Processing math: 100%
Research article Special Issues

The inhomogeneous complex partial differential equations for bi-polyanalytic functions

  • In this paper, we study a Riemann-Hilbert problem related to inhomogeneous complex partial differential operators of higher order on the unit disk. Applying the Cauchy-Pompeiu formula, we find out the solvable conditions and obtain the representation of the solutions. Then, we investigate the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions, obtain the specific solution and the solvable conditions, and extend the conclusion to the corresponding higher-order problems. Therefore, we obtain the solution to the half-Neumann problem of higher order for bi-polyanalytic functions.

    Citation: Yanyan Cui, Chaojun Wang. The inhomogeneous complex partial differential equations for bi-polyanalytic functions[J]. AIMS Mathematics, 2024, 9(6): 16526-16543. doi: 10.3934/math.2024801

    Related Papers:

    [1] Yanyan Cui, Chaojun Wang . Dirichlet and Neumann boundary value problems for bi-polyanalytic functions on the bicylinder. AIMS Mathematics, 2025, 10(3): 4792-4818. doi: 10.3934/math.2025220
    [2] Yanyan Cui, Chaojun Wang . Systems of two-dimensional complex partial differential equations for bi-polyanalytic functions. AIMS Mathematics, 2024, 9(9): 25908-25933. doi: 10.3934/math.20241265
    [3] Kedong Wang, Xianguo Geng, Mingming Chen, Ruomeng Li . Long-time asymptotics for the generalized Sasa-Satsuma equation. AIMS Mathematics, 2020, 5(6): 7413-7437. doi: 10.3934/math.2020475
    [4] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [5] Jinfang Li, Chunjiang Wang, Li Zhang, Jian Zhang . Multi-solitons in the model of an inhomogeneous optical fiber. AIMS Mathematics, 2024, 9(12): 35645-35654. doi: 10.3934/math.20241691
    [6] Andrey Muravnik . Wiener Tauberian theorem and half-space problems for parabolic and elliptic equations. AIMS Mathematics, 2024, 9(4): 8174-8191. doi: 10.3934/math.2024397
    [7] Hassan Khan, Umar Farooq, Fairouz Tchier, Qasim Khan, Gurpreet Singh, Poom Kumam, Kanokwan Sitthithakerngkiet . The analytical analysis of fractional order Fokker-Planck equations. AIMS Mathematics, 2022, 7(7): 11919-11941. doi: 10.3934/math.2022665
    [8] Andrey Muravnik . Nonclassical dynamical behavior of solutions of partial differential-difference equations. AIMS Mathematics, 2025, 10(1): 1842-1858. doi: 10.3934/math.2025085
    [9] Naveed Iqbal, Azmat Ullah Khan Niazi, Ikram Ullah Khan, Rasool Shah, Thongchai Botmart . Cauchy problem for non-autonomous fractional evolution equations with nonlocal conditions of order $ (1, 2) $. AIMS Mathematics, 2022, 7(5): 8891-8913. doi: 10.3934/math.2022496
    [10] Meijiao Wang, Qiuhong Shi, Maoning Tang, Qingxin Meng . Stochastic differential equations in infinite dimensional Hilbert space and its optimal control problem with Lévy processes. AIMS Mathematics, 2022, 7(2): 2427-2455. doi: 10.3934/math.2022137
  • In this paper, we study a Riemann-Hilbert problem related to inhomogeneous complex partial differential operators of higher order on the unit disk. Applying the Cauchy-Pompeiu formula, we find out the solvable conditions and obtain the representation of the solutions. Then, we investigate the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions, obtain the specific solution and the solvable conditions, and extend the conclusion to the corresponding higher-order problems. Therefore, we obtain the solution to the half-Neumann problem of higher order for bi-polyanalytic functions.



    The Cauchy integral representations play an important role in the function theory of one or several complex variables, among which the Cauchy integral formula and the Cauchy-Pompeiu formula [1] are the two most important categories. The classical Cauchy-Pompeiu formulas [2] in C are:

    w(z)=12πiGw(ζ)dζζz1πGwˉζ(ζ)dξdηζz,zG, (1.1)
    w(z)=12πiGw(ζ)dˉζ¯ζz1πGwζ(ζ)dξdη¯ζz,zG, (1.2)

    where G is a bounded smooth domain in the complex plane and wC1(G;C)C(¯G;C).

