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Abstract: The comprehension of inequalities in preinvexity is very important for studying fractional
calculus and its effectiveness in many applied sciences. In this article, we develop and study of
fractional integral inequalities whose second derivatives are preinvex functions. We investigate and
prove new lemma for twice differentiable functions involving Riemann-Liouville(R-L) fractional
integral operator. On the basis of this newly developed lemma, we make some new results regarding
of this identity. These new results yield us some generalizations of the prior results. This study builds
upon on a novel new auxiliary result which enables us to develop new variants of Ostrowski type
inequalities for twice differentiable preinvex mappings. As an application, several estimates concerning
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1. Introduction

The study of integral inequality is an interesting area for research in mathematical analysis [1,2].
The fundamental integral inequalities can be instrumental in cultivating the subjective properties of
convexity. The existence of massive literature surrounding integral inequalities for convex functions
[3-7] depicts the importance of this topic. The most beautiful fact about convex function is that,
it has a very elegant representation based on an inequality presented when the functional value of
a linear combination of two points in its domain does not exceed the linear combination of the
functional values at those two points. Fractional calculus owes its starting point to whether or not
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the importance of a derivative to an integer order could be generalized to a fractional order which
is not an integer. Following this unique conversation between L'Hopital and Leibniz, the concept of
fractional calculus grabbed the eye of some extraordinary researchers like Euler, Laplace, Fourier,
Lacroix, Abel, Riemann, and Liouville. Over time, fractional operators have been differentiated
with their singularity, locality and having general forms with the improvements made in their kernel
structures. In this sense, based on the basic concepts of fractional analysis, Riemann-Liouville(R-L)
and Caputo operators, various new trends have been successful. Fractional integral inequalities are
marvelous tools for building up the qualitative and quantitative properties of preinvex functions. There
has been a ceaseless development of intrigue in such a region of research so as to address the issues of
different utilizations of these variants. In 1938, Ostrowski inequality established the following useful
and interesting integral inequality, (see [12] and [13]). This review assumed a vital part in growing and
getting varieties of well-known integral inequalities with the assistance of fractional integral operators.
Then again, by characterizing various forms of Riemann-Liouville(R-L) fractional operator somewhat
recently, new forms and refinements of integral inequalities involving differentiable functions have
been presented. Studies in the field of fractional calculus have carried another point of view and
direction in different fields of applied sciences. It has revealed insight into numerous real-life issues
with the utilizations of recently characterized fractional operators.

For recent result and their related some generalizations, variants and extensions concerning
Ostrowski inequality (see [9, 10, 14—17]).

The aim of this paper is to establish some integral inequalities for functions whose derivatives in
absolute value are preinvex. Now we recall some notions in invexity analysis which will be used
through the paper (see [20,21,24,26,28]) and references therein.

Letg: K — R andn: K x K — R, where K is a nonempty set in ‘R”, be continuous functions.
Definition [19] A function g : K C R = (-0, 00) — ‘R is said to be convex, if we have

gve+(1—=v)e)<vg(o)+(1—-v)g(e).
forall c,e € K andv € [0, 1].
Definition [25] The set K c ‘R” is said to be invex with respect to 7(.,.), if for every ¢,e € K and

v e [0,1]
c+vn(e,c) e K.

The above set K is also called n-connected set.
It is obvious that every convex set is invex with respect to 7(e, ¢) = ¢ — ¢ but there exist invex sets

which are not convex [20].
Definition The function g on the invex set K is said to be preinvex with respect to 7 if

gle+wn(e,0) < (-v)gl) +vg(e), Ve, ee K, vel0,1].

The function —g is said to be preconcave if and only if g is preinvex .

