Research article Special Issues

The inhomogeneous complex partial differential equations for bi-polyanalytic functions

  • Received: 01 March 2024 Revised: 15 April 2024 Accepted: 18 April 2024 Published: 13 May 2024
  • MSC : 32A30, 30C45

  • In this paper, we study a Riemann-Hilbert problem related to inhomogeneous complex partial differential operators of higher order on the unit disk. Applying the Cauchy-Pompeiu formula, we find out the solvable conditions and obtain the representation of the solutions. Then, we investigate the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions, obtain the specific solution and the solvable conditions, and extend the conclusion to the corresponding higher-order problems. Therefore, we obtain the solution to the half-Neumann problem of higher order for bi-polyanalytic functions.

    Citation: Yanyan Cui, Chaojun Wang. The inhomogeneous complex partial differential equations for bi-polyanalytic functions[J]. AIMS Mathematics, 2024, 9(6): 16526-16543. doi: 10.3934/math.2024801

    Related Papers:

  • In this paper, we study a Riemann-Hilbert problem related to inhomogeneous complex partial differential operators of higher order on the unit disk. Applying the Cauchy-Pompeiu formula, we find out the solvable conditions and obtain the representation of the solutions. Then, we investigate the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions, obtain the specific solution and the solvable conditions, and extend the conclusion to the corresponding higher-order problems. Therefore, we obtain the solution to the half-Neumann problem of higher order for bi-polyanalytic functions.