    Obviously, the classical Cauchy-Pompeiu formulas are closely related to complex partial differential operators. Thus, lots of boundary value problems related to complex partial differential equations were solved with the help of the Cauchy integral formula and the Cauchy-Pompeiu formula in the complex plane C, see [3,4,5,6]. By iterating the Cauchy-Pompeiu formula for one variable, the solutions to second order systems in polydomains composed by the Laplace and the Bitsadze operators were obtained [7]. The Riemann-Hilbert problems for generalized analytic vectors and complex elliptic partial differential equations of higher order were investigated in C [8]. By constructing a weighted Cauchy-type kernel, the Cauchy-Pompeiu integral representation in the constant weights case and orthogonal case were obtained [9]. The classical Cauchy-Pompeiu formula was generalized to different cases for different kinds of functions in C [7], among which a high order case is:

    w(z)=m1μ=012πiG1μ!(¯zζ)μζzμˉζw(ζ)dζ1πG1(m1)!(¯zζ)m1ζzmˉζw(ζ)dξdη, (1.3)

    where wCm(G;C)Cm1(¯G;C) and 1m, see [10]. The first item in the right hand of (1.3) is the Cauchy integral expression for m-holomorphic functions on D, and the second item in (1.3) is a singular integral operator. Let

    T0,mf(z)=1πD1(m1)!(¯zζ)m1ζzf(ζ)dξdη, (1.4)

    where m1, fC(G) with G being a bounded domain in the complex plane, then

    mT0,mf(z)ˉzm=f(z),

    see [11]. Therefore, the solution to mˉzw(z)=f(z) can be expressed as (1.3), and T0,mf(z) provides a particular solution to mˉzw(z)=f(z). Thus it can be seen that, the Cauchy-Pompeiu formulas provide the integral representations of solutions to some partial differential equations.

    The generalizations of the classical Cauchy-Pompeiu formula have contributed to the flourishing development of boundary value problems in C. Many types of boundary value problems for analytic functions or polyanalytic functions have emerged in C. Among them, Riemann boundary value problems and Dirichlet problems are the two major categories. By using the Cauchy-Pompeiu formula and its generalizations, the solvable conditions were found, and the integral expressions of the solutions to some problems were obtained. Some were discussed on different ranges of the unit disk, such as a generalized Cauchy-Riemann equation with super-singular points on a half-plane [12], the variable exponent Riemann boundary value problem for Liapunov open curves [13], Schwarz boundary value problems for polyanalytic equation in a sector ring [14], and so on [15,16,17]. Some were investigated for different equations, such as bi-harmonic equations with a p-Laplacian [18] and so on [12,19,20], which are different from the partial differential equations in [7].

    As we all know, analytic functions are defined by a pair of Cauchy-Riemann equations. Bi-analytic functions [21] arise from the generalized system of Cauchy-Riemann equations

    {uxvy=θ,uy+vx=ω,(k+1)θx+ωy=0,(k+1)θyωx=0,

    where kR,k1, ϕ(z)=(k+1)θiω is called the associated function of f(z)=u+iv. A special case of bi-analytic functions is

    ˉzf(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),ˉzϕ(z)=0.

    Bi-analytic functions are generalizations of analytic functions. They are important to studying elasticity problems and, therefore, have attracted the attention of many scholars. Begehr and Kumar [22] successfully obtained the solution to the Schwarz and Neumann boundary value problems for bi-polyanalytic functions. Lin and Xu [23] investigated the Riemann problem for (λ,k) bi-analytic functions. There are many other excellent conclusions as well [24,25].

    So far, there have been few results for boundary value problems of bi-analytic functions with Riemann-Hilbert boundary conditions. Stimulated by this, we investigate this type of problems for bi-polyanalytic functions [26]

    ˉzf(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0(n1),

    where λR{1,0,1}, which are the extensions of bi-analytic functions.

    To solve the boundary value problems for bi-polyanalytic functions, in this paper, we first discuss a Riemann-Hilbert problem related to complex partial differential operators of higher order on the unit disk, and then we investigate the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions, the half-Neumann boundary conditions and the mixed boundary conditions. Applying this method, we can also discuss other related systems of complex partial differential equations of higher order for bi-polyanalytic functions.

    Let z and z represent the real and imaginary parts of the complex number z, respectively. Let Cm(G) represent the set of functions whose partial derivatives of order m are all continuous within G, and C(G) represent the set of continuous functions on G. To get the main results, we need the following lemmas:

    Lemma 2.1. [2] Let G be a bounded smooth domain in the complex plane, fL1(G;C) and

    Tf(z)=1πGf(ζ)ζzdξdη,

    then ˉzTf(z)=f(z).

    Lemma 2.2. Let D be the unit disk in C. For φC(D,R) and f1Cm1(ˉD,C) (m1) with ˉzfκ1=fκ(κ=2,,m),fm=0, let

    W(z)=12πiDφ(ζ)ζ+zζzdζζ+12πiDm1μ=11μ![(¯zζ)μfμ(ζ)]ζ+zζzdζζ+12πDm1μ=01μ!{[(¯zζ)μ(ˉζμ)]fμ(ζ)}dζζ, (2.1)

    then W=φ, mˉzW(z)=0 and sˉzW(z)=fs(z)(s=1,2,,m1).

    Proof. W=φ is due to the property of the Schwarz operator, as ζ+zζz is a pure imaginary number if zD.

    Let

    {A=12πiDm1μ=11μ![(¯zζ)μfμ(ζ)]ζ+zζzdζζ,B=12πDm1μ=01μ!{[(¯zζ)μ(ˉζμ)]fμ(ζ)}dζζ.

    Then

    {Aˉz=m1μ=11μ![12πiDμ(¯zζ)μ1fμ(ζ)dζζz12πiDμ(¯zζ)μ1fμ(ζ)dζ2ζ],Asˉz=m1μ=s1(μs)![12πiD(¯zζ)μsfμdζζz12πiD(¯zζ)μsfμdζ2ζ](s=2,,m1),Amˉz=0, (2.2)

    and

    {Bˉz=m1μ=114πiμ!Dμ(¯zζ)μ1fμ(ζ)dζζ,Bsˉz=m1μ=s14πi(μs)!D(¯zζ)μsfμ(ζ)dζζ(s=2,,m1),Bmˉz=0. (2.3)

    By (2.2), (2.3), and the Cauchy-Pompeiu formula (1.1), we get

    Wˉz=Aˉz+Bˉz=m1μ=11μ!12πiDμ(¯zζ)μ1fμ(ζ)dζζz=12πiD[m1μ=11(μ1)!(¯zζ)μ1fμ(ζ)]dζζz+1πDˉζ[m1μ=11(μ1)!(¯zζ)μ1fμ(ζ)]dσζζz=[m1μ=11(μ1)!(¯zζ)μ1fμ(ζ)]ζ=z=f1(z).

    Similarly,

    sˉzW(z)=sˉzA+sˉzB=fs(z)(s=2,,m1),mˉzW(z)=mˉzA+mˉzB=0.

    Lemma 2.3. [11] Let G be a bounded smooth domain in the complex plane, and w C1(G;C)C(¯G;C), then

    Gwˉz(z)dxdy=12iGw(z)dz,Gwz(z)dxdy=12iGw(z)dˉz.

    Theorem 3.1. Let D be the unit disk in C. For γ,fkC(D) with ˉzfk=fk+1 (k1,kZ), let

    T0,kfk(z)=1πD1(k1)!(¯zζ)k1ζzfk(ζ)dσζ, (3.1)

    then the problem

    {[¯ζpW(ζ)]=γ(ζ)(ζD),kW(z)ˉzk=fk(z)(zD)

    is solvable on D.

    (i) In the case of p0, the solution can be expressed as:

    W(z)=zpφ1(z)+k1s=0sl=0+v=0αsl(vp)zvˉzl+T0,kfk(z), (3.2)

    where

    φ1(z)=12πiDγ(ζ)ζ+zζzdζζ1(k1)!zpπD¯fk(ζ)z(zζ)k11zˉζdσζ+12πiDk1μ=11μ![¯(zζ)μμm=0Cmμ(fμm(ζ)T0,kμ+mfk(ζ))mˉζˉζp]ζ+zζzdζζ+12πDk1μ=01μ![(¯(zζ)μ¯(ζ)μ)μm=0Cmμ(fμm(ζ)T0,kμ+mfk(ζ))mˉζˉζp]dζζ, (3.3)

    αsl(vp) are arbitrary complex constants satisfying

    {k1s=0sl=0αsl(v+l)=0(vp+k),k1s=0sl=0[αsl(v+l)+¯αsl(lv)]=0(pvp),k1s=0sl=0αsl(p+1+t+l)+k1s=t+1sl=t+1¯αsl(p1t+l)=0(t=0,1,,k2,k2). (3.4)

    For k=1 the last equation in (3.4) is non-existent.

    (ii) In the case of p<0, the solution can be expressed as:

    W(z)=zpφ2(z)+k1s=0sl=0+v=0αsl(vp)zvˉzl+T0,kfk(z) (3.5)

    on the condition that

    12πiD{ζp[fk1(ζ)T0,1fk(ζ)]+ζp[¯fk1(ζ)T0,1fk(ζ)]}dζζl+1=0(l=0,1,,p1), (3.6)

    where αsl(vp) is the same as in (i) and

    φ2(z)=12πiDγζ+zζzdζζ1(k1)!zpπD¯fk(ζ)z(zζ)k11zˉζdσζ+12πiDk1μ=11μ!{¯(zζ)μζp[fμ(ζ)T0,(kμ)fk(ζ)]}ζ+zζzdζζ+12πDk1μ=01μ!{(¯(zζ)μ¯(ζ)μ)ζp[fμ(ζ)T0,(kμ)fk(ζ)]}dζζ. (3.7)

    Proof. (1) For n=1, by Lemma 2.1, T0,kfk(z) is a particular solution to kW(z)ˉzk=fk(z), then the corresponding general solution is W(z)=φ(z)+T0,kfk(z), where φ(z) is a k-holomorphic function with

    [ζpφ(ζ)]=[ζpW(ζ)ζpT0,kfk(ζ)]=γ(ζ)[ζpT0,kfk(ζ)]γ0(ζ).

    (i) In the case of p0(pZ):

    ① Let φ(z)=zpφ1(z), then [ζpφ(ζ)]=γ0(ζ)[φ1(ζ)]=γ0(ζ), and φ(z) is k-holomorphic if φ1(z) is k-holomorphic. As

    μˉζ(ˉζpφ(ζ))=μm=0Cmμμmˉζφ(ζ)mˉζ(ˉζp)=μm=0Cmμμmˉζ[W(ζ)T0,kfk(ζ)]mˉζ(ˉζp)=μm=0Cmμ[fμm(ζ)T0,kμ+mfk(ζ)]mˉζ(ˉζp),

    by Lemma 2.2 we get that

    φ1(z)=12πiDk1μ=01μ![¯(zζ)μμˉζ(ˉζpφ(ζ))]ζ+zζzdζζ+12πDk1μ=01μ![(¯(zζ)μ¯(ζ)μ)μˉζ(ˉζpφ(ζ))]dζζ=12πiDγ(ζ)ζ+zζzdζζ12πiD[ζpT0,kfk(ζ)+ζp¯T0,kfk(ζ)](1ζz12ζ)dζ+12πiDk1μ=11μ![¯(zζ)μμm=0Cmμ(fμm(ζ)T0,kμ+mfk(ζ))mˉζˉζp]ζ+zζzdζζ+12πDk1μ=01μ![(¯(zζ)μ¯(ζ)μ)μm=0Cmμ(fμm(ζ)T0,kμ+mfk(ζ))mˉζˉζp]dζζ (3.8)

    satisfies [φ1(ζ)]=γ0(ζ) and kˉzφ1(z)=0. Furthermore, by (3.1), we obtain that

    12πiDζpT0,kfk(ζ)dζζz=1(k1)!1πDfk(ζ)[12πiDζp(¯ζζ)k1ζζdζζz]dσζ=1(k1)!1πDfk(ζ)[12πiDˉζp(¯ζζ)k1ˉζζ1dˉζzˉζ1]dσζ=0, (3.9)

    which follows

    12πiDζpT0,kfk(ζ)dζ2ζ=0. (3.10)

    Meanwhile,

    12πiDζp¯T0,kfk(ζ)dζζz=1(k1)!1πD¯fk(ζ)[12πiDζp(ζζ)k1¯ζˉζdζζz]dσζ=1(k1)!1πD¯fk(ζ)zp+1(zζ)k1z¯ζ1dσζ=zp(k1)!1πD¯fk(ζ)z(zζ)k1zˉζ1dσζ, (3.11)

    which follows

    12πiDζp¯T0,kfk(ζ)dζ2ζ=0. (3.12)

    Plugging (3.9)–(3.12) into (3.8), we get (3.3). Therefore zpφ1(z) is a particular solution to [ζpφ(ζ)]=γ0(ζ) and kˉzφ(z)=0.

    ② If φ0(z) is k-holomorphic on D with [ζpφ0(z)]=0, then zpφ1(z)+φ0(ζ) is the general solution to [ζpφ(ζ)]=γ0(ζ) and kˉzφ(z)=0. In the following, we seek φ0(z).

    As φ0(z) is k-holomorphic, it can be expressed as

    φ0(z)=k1s=0sl=0+v=0Cslvzvˉzlk1s=0sl=0+v=0αsl(vp)zvˉzl, (3.13)

    where αsl(vp)=Cslv are arbitrary complex constants. Let

    αslv+¯αsl(2lv)=Aslv,αslv=Bslv,¯αsl(2lv)=Cslv, (3.14)

    then

    0={ˉζpφ0(ζ)}=k1s=0sl=0+v=p(αslvζvl+¯αslvζlv)=k1s=0sl=0p+2lv=p(αslv+¯αsl(2lv))ζvl+k1s=0sl=0+v=p+2l+1αslvζvl+k1s=0sl=0p1v=¯αsl(2lv)ζvl=k1s=0sl=0p+2lv=pAslvζvl+k1s=0sl=0+v=p+2l+1Bslvζvl+k1s=0sl=0p1v=Cslvζvl={pv=pA00vζv+(pv=pA10vζv+p+2v=pA11vζv1)+(pv=pA20vζv+p+2v=pA21vζv1+p+4v=pA22vζv2)++[pv=pA(k1)0vζv+p+2v=pA(k1)1vζv1++p+2(k1)v=pA(k1)(k1)vζv(k1)]}+{+v=p+1B00vζv+(+v=p+1B10vζv++v=p+3B11vζv1)+(+v=p+1B20vζv++v=p+3B21vζv1++v=p+5B22vζv2) (3.15)
    ++[+v=p+1B(k1)0vζv++v=p+3B(k1)1vζv1+++v=p+2k1B(k1)(k1)vζv(k1)]}+p1v={C00vζv+(C10vζv+C11vζv1)+(C20vζv+C21vζv1+C22vζv2)++[C(k1)0vζv+C(k1)1vζv1++C(k1)(k1)vζv(k1)]}={pv=pζv[k1l=0k1s=lAsl(v+l)]+ζp1k1l=1k1s=lAsl(p1+l)++ζpk+1A(k1)(kl)(p)+ζp+1k1l=1k1s=lAsl(p+1+l)+ζp+2k1l=2k1s=lAsl(p+2+l)++ζp+k1A(k1)(k1)(p+2(k1))}+{ζp+1k1s=0Bs0(p+1)+ζp+2[k1s=0Bs0(p+2)+k1s=1Bs1(p+3)]++ζp+k1k2l=0k1s=lBsl(p+k1+l)++v=p+kζv[k1l=0k1s=lBsl(v+l)]}+{ζp1k1s=0Cs0(p1)+ζp2[k1s=0Cs0(p2)+k1s=1Cs1(p1)]++ζpk+1k2l=0k1s=lCsl(pk+1+l)+pkv=ζv[k1l=0k1s=lCsl(v+l)]}=pkv=ζv[k1l=0k1s=lCsl(v+l)]+ζpk+1[k2l=0k1s=lCsl(pk+1+l)+A(k1)(kl)(p)]++ζp1[k1s=0Cs0(p1)+k1l=1k1s=lAsl(p1+l)]+pv=pζv[k1l=0k1s=lAsl(v+l)]+ζp+1[k1s=0Bs0(p+1)+k1l=1k1s=lAsl(p+1+l)]+ζp+k1[k2l=0k1s=lBsl(p+k1+l)+A(k1)(k1)(p+2(k1))]++v=p+kζv[k1l=0k1s=lBsl(v+l)], (3.16)

    which leads to (3.4) in consideration of (3.14) and

    k1l=0k1s=lCslv=k1s=0sl=0Cslv.