The important note that every convex function is a preinvex function but the converse is not true [21].
For example g(v) = —|v|, ¥ v € R, is not convex function but it is preinvex function with respect to

e—¢ if c¢e >0,
n(e,C)={ U

c—e if ce<O.
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We also want the following hypothesis regarding the function n which is due to Mohan et al. [22].
Condition-C: Let K c R” be an open invex subset with respect ton : K X K — R. For any ¢,¢ € K
andv € [0, 1]
ne,e+vn(,e) = -vn(,e),
n(,e+vn(,e)= (1-v)n(,e). (L.1)

For any ¢,e € K and vy, v, € [0, 1] from condition C, we have

ne+van(,e), e+vinee)= (va—v)n(ee).

If g is a preinvex function on [c, ¢ + 77(e, ¢)] and the mapping 71 satisfies condition C, then for every
v € [0, 1], from Eq (1.1), it yields that

lg(c+vn(e, )l = lg(c+n(e, )+ =v)n(cc+n(e0)l

< vlgle+n(e, )+ -v)gl,
and
lg(c+ (A =v)n(e, Pl = lglc+n(e,0)+vy(cc+n(e, )
< (I-v) lg(e+n(e, )l +vig()].

There are many vector functions that satisfy the condition C in [25], which trivial case i (¢, ¢) = c—e.
For example suppose K = R\{0} and

e—¢ if ¢>0,e>0
ne,c)=49 e—c¢ if ¢<0,e<0
—e, otherwise

The set K is invex set and 7 satisfies the condition C.
Noor et al. [23], proved the following Hermite-Hadamard type inequalities.

Theorem 1.1. Let g : K = [¢,c + n(e, )] — (0,00) be a preinvex function on the interval of real
numbers K° with n(e, ¢) > 0, then the following inequalities hold:

2¢+7(e,0) 1 o e g(0) + g(e)
g( > )Sn(e,c)f: g(x) de—z .

Then Riemann-Liouville(R-L) fractional integrals of order &£ > 0 with ¢ > 0 are defined as follows:

1 3
Jog(3) = @f G- g dv, 3>¢

and : .
JigB3) = —f -3 g dv, 3<ec.
g r@ J. g

In [30], Sarikaya et al. also described the inequality in fractional integral version. In this study,
considering the above mentioned theoretical framework, firstly, an integral identity which is candidate
to produce Ostrowski type inequalities has been proved. With the help of such identity like Holder,
Power mean, Young’s inequalities, Holder-Iscan, Improved power means inequality and convexity, a
new type of inequality, Ostrowski type inequalities, has been obtained.
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2. Main results

In this section, we give Ostrowski inequalities for Riemann-Liouville(R-L) fractional integrals
operator are obtained for a differentiable functions on (¢, ¢ + 7 (e, ¢)). For this purpose, we give a new
identity that involve Riemann-Liouville(R-L) fractional integrals operator whose second derivatives

are preinvex functions.

Lemma 2.1. Suppose that a mapping g : [¢, c+n (e, )] = R is twice differentiable with ¢ < ¢ +1 (e, ¢).

If g" € Ly[c,c+n(e, 0)], then for all 3 € [c,c +n(e,¢)] and € > 0, the following equality

77€+1 (37 C) - 77€+1 (ea 3) , _ ns (39 C) + 778 (e’ 3)
e+ Do ° () (0.0 g®)
I'e+1)

n (e’ C) {] [e+1G,0)]~ -8 (C) + J[e+77(3 t)]4_g (e)}

B r]a+2 (3’ C) 1
e+ Dn(e,o)
77€+2 (e’ 3) 1 s+1 //
(e+1)n(e,0)

Vg (c+ v G, 0) dv

(e+vn(@3,e)dv,

satisfies forv € [0, 1] .

Proof. Let us assume that

778+2 (3’ C) ! 8+1 //
(e+1)n(e,0)
na+2 (e, 3) 1
(e+1)n(e,0
PG . 772 (¢, 3)
T+ Dnle,o ' (e+ Dn(eo)

(c+wvw@B,0)dv

Ve (e +vn G, ) dv,

where

1
Ilzf e (c+ v G, ) dv
0

v (c+ v 3, 0) ! f e+ DV g (c+mGo)

77(3’ C) 77(3’ C)

gQB e+l ,
= p— E , d

1G9 1G o Jo vV g (c+vn(3,0)dv

’ 1 1 1

B 5(3(32) - ni(; c)g(a) ¥ 877(8(Jr )) vlg(c+vnG,0)dv

g ®) e+1 [(g+2)
=060 G0t g o Tears O

and similarly

1
L= f Ve (e + v G, ©) dv
0

2.1)

(2.2)
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Vg (e +vn (G, )| Le+ D g e+ G, ) 1,

14 ¢) nG, e)
' 1
) ng(3(3z) - 7;9 (; ©) Vi g (c+vn (G, 0)dv
8B e+l 8(8 )f
1y 7260t Pt e Lg(e+v G, ) dv
_&B e+l T(e+2)

n(e3 (e,a)g(3) T () o8 (8)

Combining /; and I, with (2.2), we get (2.3). O
Remark 2.1. Ifwe sete = 1 and n(c,e) = ¢ — e in Lemma 2.1, we get (Lemma 1 in [11]).

Theorem 2.1. Assume that all the assumptions as defined in Lemma 2.1 and |g"| is preinvex function
on [¢,c +n (e, )], then for all € > 0, the following inequality

7 G0 - (e,3) n° (3, 0) + 177 (e, 3)
e+ Do g G- (o0 g®® (2.3)
I'e+1)
+ n (e, ) {J[t+77(s ol 80+ J[E+n(3 o8 (¢) }'
778+2 (3’ C) 7 ’” 1
S+ DE+3)n0, c){lg @l +lg” m}
n°*% (¢, 3)

)
+2)

Proof. From Lemma 2.1 and since |g”| is preinvex function on [¢, ¢ + 77 (e, ¢)], we obtain

T c){ 8" O +1g" (O] =

satisfies for v € [0, 1].

778”(((;;01)—::; lc()e’ ) g @G- G, :7)(2 ?) (© 3)g ®3)
+ F(e:c)l) { T o 8O+ T g (e) }‘
B (8112)% g v )
(87112)% | vlg” (e + v G, ) ldv
7 G, 0

1
__r "7 c+1 ” _ 9
= Erhn@o Jo v {vlg @I+A=-v)g (c)l}dv

ns+2 (e’ 3) 1
(e+1Dn(e0)
- e+ G, C)
T+ De+3)ne0
e+ (e, 3)
(e+ D(e+3)7(e0

8“{ 8" G+ (1 =)lg” (O v
1
+ 2}

{le” @1 +1g” @1 - i 5}

{|g" G +1g” (O
E
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This completes the proof. O

Remark 2.2. If we set € = 1 and n(c,¢) = ¢ — ¢, then from Theorem 2.1, we get (Theorem 4 in [11])
with s = 1.

Corollary 2.1. By using Theorem 2.1 with |g”| < M, we get the following inequality

778+1 (3,0 — 778+1 (¢,3) , ~ ns G, o) + 778 (e.3)

E+Dneo  © ® (e 0 46
FEe+1)( . )

’ W{J[Hmmrg (O + a1 8 (©) }'

1 &+2 £+2
SA/[((S+ 1) (e+2)n(e, c)) [77 3.0 +7 (6,3)].

Remark 2.3. If we set € = 1 and n(c,¢) = ¢ — e, then from Corollary 2.1, we recapture (Theorem
2.1, [32]).

Corollary 2.2. Ifwe setn(c,e) = ¢ — e and 3 = 5, in Corollary 2.1, we get the mid-point inequality
F(8+1){ } (e—c)‘g‘l ‘
— - +JE —\—
‘ o Vi 8(0) + Jey-8 () > g®)
(e _ c)8+1 ( 1 )
- 2841 (e+1)(e+2))

Theorem 2.2. Assume that all the assumptions as defined in Lemma 2.1 and |g"|%, g > 1 is preinvex
function on [c, ¢ + 1 (e, ¢)], then for all € > 0, the following inequality

77€+1 3,0) — ns+1 (e,3) , " G, o) + e (e.3)
) 2.4
e+ 1)n(e0) g G) 12, 0) F46)) (2.4)
L+ . .
W{J[H”(S")J_g (©+ J[e+n(s,e)]+g © }'

< (emet)
e+Dp+1

X [ n°*% (3, ) (Ig” @ +1g” (C)|q)[l' " 77 (e,3) (Ig” @ +1g” (9)|q);]
(e+1)n(e,0) 2 (e+1Dn(e,0) 2 ’

satisfies for v € [0, 1], where ¢~ + p~! = 1.

Proof. Suppose that p > 1. From Lemma 2.1, by using the well-known Holder integral inequality and
the preinvexity of |g”’|? , we obtain

7 GO = (e,3) 3 n°(3,0) +n°(e,3)
e+ Do ° ®) (.0 g@3)
Fe+ 1), )
" n(e, ) {J[“”?(S»‘)]_g (O + Jernieon8 () }‘ (2.5)
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&+2 1
(3,0 o1y
< m Vg (c+ v G, ©) ldv
3 0
c+2 1
(e,3) orly
7 v g” (¢ + v G, ©)) ldv (2.6)

(e+Dn(e, 9 Jo

m : (e+1) % fl ” é
= e+ Do (fo Ve | g e+ m GOl dv

177 (¢,3) Y z f ; ]
* m( fo vl ls (e +vnG,)fdv| . 2.7)

Since |g”’|? is preinvexity on [c, ¢ + 17 (e, ¢)], we obtain

1 1
f 18" (c+ v GO dv < f (vl O + (1 =) lg” O Jay 2.8)
0 0
"R +1g” (0
- > ,
and
1 1
f lg” (e +vn G, ) dv < f {V lg” B + (1 =v)|g” (&) }dv (2.9)
0 0
g7 RN +1g” (o)
- > _
By using (2.8) and (2.9) with (2.7), we obtain
77€+1 (35 C) - 77€+1 (e’ 5) ’ _ na (39 C) + 778 (e7 3)
E+ Do g ® (0.0 g®
F'e+Dy . .
@O {J 018 () T Jenior8 (¢) }'

< (Giei)
(e+Dp+1

X [ n°*% (3, ) (Ig" @I+ 1g” (f)|q):' n n°*% (e,3) (Ig" @I +1g” (e)|q); ]
(e+1)n(e,0) 2 (e+1Dn(e,0) 2 )

This completes the proof. O

Remark 2.4. Ifwe set € = 1 and n(c, ¢) = ¢ — ¢, then from Theorem 2.2, we get (Theorem 5, [11]) with
s =1

Corollary 2.3. Using Theorem 2.2 with |g"’| < M, we get

778+1 (3,¢) — 778+1 (¢,3) , ~ na G, ©) + 778 (e.3)
e+ Dneo 5@ e 2@
e+, .
’ m{ el 8 (0 + ‘][e+r7(s,e)]+g (© }'

I O B A 72 (2, 3)
SA/(((s+1)p+l) [(8+1)I](€,C) * (£+1)n(e,c)]'
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cte

>- then we get the mid-point inequality

Corollary 2.4. Ifin Corollary 2.3, we setn (¢, ¢) = c—eand 3 =

'%{J@)g @+ gy | =[5 s o)

- (e c)8+1 1 K

B e+ D2+ \(e+Dp+1) °
Theorem 2.3. Assume that all the assumptions as defined in Lemma 2.1 and |g"|%, g > 1 is preinvex
function on [c, ¢ + 17 (e, ¢)], then for all € > 0, the following inequality

n8+1 (3, 0) — 778+1 (e,3) , ns G, o) + 778 (e.3)
B 2.10
(e+1)n(e, ) ) ) g®) (2.10)
FEe+)y( . .
’ W{J[H”(s*‘)]g (0 + ‘][e+n(3,0)]+g © }‘

< ( ! )1‘5 72 G0 (|g" G, lg" O )5
T \e+2 (e+D)nC,0\ e+3 (e+2)(e+3)
72 (e,3) (|g” G, 18" O )4 ]
e+Dn,o\ e+3  (e+2(E+3)) I

satisfies for v € [0, 1].

Proof. Suppose that ¢ > 1. From Lemma 2.1, by using the power-mean integral inequality and
preinvexity of [g”|? , we obtain

7 G, O -7 (e,3) n° (3, 0) +1° (e, 3)

Do W7 T Lo @
F'Ee+Dy( . .
RnTONS {J[‘“i(&f)lg (© + Jern-8 (©) }'
c+2 1
< % i g (c+ v G, ) ldv
c+2 1
% i VHg” (e +vn G, ) ldv
n.9+2 (3’ C) fl ol )1—,'] (fl . . )«11
= (e+ (e, ( o Vi dy . lg" (c+vn (3, I dv (2.11)

M i L ( [ | vg”dv)l_; ( | e et G e))lqdv);
(e + D10 \o o & T |

Since |g”’|? is preinvexity on [c, ¢ + 17 (e, ¢)], we obtain

1 1
f Vg (c 4+ v Gy )Y dv < f vl QI+ (1= g OF fay 2.12)
0 0

g7l N lg” ()
 g43 (642 (s+3)
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and

1 1
f Vg (e +vn G, )N dv < f v vlg” @I + (1= n)lg” ©F v (2.13)
0 0

_1g" QN N lg” (e)l
T e+3  (e+2)(e+3)

By using (2.12) and (2.13) with (2.11), we obtain

na+1 3,0 — ns+1 (,3) ~ 17 G, ) + 17 (2, 3)
(e+1)n(e, ) g ®) 7(e 0 gB)
CEe+)( .. .
" W{J[H”(&‘)]g () + J[e+n(3,e)]+g (e) }’

(LT Lrt60 (OF ol )5
T \e+2 (e+D)n,0\ e+3 (e+2)(e+3)
2 (e) (|g” G, __lg" @ )5 |
Ee+Dn,o\l e+3  (e+2)(+3)) I

This completes the proof. O

Remark 2.5. Ifwe set € = 1 and (¢, ¢) = ¢ — ¢, then from Theorem 2.3, we get (Theorem 6, [11])with
s=1.

Corollary 2.5. Under the same assumptions in Theorem 2.3 with |g"”| < M, we get the following
inequality

77€+1 (Sa C) - 77€+1 (e’ 5) ’ _ n{;‘ (39 C) + 778 (e7 3)
et Dneo &0 0

e+ . .
’ n(e, ¢ {J[H”(S")]_g (0 + J[e+n(3,e)]+g (¢) }'

! £+2 £+2
SM((s+ 1) (e +2)5 (e, c)) ['7 G0 + 7 (e,s)].

g®)

c+e

Corollary 2.6. Ifin Corollary 2.5, we setn (¢, ¢) = c—e and 3 = -, then we get the mid-point inequality

(e _ c)8+1

< )
- (e+1)(g+2)2¢4!

Theorem 2.4. Assume that all the assumptions as defined in Lemma 2.1 and |g"|%, g > 1 is preinvex
function on [c, ¢ + 1 (e, ¢)], then for all € > 0, the following inequality

n8+1 (37 C) — n8+1 (ea 3) ’ )78 (3, C) + ng (e, 3)
B 2.14
(e+1)n(e0) g () 1 (e, 0) I46)) ( )
FEe+1)y( .. .
* W{J[”W(Wl‘g (O + Jnior8 (©) } ‘
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7 (3, 0) { 1 L8 GBI +1g” (C)Iq}
e+ Dn,gle+Dp+Dp 2q
7 (e,3) { 1 N lg” GBI +1g” (e)lq}
(e+Dne,ole+Dp+1Dp 2q ’
satisfies for v € [0, 1].
Proof. From Lemma 2.1, we obtain
G o=t (e3) 1’ G, ©) +17° (,3)
crhneo 07T o 49
I'e+1)
+ n (e, ) {J[t+77(s or8 (©+ Jl%+n(3 o8 (¢) }'
n8+2 (3’ C) : e+1y 1
< m . Vg (c+vn (3, 0) |dv
7 (2,3) ‘

- e+l 1
G J, U 8 CrmG o

By using the Young’s inequality as

1 1
xy < —xP 4+ =y,
p q

7 GO - (e, Dy TGO+
(e+Dn(e, 0 n(e,0)

I'Ee+1)
+ o {J[c+n(3 ol g0+ J[Hn(3 o8 (e) }'

n8+2 (3, c) {1 f (e+1)p 1 f 12
< OO AL gy Lo an)
e+ Dne,lp Jo 4 Jo ’ !
£+2 , 1 1 1 !
7= (e, 3) {_f v(8+1)[7dv+_f |g”(e+w7(3,e))|qdv}
0

(e+Dn(e0
1 1
f (£+l)pdv + = f {V |g// (3)|(1 +(1-v) |g// (C)|q }}
q Jo

8+2 (3’ C) {
+ (;T;;(? c){ f <e+1>pdv+; fo 1 {vig” @I+ (1 = wlg” )
{

gB3)

B (8+ 1)n(e,c)

7 (3, 0) lg” BN +1g” (t)lq}
B (CV+1)77(e 9 ((8+1)P+1)p 2q
7+ (e,3) { lg” BN +1g” (e)lq}
(8+1)n(e,C) ((s+1)p+1)p 2q '
This completes the proof. O

Corollary 2.7. If we set n(c,e) = ¢ — e and € = 1 in Theorem 2.4, we get

e_

1 ¢
—cf g(u)du—g(3)+(3— %)g’(a)
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L G- 0’ [ L 7@ +1g” (C)I”] e 3)° [ 1 lg” BN +1g” ()l
T 2(-0l@p+Dp 2q 26 —0l@2p+Dp 2q '

Corollary 2.8. If in Theorem 2.4, we set 11 (¢, ¢) = c—e and 3 = =, then we get the mid-point inequality

‘r((s s )1){ () g0+ J([+e)+g (e)} - (%C)S_] g(g)‘

() g @r e ()] + g @
(e+Dp+Dp 2q " 2q

(e_ c)J:‘+l { 2
S22 (e 1)

Theorem 2.5. Assume that all the assumptions as defined in Lemma 2.1 and |g"|%, g > 1 is preinvex
function on [¢, ¢ + n (e, ¢)], then for all € > 0, the following inequality

"t G, O -7 (e,3) n° (3,0 + 17 (e, 3)
e+ Do g B - (0.0 g®® (2.15)
N I'e+1)

n(e, 0 {J[””(S or8 (0) + J[e+n(3 018 (¢) }'

1

==

s+2 (3, C)
N (s+ 1)n(e,c)

((8p+p+1)(8p+p+2))

((8+1)p+2 ( 8" QI + Ig"(C)Iq) _

|
)
77 (,3) [
)

l ’” q l ’” q
(6|g G+ 318 (C)I)

+

1 1
P

l ” q l ” q !
(6|g QI + 3 g (e)l)

(8+1)n(e o) ((8p+p+ 1)(8p+p+2)

-

1
7 94 1" q ]
((8+1)p+2 ( lg” I + Ig (e)|) A
satisfies for v € [0,1], where g™' + p~! = 1.

Proof. From Lemma 2.1, by using the Holder-Iscan integral inequality (see in [33]) and the preinvexity
of |g”’|7 , we obtain

UHI(S’—:)D_,]]]:; lcge’ V- T8 ;)(:’ ’Z) €3 )
; %{JW@ 8O g (©) }'

B (sflz)% | Vg (¢ 4+ v (3, 0) ldv
(sflz)% | Vg (e + v (3, 0)) dv

< 169 _ (f (1 “*””d"); (fl A =vg" (c+vnG, ' dv é
(e+Dn(eo 0
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1

1 s ‘
4 (f (s+1)p+1dv) (f vig” (c+vnG, )N dv) ]
0

A i C1 VI ( f (1- (‘””pdv);( f 1(1—v)lg"(e+w7(3,e))|qdv);
(8+1)n(e ) 0

1 ’ 1 g
+(f (Eﬂ)p”dV) (f vig” (e +wn G, e))lqdv) ]
0

L TGO ( f (- <g+1>pdv)’l’ ( f v Wlg” QI + (1 =g’ (c)lq}dv)q
(s+ 1)n(e,c) 0

1 ’ 1 g
+( [ (8+1)P+1dv) ( f {v|g~<3)|4+<1_v)|g~(c)mdv) |
0
- s (f (1~ (Hl)pdv); (fl (1= {lg” @I+ 1 -v)g” (e)lq}dV);
G+ Do 0

1 ;
+ ( f <E+1>P+1dv) ( f vy lg” I + (1= v) lg” (e>|q}dv) |
0 0

After simplification, we get (2.15). This completes the proof. O

Corollary 2.9. Using the same assumptions in Theorem 2.5 with |g"’| < M, we get

n8+1 (3, 0) — n8+1 (e,3) , _ 1 G, 0) + e (e.3)
e+ Do °© ®) (0.0 g@3)
I'e+1)
’ W{J[””“ 018 (O e or8 (&) }‘

1

‘teoroill@mers) e |
_25(8+1)7](€ 0) (ep+p+1D(ep+p+2) e+Dp+2

[ GO+ (e, 3)]

Theorem 2.6. Assume that all the assumptions as defined in Lemma 2.1 and |g"|%, g > 1 is preinvex
function on [¢, ¢ + n (e, ¢)], then for all € > 0, the following inequality

)78+1 (3’ C) ol 778+1 (e9 3) ’ ]78 (3, C) + 775 (e’ 3)
) 2.16
oo SV g 8® o6
I'e+1)
¥ n (e, ) {J[Hn(s 18 () + J [e+nGoO]* 8 (e) }‘

7+ G, ©) [( 1 )1‘5( RO 218" (O )5
T e+ Dol \(e+2)(e+3) (e+3)E+4) (E+2)(e+3)(E+4)
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. ( ne )1‘31 (|g” G, lg" @ ):, |
e+3 e+4  (e+3)(e+4)
N ( LT kel 2o ):,
e+ Dne, ol \(e+2)(e+3) (e+3)(e+4) (e+2)(e+3)(e+4)

l_é 144 17 é
+(L) (|g QF I @ ) ]
e+3 c+4 (e+3)(Ee+4)

satisfies for v € [0,1], where g' + p~! = 1.

Proof. From Lemma 2.1, improved power-mean integral inequality(see in [33]) and the preinvexity of
lg”’|? , we obtain

7 G, O = (e,3) n° (3, ¢) +n° (e, 3)

e+ Dneo ° ®- 70 g
+ %{Jﬁﬂl(s o8O+ I o8 (@) }‘
- % 1Vs“lg”<C+vn (3. ) ldv

77t (e,3) ! e

GrDneo Jo lg” (e +vn (3, ) |dv

<TG9 ( f (1- ‘g“dv)l_;( f 1(1—v)v”l|g"(C+W7(3,C))|qu);
(8+1)n(e 9] 0

1 i
+ ( f 8+2dv) ( f 218" (¢ +vip 3, )| dv) ]
0 0

A il Cr ) ( f (1- s“dv)l_; ( f g (e+vn(3,e))lqu);
(e+1)n(e,0) 0
1 :
. ( f “Zdv) ( f Vg <e+vn<a,e>>|"dv)]
0
G0 )
= ErDneo (f (- dv)
( f (1= elg” G + (1 - v>|g"<c)|"}dv)

1- % 1 é
+ (f 8+2dv) (f Vg G+ (1 =) g” (‘)mdv) ]
0

8+2 (Q 3) (f (1 - a+1dv 1_5 fl (1-v) Vg+1{v| //( )lq +(1 - V)| " (e)lq}d\/
(8+ Dn(e, o) 0 o )

1 i
N ( f s+2dv) ( f VR g G+ (1 -v)|g” (e)l‘f}dv) ]
0 0
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. 7769 [( ! )1‘3( G, 2l @ ):,
T (e+ D)ol \(e+2)(e+3) e+3)(e+4d) (e+2)(e+3)(E+4)

1-1 17 ” é
+( 1 ) q(|g G , _ lg" @ ) ]
e+3 c+4 (e+3)(Ee+4)
7+ (e, 3) [( I Sl g G L 2l )5
e+ Dn, ol \(e+2)(e+3) (e+3)(Ee+4) (E+2)(e+3)(E+4)

L\ (lg”GF g7\
+(m) (s+4 +(a+3)(s+4)) ]

This completes the proof. O

Corollary 2.10. Using the same assumption of Theorem 2.6 with |g"'] < M, we get

7 G, O - (e,3) n° (3, 0) + 1 (e,3)

e+ Dn(eo 8 () - 7000 g®®
FEe+)y( . .
* W{J[“”(M)]g () + J[e+r](3,e)]+g (¢) }'

< M
T e+ D(E+2)n(e,0)

|:778+2 (3’ C) + 778+2 (e’ 3) ]
3. Modified bessel function

We recall the first kind modified Bessel function J,, which has the series representation
(see [42], p.77)
Ve m+2n
(5)

nCm+n+1)

J m({) = Luxo
where ¢ € R and m > —1, while the second kind modified Bessel function g, (see [42], p.78) is usually

defined as 3 3
sin mm

Consider the function Q,, (¢) : R — [1, o) defined by

Q, () =2"T'(m+ 1) "y (),

where I is the gamma function.
The first order derivative formula of €, ({) is given by [42]:

¢

Q. ()= T+ D

Qi1 (£) (3.1

and the second derivative can be easily calculated from (3.1) as

'S 1
4(m+1)(m+2) B2 (€) 4 mgm“ ). 3.2)

Q) =
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and the third derivative can be easily calculated from (3.2) as

" _ é/?, 35
Q, ()= TmsDmi s S)Qm+3 )+ Tt 1)(m+2)Qm+2 . (3.3)

Proposition 3.1. Suppose that m > —1 and 0 < ¢ < e. Then we get the inequality

‘Qm (ez - ?m - 2(m3+ Py @ b-5)
{7 ; f; 5 () 50 O |
)
: 2(3(e_—oc)[(2p i Dp " %1{ (8 m+1) (n’?+ Hm+3) DT Iy 13)3(,% T2y e (3))
" (8 m+ 1) (n1C3+ D) O e 13)c(m T2y (c))q }]
ée(e_ —3); [(219 +1 Dp i{ (8 (m+1) (ni D3 O Tons 13)3(m vy (3))q

e’ 0 3e o q
+ S(m+1)(m+2)(m +3) m+3(3)+4(m+1)(m+2) m+2 (€) }]

Proof. The assertion follows immediately from Corollary 2.7 using g({) = Q/,({), { > 0 and the
identities (3.2) and (3.3). ad

4. Conclusions

In this paper, we have defined an idea of fractional integral inequalities whose second derivatives
are preinvex functions. We also investigated and proved a new lemma for the second derivatives of
Riemann-Liouville fractional integral operator. Some new special cases are discovered in the form of
corollaries. We hope that the strategies of this paper will motivate the researchers working in functional
analysis, information theory and statistical theory. It is quite open to think about Ostrowski variants
for generalized integral operators having Atangana-Baleanu operator etc. by applying generalized
preinvexity. The results, which we have presented in this article, will potentially motivate researchers
to study analogous and more general integral inequalities for various other kinds of fractional integral
operators.
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