    加载中


    [1] D. Pompeiu, Sur une classe de fonctions d'une variable complexe et sur certaine equations integrals, Rend. Circ. Mat. Palermo, 35 (1913), 277–281.
    [2] I. N. Vekua, Generalized Analytic Functions, Oxford: Pergamon Press, 1962.
    [3] M. M. Sirazhudinov, S. P. Dzhamaludinova, Estimates for the locally periodic homogenization of the Riemann-Hilbert problem for a generalized Beltrami equation, Diff. Equat., 58 (2022), 771–790. https://doi.org/10.1134/S0012266122060064 doi: 10.1134/S0012266122060064
    [4] Y. Li, H. Sun, A note on the Julia sets of entire solutions to delay differential equations, Acta. Math. Sci., 43 (2023), 143–155. https://doi.org/10.1007/s10473-023-0109-4 doi: 10.1007/s10473-023-0109-4
    [5] E. V. Seregina, V. V. Kalmanovich, M. A. Stepovich, Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure, J. Math. Sci., 267 (2022), 773–780. https://doi.org/10.1007/s10958-022-06168-1 doi: 10.1007/s10958-022-06168-1
    [6] D. B. Katz, B. A. Kats, Non-rectifiable Riemann boundary value problem for bi-analytic functions, Complex Var. Ellipt. Equ., 66 (2021), 843–852. https://doi.org/10.1080/17476933.2020.1751134 doi: 10.1080/17476933.2020.1751134
    [7] H. Begehr, D. Q. Dai, X. Li, Integral representation formulas in polydomains, Complex Var., 47 (2002), 463–484. https://doi.org/10.1080/02781070290016241 doi: 10.1080/02781070290016241
    [8] H. Begehr, A. O. Celebi, W. Tutschke, Complex Methods for Partial Differential Equations, Dordrecht: Kluwer Academic Publishers, 1999.
    [9] E. Ariza, A. D. Teodoro, C. J. Vanegas, $\Psi$-weighted Cauchy-Riemann operators and some associated integral representation, Quaest. Math., 43 (2020), 335–360. https://doi.org/10.2989/16073606.2019.1574928 doi: 10.2989/16073606.2019.1574928
    [10] P. Ciatti, E. Gonzalez, M. L. De Cristoforis, G. P. Leonardi, Topics in Mathematical Analysis, London: World Scientific, 2008.
    [11] H. Begehr, G. N. Hile, A hierarchy of integral operators, Rocky Mount. J. Math., 27 (1997), 669–706.
    [12] I. N. Dorofeeva, A. B. Rasulov, A linear matching problem for a generalized Cauchy-Riemann equation with super-singular points on a half-plane, Comput. Math. Math. Phys., 62 (2022), 1859–1864. https://doi.org/10.1134/S0965542522110069 doi: 10.1134/S0965542522110069
    [13] S. Wang, F. He, On the variable exponent Riemann boundary value problem for Liapunov open curve, J. Geom. Anal., 33 (2023), 62. https://doi.org/10.1007/s12220-022-01113-9 doi: 10.1007/s12220-022-01113-9
    [14] Z. Du, Y. Wang, M. Ku, Schwarz boundary value problems for polyanalytic equation in a sector ring, Complex Anal. Oper. Theory, 17 (2023), 33. https://doi.org/10.1007/s11785-023-01329-9 doi: 10.1007/s11785-023-01329-9
    [15] H. Begehr, B. Shupeyeva, Polyanalytic boundary value problems for planar domains with harmonic Green function, Anal. Math. Phys., 11 (2021), 137. https://doi.org/10.1007/s13324-021-00569-2 doi: 10.1007/s13324-021-00569-2
    [16] Y. Cui, Z. Li, Y. Xie, Y. Qiao, The nonlinear boundary value problem for k holomorphic functions in $\mathbb{C}^2$, Acta. Math. Sci., 43 (2023), 1571–1586. https://doi.org/10.1007/s10473-023-0408-9 doi: 10.1007/s10473-023-0408-9
    [17] N. Vasilevski, On polyanalytic functions in several complex variables, Complex Anal. Oper. Theory, 17 (2023), 80. https://doi.org/10.1007/s11785-023-01386-0 doi: 10.1007/s11785-023-01386-0
    [18] W. Wang, A. Mao, The existence and non-existence of sign-changing solutions to bi-harmonic equations with a p-Laplacian, Acta. Math. Sci., 42 (2022), 551–560. https://doi.org/10.1007/s10473-022-0209-6 doi: 10.1007/s10473-022-0209-6
    [19] W. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies, Acta. Math. Sci., 42 (2022), 127–140. https://doi.org/10.1007/s10473-022-0106-z doi: 10.1007/s10473-022-0106-z
    [20] P. Dryga$\acute{s}$, V. Mityushev, Lattice sums for double periodic polyanalytic functions, Anal. Math. Phys., 13 (2023), 75. https://doi.org/10.1007/s13324-023-00838-2 doi: 10.1007/s13324-023-00838-2
    [21] J. Sander, Viscous fluids elasticity and function theory, Trans. Amer. Math. Soc., 98 (1961), 85–147.
    [22] H. Begehr, A. Kumar, Boundary value problems for bi-polyanalytic functions, Appl. Anal., 85 (2006), 1045–1077. https://doi.org/10.1080/00036810600835110 doi: 10.1080/00036810600835110
    [23] J. Lin, Y. Z. Xu, Riemann problem of ($\lambda, k$) bi-analytic functions, Appl. Anal., 101 (2022), 3804–3815. https://doi.org/10.1080/00036811.2021.1987417 doi: 10.1080/00036811.2021.1987417
    [24] J. Lin, A class of inverse boundary value problems for ($\lambda, 1$) bi-analytic functions, Wuhan Uni. J. Natural Sci., 28 (2023), 185–191. https://doi.org/10.1051/wujns/2023283185 doi: 10.1051/wujns/2023283185
    [25] D. E. G. Valencia, R. A. Blaya, M. P. $\acute{A}$. Alejandre, Y. P. Pérez, On the Riemann problem in fractal elastic media, Anal. Math. Phys., 13 (2023), 3. https://doi.org/10.1007/s13324-022-00764-9 doi: 10.1007/s13324-022-00764-9
    [26] A. Kumar, Riemann Hilbert problem for a class of nth order systems, Complex Var. Theory Appl.: Int. J., 25 (1994), 11–22. https://doi.org/10.1080/17476939408814726 doi: 10.1080/17476939408814726
    [27] H. Begehr, A. Kumar, Boundary value problems for the inhomogeneous polyanalytic equation I, Analysis, 25 (2005), 55–71. https://doi.org/10.1515/anly-2005-0103 doi: 10.1515/anly-2005-0103
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(533) PDF downloads(35) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog