊀ Ã. (5.1)

We only need to prove that
F̃(λx1 + (1 − λ)x2) ⊀ Ã. (5.2)

AIMS Mathematics Volume 8, Issue 7, 15907–15931.



15927

From (5.1), there are α1, α2 ∈ [0, 1] such that

F̃α1(x1) ⊀ Ã
α1 and F̃α2(x2) ⊀ Ã

α2
.

We will discuss the following two cases.
Case 1: x1 ≤ x2. Since F̃α1 is non-decreasing, we have F̃α1(x1) � F̃α1(λx1 + (1 − λ)x2). From

F̃α1(x1) ⊀ Ã
α1 , it follows that F̃α1(λx1 + (1 − λ)x2) ⊀ Ã

α1 .
Case 2: x1 > x2. Since F̃α2 is non-decreasing, we have F̃α2(x2) � F̃α2(λx1 + (1 − λ)x2). From

F̃α2(x2) ⊀ Ã
α2 , it follows that F̃α2(λx1 + (1 − λ)x2) ⊀ Ã

α2 .
As mentioned for the above two cases, (5.2) holds. If F̃α is non-increasing for each α ∈ [0, 1], (5.2)

holds by similar argument. The proof is completed. �

Appendix C. Proof of Lemma 4.3.

Proof. (1) Let e = ([e1, e1], . . . , [ed, ed]) and A = ([a1, a1], . . . , [ad, ad]). For each t > 0,

ξe(t · A) = inf{r ∈ R+ | t · A < r · e + intI(R+)d}

= min{max{
ta1

e1

, 0}, . . . ,max{
tad

ed

, 0}}

= t ·min{max{
a1

e1

, 0}, . . . ,max{
ad

ed

, 0}}

= t · ξe(A),

which shows the positive homogeneity of ξe.
In what follows, we verify the continuity of ξe. If

A = ([a1, a1], . . . , [ad, ad]) < intI(R+)d,

then there is i such that [ai, ai] < intI(R+), and thus the definition of ξe implies that ξe(A) = 0.
Consequently, for ε > 0, taking δ = min{ε · e1, . . . , ε · ed}, we see that ξe(A′) < ε for all A′ ∈ o(A, δ).
As for the case

A = ([a1, a1], . . . , [ad, ad]) ∈ intI(R+)d,

from the fact that [ai, ai] ∈ intI(R+) for all i, together with the definition of ξe, it follows that

ξe(A) = min
{

a1

e1

, . . . ,
ad

ed

}
.

Then, for ε > 0, taking δ = min{ε · e1, . . . , ε · ed}, we see that |ξe(A′) − ξe(A)| < ε for all A′ ∈ o(A, δ).
(2) Let ξe(A) = r′. If r′ ≤ r, then the definition of ξe implies that A < r′ · e + intI(R+)d, and thus,

A < r · e + intI(R+)d for all r′ < r. Conversely, if A < r · e + intI(R+)d, then the definition of ξe implies
that ξe(A) ≤ r. �
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