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Abstract: In this paper, we study a sufficient condition for subelliptic estimates in the weak Z(k)
domain with C3 boundary in an n-dimentionsl Stein manifold X. Consequently, the compactness of
the ∂-Neumann operator N on M is obtained and the closedness ranges of ∂ and ∂

∗

are presented. The
L2-setting and the Sobolev estimates of N on M are proved. We study the ∂ problem with support
conditions in M for Ξ-valued (p, k) forms, where Ξ is the m-times tensor product of holomorphic line
bundle Ξ⊗m for positive integer m. Moreover, the compactness of the weighted ∂-Neumann operator is
studied on an annular domain in a Stein manifold M = M1\M2, between two smooth bounded domains
M1 and M2 satisfy M2 b M1, M1 is weak Z(k), M2 is weak Z(n − 1 − k), 1 6 k 6 n − 2 with n > 3. In
all cases, the closedness of ∂ and ∂

∗

, global boundary regularity for ∂ and ∂b are studied.
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1. Introduction

Several complex variables involve the ∂ problem, and Kohn solved this problem in 1963 for strongly
pseudoconvex domains. It is useful to use Sobolev estimates in various areas of mathematics, such
as complex geometry and partial differential equations on pseudoconvex manifolds. Introducing
a sequence of subelliptic multiplier ideals, he gave a sufficient condition for subellipticity in
pseudoconvex domains with real analytical boundaries. Catlin proved the most general result regarding
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subelliptic estimates for the ∂-Neumann problem. In [1], he showed that subelliptic estimates hold for
k-forms at z0 within a smooth and bounded pseudoconvex domain. Herbig [2] extended Catlin’s result
to a weak condition for boundedness in the sense of weight functions. Hörmander [3] and Folland-
Kohn [4] proved that subelliptic 1

2 estimate can be estimated on non-pseudoconvex domains. For more
details, we refer the readers to [5–12].

We are motivated to give subelliptic estimates for the ∂-Neumann problem on smooth bounded,
weak Z(k) domains on a Stein manifold for (p, k)-forms, with k > 1 with values in holomorphic vector
bundles. Sobolev estimates of N on M for all ∂-closed (p, k)-forms. We also deduce some standard
compactness consequences.

Further, if Ξ is the m-times tensor product of holomorphic line bundle Ξ⊗m for integer m > 0, we
study the ∂ problem with support conditions in M for Ξ-valued (p, k)-forms with values in Ξ⊗m. This
problem had already been discussed on domains like: Strongly q-convex (or concave) [13], pseudo-
convex with C1 boundary [14] and local Stein of the complex projective space [15]. We also refer the
readers to [13, 16–23].

Finally, we assume that M = M1\M2 is an annular domain in a Stein manifold, between two smooth
bounded domains M1 and M2 satisfy M2 b M1, M1 is weak Z(k), M2 is weak Z(n−1−k), 1 6 k 6 n−2
with n > 3. We prove a basic prior estimate for the weighted ∂-Neumann problem on M. This
estimate is validated for vector bundle forms. Moreover, we also study the global boundary of ∂
within such domains. Cho [24] says global boundary regularity is obtained when M1 and M2 are
pseudoconvex manifolds. The boundary regularity and the closed range property of ∂ were established
in [14, 25, 26] for 0 < k < n − 1 and n ≥ 3. There are also pseudoconvex and non-pseudoconvex
domains in [15,27,28], as well as the author’s results [29–39]. Similar results can be found in [40,41].

The novelty of this study is the investigation of a sufficient condition for subelliptic estimates on
the weak Z(k) domain. Moreover, we demonstrate that ∂-Neumann operators are compact. In addition,
we examine a weighted ∂ Neumann operator over an annular domain between two smooth-bounded
domains. Despite this, all results are obtained on weak Z(k) domains, which contrasts to previous
works that were based on strong pseudoconvex domains and non-pseudoconvex domains.

2. Notations and definitions

Let p, k ≥ 0, n > 1 be an integer and let X be a complex manifold of dimension n. Let M b X be
a subset of X, and let ρ be its defining function. Let T 1,0(bM) be the complex tangent bundle to the
boundary bM, with T 0,1(bM) = T 1,0(bM). Suppose that Ξ∗ is the dual of a holomorphic line bundle
Ξ over X. In local coordinates (z1

j , z
2
j , . . . , z

n
j) on open covering {Vj} j∈J of X, Ξ|V j is trivial. { fab} is a

transition function system of Ξ in sense of {Vj} j∈J. A (p, k) forms σ = {σ j} on X is given by:

σ j =
∑

Cp,Dk

′

σ jCpDk
dzCp

j ∧ dzDk
j ,

where Cp = (c1, . . . , cp) and Dk = (d1, . . . , dk) are multiindices. A hermitian metric on X is

G =

n∑
σ,β=1

g j,σβ(z) dzσj dzβj .
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Associate G with the differential form ω =
√
−1
2

∑n
σ,β=1 g j,σβ(z) dzσj ∧ dzβj of type (1, 1). h = {ha} is

a hermitian metric of Ξ = { fab} in sense of {Va}a∈J, so that ha = | fab|
2hb on Va ∩ Vb. C∞p,k(M,Ξ)

is the complex vector space of C∞ Ξ-valued (p, k)-differential forms on M. C∞p,k(M,Ξ) = {u|M; u ∈
C∞p,k(X,Ξ)}. The space of Ξ-valued (p, k)-differential forms with compact support in M is denoted by
Dp,k(M,Ξ). >Ξ : C∞p,k(X,Ξ) −→ C∞k,p(X,Ξ∗) is defined by >Ξσ = hσ, which commutes with the Hodge
star operator ? : C∞p,k(X,Ξ) −→ C∞n−k,n−p(X,Ξ). >Ξ∗ : C∞p,k(X,Ξ∗) −→ C∞k,p(X,Ξ) satisfies

>Ξ∗σ = (h)∗σ = t(h)−1σ = hσ = >−1
Ξ σ,

with >Ξ∗σ = >−1
Ξ
σ. Bp,k(M,Ξ) = {σ ∈ C∞p,k(M,Ξ); ? >Ξ σ|bM = 0}. The volume element related to

G is dV. ∂ : C∞p,k−1(M,Ξ) −→ C∞p,k(M,Ξ) is the Cauchy-Riemann operator and ϑ its formal adjoint.
C∞p,k(bM,Ξ) = C∞p,k(M,Ξ)/Dp,k(M,Ξ). For σ, % ∈ C∞p,k(X,Ξ),

(σ, %) dV = σ j ∧ ? h% j = σ j ∧ ? >Ξ %j,

is the inner product. For σ, % ∈ C∞p,k(X,Ξ),

< σ, % >C∞p,k(M,Ξ) =

∫
M
σ ∧ ? >Ξ %,

‖σ‖2
C∞p,k(M,Ξ)

=< σ,σ >C∞p,k(M,Ξ),

are the global inner product and the norm, respectively. For σ ∈ C∞p,k(M,Ξ) and % ∈ Dp,k−1(M,Ξ), one
obtains

< ϑσ, % >C∞p,k(M,Ξ) =< σ, ∂% >C∞p,k(M,Ξ),

ϑ = − >Ξ ?∂ ? >Ξ.
(2.1)

L2
p,k(M,Ξ) is the Hilbert space obtained by completing the space C∞p,k(M,Ξ) under the norm ‖σ‖M. The

maximal closed extension of ∂ is ∂ : L2
p,k−1(M,Ξ) −→ L2

p,k(M,Ξ), and ∂
∗

its Hilbert space adjoint.

� = �p,k = ∂ ∂
∗

+ ∂
∗

∂ : Dom(�p,k,Ξ) −→ L2
p,k(M,Ξ) is the Laplace operator defined for Ξ-valued

forms. Dom(�p,k,Ξ) = {σ ∈ L2
p,k(M,Ξ) : σ ∈ Dom(∂,Ξ) ∩ Dom(∂

∗

,Ξ), ∂σ ∈ Dom(∂
∗

,Ξ) and ∂
∗

σ ∈

Dom(∂,Ξ)}. Hp,k(Ξ) = {σ ∈ Dom(�p,k,Ξ) : ∂σ = ∂
∗

σ = 0}. N = Np,k : L2
p,k(M,Ξ) −→ L2

p,k(M,Ξ) is
the ∂-Neumann operator and is given as

Np,k σ =

0 ifσ ∈ Hp,k(Ξ),
v ifσ = �p,kv, and v ⊥ Hp,k(Ξ).

For s ∈ R, the Sobolev Ξ-valued of (p, k)-forms is given by Ws
p,k(M,Ξ) with Ws(M,Ξ)-coefficients and

‖σ‖Ws(Ξ) their norms. The curvature form
∑n
σ,β=1

(
−
∂2log h j

∂zσj ∂zβj

)
dzσ ∧ dzβ of Ξ provides a Kähler metric

dσ2 =
∑n
σ,β=1

(
−
∂2log h j

∂zσj ∂zβj

)
dzσ dzβ on V .

Definition 1. A ε-subelliptic estimate for the ∂-Neumann problem is satisfied at z0 ∈ M on k-forms,
ε > 0, if there exists a constant c > 0 and a neighborhood V 3 z0 such that

‖σ‖2Wε 6 c (‖∂σ‖2W0 + ‖∂
∗

σ‖2W0 + ‖σ‖2W0).
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Definition 2. [9,10] A boundary bM is said to has the (k−P) property in V if for every T > 0, denote
by λφ

T

1 6 λ
φT

2 6 ..... 6 λ
φT

n−1 the eigenvalues of the Levi form (φT
i j), there is a function φT ∈ C∞(M ∩ V)

with |φT| 6 1 on M and so that

k∑
j=1

λ
φT

j −

k0∑
j=1

φT
j j ≥ c

δ−2ε +

k0∑
j=1

|φ j|
2

 on M ∩ V,

k∑
j=1

λ
φT

j −

k0∑
j=1

φT
j j ≥ C on bM ∩ V,

where ε > 0 and C > 0 does not depend on δ and s.

Define the Levi form L as: ∀ p ∈ bM, with ∂ζ

∂z j
(p) = 0 ∀ 1 6 j 6 n − 1.

L (σ,σ)(p) =
∑

J∈Ik−1

n−1∑
j,k=1

∂2ζ

∂z j∂zk
σkJσ jJ.

Definition 3. [42] For 1 6 k 6 n− 1, bM is said satisfies weak Z(k) if there exists a real Γ ∈ T 1,1(bM)
satisfying

(1) |γ|2 > (iγ ∧ γ)(Γ) > 0 ∀ γ ∈ %1,0(bM).
(2) µσ1 + · · · + µσk −L (Γ) > 0 where µσ1, . . . , µσn−1 are the eigenvalues of L .
(3) M(Γ) , k.

Lemma 1. [42] For 1 6 k 6 n − 2, let M ⊂ X be a bounded domain and B ⊂ X be a bounded
pseudoconvex domain satisfies M ⊂ B. Then bM satisfies weak Z(k) if and only if b(B/M) satisfies
weak Z(n − k − 1).

If µσ1, . . . , µσn−1 are the eigenvalues of L , then one obtains

L (σ,σ) > (µσ1 + · · · + µσk) |σ|2.

Definition 4. A form σ ∈ L2
p,k(M,Ξ) is supported in M if σ vanishes on bM.

3. Main results

3.1. Subelliptic estimates

Theorem 1. With a smooth boundary, let M b Cn be a weak Z(k) domain. Suppose that bM has the
property (k−P). Then, ε-subelliptic estimates at z0 hold for (p, k)-forms. That is, there exists c > 0
such that

‖σ‖2Wε (M) 6 C
(
‖σ‖2L2

p,k(M) + ‖∂σ‖2L2
p,k(M) + ‖∂

∗

σ‖2L2
p,k(M)

)
, (3.1)

for σ ∈ Dp,k(M).

Proof. Let Bδ = {z ∈ M : −δ < ρ(z) 6 0} be a strip, where δ > 0 small enough. As in Khanh and
Zampieri [10],

‖σ‖2Wε (Bδ ∩M) 6 C
(
‖σ‖2L2

p,k(Bδ ∩M) + ‖∂σ‖2L2
p,k(Bδ ∩M) + ‖∂

∗

σ‖2L2
p,k(Bδ ∩M)

)
, (3.2)
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for σ ∈ Dp,k(Bδ ∩M) with k > 1. From the compactness of bM, using a finite covering {∆φ}ν=1 of bM
by neighborhoods ∆φ as in (3.2), we have

‖σ‖2Wε (Bδ) 6 C(‖σ‖2L2
p,k(Bδ)

+ ‖∂σ‖2L2
p,k(Bδ)

+ ‖∂
∗

σ‖2L2
p,k(Bδ)

)
, (3.3)

with u is supported in Bδ.
If ρ(z) 6 −δ and z ∈ M\Bδ, taking γδ ∈ D(M) with γδ(z) = 1. Using (3.3),

‖σ‖2W0(M) 6

∫
Bδ

|σ|2dV + ‖γδσ‖
2
W0(Bδ)

6 (C1 +2 C2 st)(‖∂σ‖2L2
p,k(M)) + ‖∂

∗

σ‖2L2
p,k(M)) + ‖σ‖2W0)

= (C1 +2 C2 st)
(
‖∂σ‖2L2

p,k(M) + ‖∂
∗

σ‖2L2
p,k(M)

)
.

�

Theorem 2. Let Let M, X be the same as in Theorem 1. Let Ξ be a holomorphic vector bundle, of rank
r, on X. Suppose that bM has the property (k−P). Then, there exists C > 0 satisfies

‖σ‖2Wε (Ξ) 6 C(‖σ‖2L2(Ξ) + ‖∂σ‖2L2(Ξ) + ‖∂
∗

σ‖2L2(Ξ)), (3.4)

for σ ∈ Dp,k(M,Ξ).

Proof. By a local patching, one assume that {U j}
N
j=1 is a finite covering of bM. Extend the

subelliptic estimate (3.1) to E-valued forms. An orthonormal basis could be e1, e2, . . . , er for z ∈ U j;
j ∈ J. Thus σ(z) =

∑r
a=1 σ

a(z) ea(z), where σa are the components of the restriction of σ on U j. Let
{ζ j}

m
j=0 be a partition unity. This partition of unity is ζ0 ∈ Dp,k(M), ζ j ∈ Dp,k(U j), j = 1, 2, ...,m.∑m

j=0 ζ
2
j = 1 on M, where {U j} j=1,...,m is a covering of bM.

For a given jν ∈ I, let U be a neighborhood of a given boundary point ξ0 ∈ bM. Using σ ∈

Dp,k(M,Ξ), 1 6 k 6 n − 2, and a = 1, ..., r, we get a subelliptic estimate from (3.1), for σ|M∩U .

‖ζ0σ‖
2
Wε (M∩U) . C Q(ζ0σ, ζ0σ) . εQ(σ,σ).

Thus, subelliptic estimate for σ|M∩U j is

‖ζ jσ‖
2
Wε (M∩U j) . C Q(ζ jσ, ζ jσ) . εQ(σ,σ).

Summing up over j, we get
‖σ‖2Wε (Ξ) 6 c Q(σ,σ).

Thus (3.4) follows. �

3.2. Compactness estimates

Lemma 2. [43] Let M b X be a weak Z(k) domain with C3 boundary in Stein manifold X.
(1) ∀ constant ε > 0 there exists tε > 0 and a Cε > 0 satisfy ∀ t > tε and σ ∈ L2

p,k
(
M, e− t %) ∩

Dom(∂) ∩Dom
(
∂
∗

t

)
we have

‖σ‖2L2
p,k(M,e− t %) ≤ ε

(
‖∂σ‖2L2

p,k(M,e− t %) +
∥∥∥∥∂∗tσ∥∥∥∥2

L2
p,k(M,e− t %)

)
+ Cε ‖σ‖

2
t,W−1(M). (3.5)
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(2) there exists constants C > 0 and t̃ > 0 satisfy ∀ t > t̃ and σ ∈ L2
p,k

(
M, e− t %) ∩ Dom(∂) ∩

Dom
(
∂
∗

t

)
∩

(
H k

t (M)
)⊥

we have

‖σ‖2L2
p,k(M,e− t %) ≤ C

(
‖∂σ‖2L2

p,k(M,e− t %) +
∥∥∥∥∂∗tσ∥∥∥∥2

L2
p,k(M,e− t %)

)
.

(3) If bM is connected, ∀ constant ε > 0 there exists tε > 0 so that ∀ t > tε and σ ∈ L2
p,k

(
M, e− t %) ∩

Dom(∂) ∩Dom
(
∂
∗

t

)
we have

‖σ‖2L2
p,k(M,e− t %) ≤ ε

(
‖∂σ‖2L2

p,k(M,e− t %) +
∥∥∥∥∂∗tσ∥∥∥∥2

L2
p,k(M,e− t %)

)
.

Theorem 3. Let M b X be a weak Z(k) domain with C3 boundary in Stein manifold X. Then the
compactness estimate for a holomorphic vector bundle Ξ-valued (p, k) form holds on M. Then, ∀
c > 0, there exists a t > 0 and Cc,t > 0 such that

‖σ‖2W0(Ξ) ≤ C
(
‖∂σ‖2W0(Ξ) + ‖∂

∗

tσ‖
2
W0(Ξ) + ‖σ‖2W0(Ξ)

)
+ Ct ‖σ‖2W−1(Ξ) , (3.6)

for σ ∈ Dp,k(M,Ξ).

Proof. As Theorem 2, for σ ∈ Dp,k(M,Ξ), 1 ≤ k ≤ n − 2, over each σa by applying (3.5) and adding
for a = 1, ..., r, we get compactness estimate for σ |M∩U

‖ζ0σ‖
2
t ≤ c Qt(ζ0σ, ζ0σ) + Ct‖ζ0σ‖

2
W−1

≤ c Qt(σ,σ) + Ct‖σ‖W−1 .

For j = 1, ...,m, for u|M∩σ j , we have

‖ζ jσ‖
2
t ≤ c Qt(ζ jσ, ζ jσ) + Ct‖ζ ju‖2W−1

≤ c Qt(σ,σ) + Ct‖σ‖2W−1 .

Let’s sum j up
‖σ‖2t ≤ c Qt(σ,σ) + Ct ‖σ‖2W−1(Ξ) .

Thus (3.6) follows. �

Proposition 1. Assuming the same assumptions as Theorem 3, let us assume the following: ker(�,Ξ)
is finite dimensional and Ran(�,Ξ) is closed in L2

p,k(M,Ξ) and there exists a bounded linear operator
N : L2

p,k(M,Ξ) −→ L2
p,k(M,Ξ) satisfies

(i) Ran(N,Ξ) ⊂ Dom (�,Ξ), N� = I − H on Dom (�, E),
(ii) for σ ∈ L2

p,k(M,Ξ), σ = ∂ ∂
∗

Nσ ⊕ ∂
∗

∂Nσ ⊕ Hσ,

(iii) N∂ = ∂N, and N∂
∗

= ∂
∗

N.
(iv) ∀ σ ∈ L2

p,k(M,Ξ),
‖Nσ‖W0(Ξ) ≤ C‖σ‖W0(Ξ),

‖∂Nσ‖W0(Ξ) + ‖∂
∗

Nσ‖W0(Ξ) ≤
√

C‖σ‖W0(Ξ).

(v) If σ ∈ L2
p,k(M,Ξ), with ∂σ = 0 (resp. ∂

∗

σ = 0), then ∂
∗

Nσ (resp.∂Nσ ) gives the solution of

∂u = σ (resp. ∂
∗

u = σ) of minimal L2
p,k−1(M,Ξ)(resp. L2

p,k +1(M,Ξ))-norm.
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31147

Proof. Applying (3.6) at ε = 1
2 , for σ ∈ L2

p,k(M,Ξ) ∩Dom (∂,Ξ) ∩Dom (∂
∗

,Ξ), one obtains

‖σ‖2
W

1
2 (Ξ)
6 C (‖σ‖2W0(Ξ) + ‖∂σ‖2W0(Ξ) + ‖∂

∗

σ‖2W0(Ξ)). (3.7)

Then, Np,k : L2
p,k(M,Ξ) −→ W1

p,k(M,Ξ). Following (3.7), every sequence {σφ}
∞
φ=1 in Dom (∂,Ξ) ∩

Dom (∂
∗

,Ξ) with ‖σφ‖ bounded, ∂σφ −→ 0 in L2
p,k +1(M,Ξ) and ∂

∗

σφ −→ 0 in L2
p,k−1(M,Ξ) as

φ −→ ∞, then (3.6) implies that
∥∥∥σφ

∥∥∥2

W
1
2 (Ξ)
6 C for some constant C. Thus, the inclusion map

iM : W
1
2
p,k(M,Ξ) −→ L2

p,k(M,Ξ) is compact. By Rellich Lemma, a subsequence of the sequence σφ

can be extracted which converges in the L2
p,k(M,Ξ)-norm. Thus, following Theorem 1.1.3 in [3], for

σ ∈ Dom (∂,Ξ) ∩Dom (∂
∗

,Ξ), σ ⊥ ker(�,Ξ), ker(�,Ξ) is finite dimensional and one obtains

‖σ‖2W0(Ξ) 6 C (‖∂σ‖2W0(Ξ) + ‖∂
∗

σ‖2W0(Ξ)).

Then
‖σ‖2W0(Ξ) 6 C ‖�σ‖2W0(Ξ), for σ ∈ Dom (�,Ξ), σ ⊥ ker(�,Ξ). (3.8)

Since � is self-adjoint, thus following Theorem 1.1.1 in [3], one obtains

L2
p,k(M,Ξ) = Ran(�,Ξ) ⊕ ker(�,Ξ) = ∂ ∂

∗

Dom (�,Ξ) ⊕ ∂
∗

∂Dom (�,Ξ) ⊕ ker(�,Ξ).

According to (3.8) there’s a unique bounded operator N on L2
p,k(M,Ξ) that inverts � on ker(�,Ξ)⊥.

Extend N to the whole L2
p,k(M,Ξ) space by setting N = 0 on ker(�,Ξ). The rest of the proof follows

Theorem 3.1.14 in [28]. �

Corollary 1. Assuming the same assumptions as Theorem 3, we have the following:
(i) the ∂-Neumann operator N exists and N : L2

p,k(M,Ξ) −→W1
p,k(M,Ξ).

(ii) For σ ∈W
1
2
p,k(M,Ξ), there exists u ∈W

1
2
p,k−1(M,Ξ) with ∂u = σ.

(iii) N : L2
p,k(M,Ξ) −→ L2

p,k(M,Ξ) is compact.

Proof. (i) From (3.8), for σ ∈ L2
p,k(M,Ξ) ∩Dom (∂,Ξ) ∩Dom (∂

∗

,Ξ),

‖σ‖2
W

1
2 (Ξ)
6 C

(
‖∂σ‖2W0(Ξ) + ‖∂

∗

σ‖2W0(Ξ) + ‖σ‖2W0(Ξ)

)
.

Thus, the existence of N : L2
p,k(M,Ξ) −→W1

p,k(M,Ξ) follows.

(ii) From Eq (3.7), ∀ σ ∈ L2
p,k(M,Ξ) ∩ ker(∂,Ξ) and σ ⊥ ker(�,Ξ), there exists a u ∈ W

1
2
p,k−1(M,Ξ)

with ∂u = σ.
(iii) To prove the compactness of N, since N = 0 on ker(�,Ξ), it suffices to show compactness on

ker(�,Ξ)⊥. When σ ∈ ker(�,Ξ)⊥ and hence Nσ ∈ ker(�,Ξ)⊥, the integration by parts, inequality (3.8)
and the Cauchy-Schwarz inequality imply

‖∂Nσ‖2W0(Ξ) + ‖∂
∗

Nσ‖2W0(Ξ) =< σ,Nσ >W0(Ξ)6 ‖σ‖W0(Ξ)‖Nσ‖W0(Ξ) 6 ‖σ‖
2
W0(Ξ). (3.9)

Following (3.7)–(3.9), we get

‖Nσ‖2
W

1
2 (Ξ)
6 C(‖∂Nσ‖2W0(Ξ) + ‖∂

∗

Nσ‖2W0(Ξ) + ‖Nσ‖2W0(Ξ)) 6 K‖σ‖2W0(Ξ),

where K is a positive constant. Thus, by the Rellich Lemma, the compactness of N follows on
L2

p,k(M,Ξ), that is, the embedding of W
1
2
p,k(M,Ξ) into L2

p,k(M,Ξ) is compact. �
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3.3. Global regularity and closed range for ∂

Lemma 3. Assuming the same assumptions as Theorem 3. Let 1 ≤ k ≤ n − 2, n ≥ 3, then there exists
C > 0 satisfies for all σ ∈ Dp,k(M,Ξ) with σ ⊥ Hp,k

t (Ξ), we have

‖σ‖2W0(Ξ) ≤ C(‖∂σ‖2W0(Ξ) + ‖ϑtσ‖
2
W0(Ξ)). (3.10)

Proof. If for any ν ∈ N there exists a σν ⊥ H
p,k
t (Ξ), with ‖σν‖t = 1 so that

‖σν‖
2
W0(Ξ) ≥ ν

(
‖∂σν‖

2
W0(Ξ) + ‖ϑtσν‖

2
W0(Ξ)

)
.

Combining with (3.6), we have

‖σν‖
2
W0(Ξ) ≤ C‖σν‖

2
W−1(Ξ).

Then σν → σ in L2, where σ ⊥ Hp,k
W0(Ξ)

(Ξ). By (3.7) we have that σ ∈ Hp,k
t (Ξ), a contradiction.

Thus (3.10) must hold ∀ σ ⊥ Hp,k
t (Ξ). �

Using (3.10), as in [3, 28], we have

Lemma 4. Assuming the same assumptions as Theorem 3. Let 1 ≤ k ≤ n − 2, n ≥ 3, then we have
(1)Hp,k

t (Ξ) is finite dimensional.
(2) �t has closed range in L2

p,k(M,Ξ).

(3) ∂ (resp. ∂
∗

t) has closed range in L2
p,k(M,Ξ) and L2

p,k +1(M,Ξ) (resp. L2
p,k−1(M,Ξ)).

Proof. Following (3.10), every sequence {σν}
∞
ν=1 in L2

p,k(M,Ξ) with ‖σν‖t is bounded and ∂σν −→

0, ∂
∗

tσν −→ 0, one can extract a subsequence which converges in L2
p,k(M,Ξ). Since L2

p,k(M,Ξ) ↪→
W−1

p,k(M,Ξ) is compact, (3.7) implies that such a subsequence is convergent in L2
p,k(M,Ξ). Following

Theorems 1.1.3 and 1.1.2 in [3], implies that Hp,k
t (Ξ) is finite dimensional. Thus, ∂ : L2

p,k(M,Ξ) −→

L2
p,k +1(M,Ξ) and ∂

∗

t : L2
p,k(M,Ξ) −→ L2

p,k−1(M,Ξ) have closed range. �

Theorem 4. Assuming the same assumptions as Theorem 3. Let 1 ≤ k ≤ n − 2, n ≥ 3, then for
σ ∈ C∞p,k(M,Ξ), satisfying ∂σ = 0 in the distribution sense in X, there exists u ∈ C∞p,k−1(M,Ξ), satisfies
∂u = σ in X.

Proof. The proof follows as [29, 30]. �

4. Solution of the dbar problem with support conditions

Proposition 2. [43] Let M b X be a weak Z(k) domain with smooth boundary in a complex manifold
X. Assume that s > 0 is an integer, ∇ is the covariant differentiation of type (0, 1) associated with the
metric G, and Ξ⊗s is the s-times tensor product of a holomorphic line bundle Ξ. Suppose that there
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exists a strongly plurisubharmonic function on a neighborhood U∗ of bM. We have

‖∂σ‖2L2
p,k(M,Ξ⊗ s) + ‖∂

∗

sσ‖
2
L2

p,k(M,Ξ⊗ s) = ‖∇σ‖2L2
p,k(M,Ξ⊗ s)

+

∫
bM

hs
j| 5 ρ|−1

n∑
β,γ=1

∂2ρ

∂zβ∂zγ
σ
β

jCpBk−1
σ

CpγBk−1

j dS

+

∫
s
hs

j

n∑
β,γ=1

(
δσε [s γβ

σ
+ Rβ

σ
] − Rσβ

εσ

)
× σ

β

jCpBk−1
σ

CpγBk−1

j dV,

for σ ∈ Bp,k(M,Ξ⊗s), so that σ is supported in U∗, and k > 1, where

‖∇σ‖2L2
p,k(M,Ξ⊗ s) =

∫
M

n∑
σ,β=1

gβσj ∇βσ jCpDs
∇σσ

CpDk

j dV,

and

Rσ
βν γ = −

∂

∂zνj

∑ gσσj
∂

∂zγj
g jβσ

 ,
is the Riemann curvature tensor,

Rσν = −
∂2

∂zσj ∂zνj
(log det g jσβ),

is the Ricci curvature tensor, and the curvature tensor of Ξ is given by

γσν = −
∂2

∂zσj ∂zνj
(log h),

where δσε is the Kronecker’s delta.

Proposition 3. [43] With the same assumptions as in Proposition 2, let us assume the following: There
exists a constant C > 0 not depending on s and an integer s0 > 0 so that for all s > s0, k > 1, we have

‖∇σ‖2L2
p,k(M\K,Ξ⊗ s) + (s−s0)‖σ‖2L2

p,k(M\K,Ξ⊗ s) 6 C
(
‖∂σ‖2L2

p,k(M,Ξ⊗ s) + ‖∂
∗

sσ‖
2
L2

p,k(M,Ξ⊗ s)

)
+ ‖σ‖2L2

p,k(K,Ξ⊗ s),
(4.1)

where K = M\(M ∩ V) is the compact subset of M.

Proposition 4. With the same assumptions as in Proposition 2, let us assume the following: There
exists a constant s∗ > 0 satisfies ∀ s > s∗, the harmonic spaceH s

p,k(Ξ⊗s) has finite dimension and there
exists a constant Cs > 0 depending on s such that

‖σ‖2L2
p,k(M,Ξ⊗ s) 6 Cs

(
‖∂σ‖2L2

p,k(M,Ξ⊗ s) + ‖∂
∗

sσ‖
2
L2

p,k(M,Ξ⊗ s)

)
, (4.2)

for σ ∈ L2
p,k(M,Ξ⊗s) ∩Dom (∂,Ξ⊗s) ∩Dom (∂

∗

s ,Ξ
⊗s) with k > 1.
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Proof. Using (4.1), the proof follows as in Saber [29, 30]. �

Proposition 5. With the same assumptions as in Proposition 2. Assume that there exists a positive
integer m∗ satisfies, for s > s∗, k > 1, then there exists a bounded linear operator Ns : L2

p,k(M,Ξ⊗s) −→
L2

p,k(M,Ξ⊗s) such that
(i) Ran(Ns,Ξ⊗s) ⊂ Dom(�s,Ξ⊗s), Ns �s = I − Πs on Dom (�s,Ξ⊗s),
(ii) for σ ∈ L2

p,k(M,Ξ⊗s), we have σ = ∂ ∂
∗

s Ns σ ⊕ ∂
∗

s∂Ns σ ⊕ Πsσ,

(iii) Ns ∂ = ∂Ns and Ns ∂
∗

s = ∂
∗

s Ns,
(iv) Ns, ∂Ns, ∂

∗

s Ns are bounded operators on L2
p,k(M,Ξ⊗s).

Proof. The proof follows as [3, 28]. �

Theorem 5. With the same assumptions as in Proposition 2. For α ∈ L2
p,k(X,Ξ⊗ s), α is supported in

M, with k > 1, satisfying ∂α = 0 in X, there exists w ∈ L2
p,k−1(X,Ξ⊗ s), w is supported in M such that

∂w = α in X.

Proof. Let α ∈ L2
p,k(X,Ξ⊗ s), α is supported in M, then α ∈ L2

p,k(M,Ξ⊗ s). Following Theorem 2, Ns
n−p,n−k

exists for n − k > 1. Define
w = − ? >Ξ⊗ s ∂ Ns

n−p,n−k >Ξ⊗ s ? α, (4.3)

for w ∈ L2
p,k−1(M,Ξ⊗ s). Set w = 0 in X \ M.

To solve ∂w = α in X, first solve ∂w = α in M.

< ∂%,>Ξ⊗ s ? α >L2
p,k(M,Ξ⊗ s)= (−1)p + k < α,>Ξ∗⊗s ? ∂ % >L2

p,k(M,Ξ⊗ s),

if % ∈ dom(∂,Ξ∗⊗s). From the fact that ϑs = ∂
∗

s on Bp,k(M,Ξ⊗ s) and the density of Bp,k(M,Ξ⊗ s) in
Dom (∂,Ξ⊗ s) ∩ Dom (∂

∗

,Ξ⊗ s), and from (4.3), we obtain

< ∂%,>Ξ⊗ s ? α >L2
p,k(M,Ξ⊗ s)=< α, ∂

∗

s >Ξ∗⊗s ?% >L2
p,k(M,Ξ⊗ s) .

Thus, α is supported in M, implies ∂
∗

s(>Ξ⊗ s ? α) = 0 on M. Proposition 5(iii) implies

∂
∗

s Ns
n−p,n−k(>Ξ⊗ s ? α) = Ns

n−p,n−k−1 ∂
∗

s(>Ξ⊗ s ? α) = 0. (4.4)

Thus, from (1.1), (4.3) and (4.4), one obtains

∂w = − ∂ ? >Ξ∗⊗s ∂Ns
n−p,n−k >Ξ⊗ s ? α

= (−1)p + k ? >Ξ∗⊗s∂
∗

s∂Ns
n−p,n−k >Ξ⊗ s ? α

= (−1)p + k ? >Ξ∗⊗s >Ξ⊗ s ?α

= α.

(4.5)

Because w = 0 in X \ M, for % ∈ L2
p,k(X,Ξ⊗ s), one obtains

< w, ∂
∗

s% >L2
p,k(X,Ξ⊗ s) =< w, ∂

∗

s% >L2
p,k(M,Ξ⊗ s)=< >Ξ⊗ s ? ∂

∗

s%,>Ξ⊗ s ? w >L2
p,k(M,Ξ⊗ s) .

AIMS Mathematics Volume 8, Issue 12, 31141–31157.
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Since
>Ξ⊗ s ? w = (−1)p + k +1 ∂Ns

n−p,n−k >Ξ⊗ s ? α.

Equation (4.5) gives

< w, ∂
∗

s% >L2
p,k(X,Ξ⊗ s) = (−1)p + k < ∂ >Ξ⊗ s ?%,>Ξ⊗ s ? w >L2

p,k(M,Ξ⊗ s)=< ∂w, % >L2
p,k(M,Ξ⊗ s) .

Thus
< w, ∂

∗

s% >L2
p,k(X,Ξ⊗ s) =< α, % >L2

p,k(M,Ξ⊗ s)=< α, % >L2
p,k(X,Ξ⊗ s) .

Thus ∂w = α in X. �

5. Annular domains

5.1. Compactness estimates

Theorem 6. Assume that M = M1\M2 is an annulus between two smooth bounded domains M1 and M2

in a Stein manifold X of dimension n satisfy M2 b M1, M1 is weak Z(k), M2 is weak Z(n − 1 − k) and
1 6 k 6 n− 2 with n > 3. Let % be a smooth function on M satisfy % = µ in a neighborhood of bM1 and
% = −µ in a neighborhood of bM2. Then, there exists c,T > 0 satisfy for every t ≥ T with Ct > 0, one
obtains

t‖σ‖2L2
p,k(M,e− t %) 6 c ‖∂σ‖2L2

p,k(M,e− t %) + ‖∂
∗

tσ‖
2
L2

p,k(M,e− t %) + Ct ‖σ‖
2
W−1(M), (5.1)

for σ ∈ Dp,k(M).

Proof. As in [27, 29] (resp. [30]). Let σ be supported in a small neighborhood V of bM1. Let (ζi j) be a
Levi matrix of a defining function ζ of M1. If U ⊂ M, one obtains

‖σ‖2W1(U) 6 c′ (‖∂σ‖2L2
p,k(U,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(U,e− t %)), for σ ∈ Dp,k(U). (5.2)

Following [25], one obtains

‖σ‖2L2
p,k(U,e− t %) 6 t‖σ‖2W1(U) + Ct ‖σ‖

2
W−1(U). (5.3)

If c = t2c′ and using (5.2), (5.3), inequality (5.1) follows for σ ∈ Dp,k(U) when U ∩ bM = ∅.
Since bM1 is weak Z(k) as the boundary of M1 and is weak Z(n − 1 − k) as a part of bM. Thus, for

σ ∈ Dp,k(U∩M1) with 1 6 k 6 n − 1 and ∀ c > 0, it follows that

t
∫

U∩M1

|σ|2e− t %dV 6 c (‖∂σ‖2L2
p,k(U∩M1,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(U∩M1,e− t %)) + Ct ‖σ‖
2
W−1(U∩M1). (5.4)

Let ∆δ1 = {z ∈ X : −δ1 < ζ(z) 6 0}, where δ1 > 0 is a number (depend on t) small enough. From the
compactness of bM1, by using a finite covering {Vν}

s
ν=1 of bM1 by neighborhoods Vν as in (5.4), one

obtains
t
∫

∆δ1

|σ|2e− t %dV 6 c (‖∂σ‖2
L2

p,k(∆δ1 ,e
− t %) + ‖∂

∗

tσ‖
2
L2

p,k(∆δ1 ,e
− t %)) + Ct ‖σ‖

2
W−1(∆δ1 ), (5.5)

when σ is supported in the strip ∆δ1 .
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Since bM2 is weak Z(n − 1 − k) as the boundary of M2 and is weak Z(k) as a part of bM. Following
Lemma 3,

t
∫

U∩M2

|σ|2e− t %dV 6 C ‖∂σ‖2L2
p,k(U∩M2,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(U∩M2,e− t %) + Ct ‖σ‖
2
W−1(U∩M2), (5.6)

for σ ∈ Dp,k(U ∩ M2), 1 6 k 6 n − 2.
Let ∆δ2 = {z ∈ X : 0 6 ζ(z) < δ2}, where δ2 > 0 small enough. From the compactness of bM2, by a

finite covering {Vν}
s
ν=1 of bM2 by neighborhoods Vν as in (5.5),

t
∫

∆δ2

|σ|2e− t %dV 6 c ‖∂σ‖2
L2

p,k(∆δ2 ,e
− t %) + ‖∂

∗

tσ‖
2
L2

p,k(∆δ2 ,e
− t %) + Ct ‖σ‖

2
W−1(∆δ2 ), (5.7)

when σ is supported in the strip ∆δ2 .
Let ∆δ = ∆δ1 ∪ ∆δ2 with δ = min{δ1, δ2}. Thus, by (5.5) and (5.7), one obtains

t
∫

∆δ

|σ|2 e− t % dV 6 c ‖∂σ‖2L2
p,k(∆δ,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(∆δ,e− t %) + Ct ‖σ‖
2
W−1(∆δ)

. (5.8)

The integral on M\∆δ can be estimated by choosing γδ ∈ D(M) with γδ(z) = 1, ζ(z) 6 −δ and z ∈ M\∆δ

as
‖γδσ‖

2
L2

p,k(M\∆δ,e− t %) 6 k ‖γδσ‖2W1(M\∆δ)
+

1
k
‖γδσ‖

2
W−1(M\∆δ)

. (5.9)

Because Qt is elliptic, by Gårding’s inequality [28],

‖γδσ‖
2
W1(M) 6 ‖∂(γδσ)‖2L2

p,k(M,e− t %) + ‖∂
∗

t (γδσ)‖2L2
p,k(M,e− t %)

6 (‖γδ(∂σ)‖2L2
p,k(M,e− t %) + ‖γδ(∂

∗

tσ)‖2L2
p,k(M,e− t %)

+ ‖[γδ, ∂]σ‖2L2
p,k(M,e− t %) + ‖[γδ, ∂

∗

t ]σ‖2L2
p,k(M,e− t %) + ‖γδσ‖

2
L2

p,k(M,e− t %))

6 ‖∂σ‖2L2
p,k(M,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(M,e− t %) + Cδ ‖σ‖
2
L2

p,k(M,e− t %).

(5.10)

Thus, from (5.8)–(5.10), one obtains

‖γδσ‖
2
L2

p,k(M,e− t %) −
1
2
‖σ‖2L2

p,k(M,e− t %) 6 k(‖∂σ‖2L2
p,k(M,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(M,e− t %)) +
1
k
‖γδσ‖

2
W−1(M). (5.11)

Thus, from (5.10), (5.11), we get
t
2
‖σ‖2L2

p,k(M,e− t %) 6 t
∫

∆δ

|σ|2 e− t % dV + t‖γδσ‖2L2
p,k(M,e− t %) −

t
2
‖σ‖2L2

p,k(M,e− t %)

6 (c + kt) ‖∂σ‖2L2
p,k(M,e− t %) + ‖∂

∗

tσ‖
2
L2

p,k(M,e− t %) + (Ct +
t
k

)‖σ‖2W−1(M).

Thus (5.1) follows by choosing c + kt < C
2 and C′t + t

k <
Ct
2 . �

Theorem 7. Let X, Ξ, M be as in Theorem 6. Then, the compactness estimate of the weighted ∂-
Neumann problem holds on M for a holomorphic vector bundle Ξ-valued (p, k) form. Then, for all
c > 0, there exists a t > 0 and Cc,t > 0 such that

t ‖σ‖2L2
p,k(M,Ξ) ≤ c

(
‖∂σ‖2L2

p,k(M,Ξ) + ‖∂
∗

tσ‖
2
L2

p,k(M,Ξ)

)
+ Ct ‖σ‖2W−1(M,Ξ) ,

for σ ∈ Dp,k(M,Ξ).

Proof. The proof follows as Theorem 2. �
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5.2. Global regularity up to the boundary

Lemma 5. With the same assumptions as in Theorem 7, let us assume the following: For 1 ≤ k ≤ n−2,
n ≥ 3, there exists C > 0 satisfies∀ σ ∈ Dp,k(M,Ξ) with σ ⊥ Hp,k

t (Ξ), we have

‖σ‖2L2
p,k(M,Ξ) ≤ C

(
‖∂σ‖2L2

p,k(M,Ξ) + ‖ϑtσ‖
2
L2

p,k(M,Ξ)

)
. (5.12)

Proof. The proof follows as Lemma 3. �

By using (5.12), as Proposition 3.5 in [3], we prove the following theorem:

Lemma 6. With the same assumptions as in Theorem 7, let us assume the following: for 1 ≤ k ≤ n−2,
n ≥ 3, we have

(1) ∂ (resp. ∂
∗

t) has closed range in L2
p,k(M,Ξ) and L2

p,k +1(M,Ξ) (resp. L2
p,k−1(M,Ξ)),

(2)Hp,k
t (Ξ) is finite dimensional,

(3) �t has closed range in L2
p,k(M,Ξ),

(4) Ran(Nt) ⊂ Dom�t, Nt�t = I −Hp,k
t (Ξ) on Dom(�t,Ξ),

(5) for σ ∈ L2
p,k(M,Ξ), we have σ = ∂ ∂

?

tNσ ⊕ ∂
?
∂Ntσ ⊕ Htσ.

Proof. The proof follows as in [28]. �

By Lemma 6 (ii) and the density of C∞p,k(M,Ξ) in Wk
p,k(M,Ξ), the following result is immediate.

Lemma 7. [44] With the same assumptions as in Theorem 7, let us assume the following: If f ∈
C∞p,k(M,Ξ) with 1 ≤ k ≤ n − 2, n ≥ 3 and Nt f ∈ C∞p,k(M,Ξ), then for all s ≥ 0, there exists constants
Cs and Ts such that

‖Nt f ‖Ws(M,Ξ) ≤ Cs‖ f ‖Ws(M,Ξ), for every t > Ts.

One can prove the following theorem by using the elliptic regularization method used in [44]:

Lemma 8. Assuming the same assumption as in Theorem 7, for every integer s ≥ 0 and real t > T > 0,
Nt is bounded from Ws

p,k(M,Ξ) into itself for 1 ≤ k ≤ n − 2, n ≥ 3.

By Lemma and the density of C∞p,k(M,Ξ) in Ws
p,k(M,Ξ), the following is immediate.

Corollary 2. Let M, Ξ and X be the same as in Theorem 7. Then, if f ∈ Ws
p,k(M,Ξ), s = 0, 1, 2, 3, ....

satisfies ∂ f = 0, where 1 ≤ k ≤ n − 2, n ≥ 3, there exits σ ∈Ws
p,k−1(M,Ξ) so that ∂σ = f on M and

‖σ‖Ws(M,Ξ) ≤ Cs‖ f ‖Ws(M,Ξ).

Theorem 8. With the same assumptions as in Theorem 7, let us assume the following: for σ ∈
C∞p,k(M,Ξ), 1 ≤ k ≤ n − 2, n ≥ 3, satisfying ∂σ = 0, there exists w ∈ C∞p,k−1(M,Ξ), satisfies ∂w = σ

in X.

Proof. The proof follows as [30, 44]. �
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6. Conclusions

In this paper, we are concerned with the Sobolev estimates of the ∂-Neumann operator N and the
resulting results (Compactness and Global regularity, etc.). Existence theorems and Sobolev estimates
for the ∂ and the ∂-Neumann operator on the weak Z(k) domain with C3 boundary in an n-dimensional
Stein manifold X are fundamental results in complex analysis. In this way, we can gain a deeper
understanding of holomorphic functions, and we can implement tools to solve the ∂-equation more
efficiently.
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