    By ① and ②, (3.2) is the solution to Problem RH.

    (ii) In the case of p<0(pZ):

    ① Let φ(z)=zpφ2(z), then [ζpφ(ζ)]=γ0(ζ)[φ2(ζ)]=γ0(ζ). Similar to the discussion of ① in (i), we get a particular solution φ2(z) for [φ2(ζ)]=γ0(ζ) where φ2(z) is k holomorphic:

    φ2(z)=12πiDγ0ζ+zζzdζζ+12πiDk1μ=11μ![¯(zζ)μζpμˉζφ(ζ)]ζ+zζzdζζ+12πDk1μ=01μ![(¯(zζ)μ¯(ζ)μ)ζpμˉζφ(ζ)]dζζ=12πiDγζ+zζzdζζ12πiD[ζpT0,kfk(ζ)+ζp¯T0,kfk(ζ)](1ζz12ζ)dζ+12πiDk1μ=11μ![¯(zζ)μζpμˉζφ(ζ)]ζ+zζzdζζ+12πDk1μ=01μ![(¯(zζ)μ¯(ζ)μ)ζpμˉζφ(ζ)]dζζ.

    So we get (3.7) for (3.9)–(3.12) and

    μˉζφ(ζ)=μˉζ[W(ζ)T0,kfk(ζ)]=μˉζW(ζ)μˉζT0,kfk(ζ)=fμ(ζ)T0,(kμ)fk(ζ).

    Therefore

    φ(z)=zpφ2(z)+k1s=0sl=0+v=0αsl(vp)zvˉzl

    is the solution to [ζpφ(ζ)]=γ0(ζ) and kˉzφ(z)=0, where αsl(vp) are arbitrary complex constants satisfying (3.12).

    ② Secondly, we seek the condition to ensure that φ(z) is k-holomorphic from φ2(z)=zpφ(z). As the k-holomorphism of φ2(z)=zpφ(z) is equivalent to the holomorphism of k1ˉzφ2(z)=zpk1ˉzφ(z), applying the properties of the Schwarz operator for holomorphic functions and

    1ζz=1ζ11zζ=l=0zlζl+1(|zζ|<1),

    we get that

    zpk1ˉzφ(z)=12πiD[ζpk1ˉζφ(ζ)+ζp¯k1ˉζφ(ζ)][2ζζz1]dζ2ζ=l=0{12πiD[ζpk1ˉζφ(ζ)+ζp¯k1ˉζφ(ζ)]dζζl+1}zl12πiD[ζpk1ˉζφ(ζ)+ζp¯k1ˉζφ(ζ)]dζ2ζ.

    As p<0, then φ(z) is k-holomorphic (-i.e., k1ˉzφ(z) is holomorphic) if and only if zpk1ˉzφ(z) has a zero of order at least p at z=0. Therefore,

    12πiD[ζpk1ˉζφ(ζ)+ζp¯k1ˉζφ(ζ)]dζζl+1=0(l=0,1,,p1),

    that is (3.6) as

    k1ˉζφ(ζ)=k1ˉζ[W(ζ)T0,kfk(ζ)]=k1ˉζW(ζ)k1ˉζT0,kfk(ζ)=fk1(ζ)T0,1fk(ζ).

    By ① and ②, (3.5) is the solution of Problem RH on the condition of (3.6).

    Theorem 3.1 extends the conclusions of Riemann-Hilbert boundary value problems for k-holomorphic functions. Given that k=1 in Theorem 3.1, we can get the following conclusion, which extends the existing results of the corresponding Riemann-Hilbert problems for analytic functions.

    Corollary 3.2. Let D be the unit disk in C. For γ,fC(D), the problem

    [ˉζpW(ζ)]=γ(ζ)(ζD),W(z)ˉz=f(z)(zD)

    is solvable on D.

    (i) In the case of p0, the solution can be expressed as:

    W(z)=zp2πiDγ(ζ)ζ+zζzdζζz2p+1πD¯f(ζ)1zˉζdσζ+2pv=0αvpzv1πDf(ζ)ζzdσζ,

    where αvp are arbitrary complex constants satisfying αv+¯αv=0(pvp);

    (ii) In the case of p<0, the solution is the same as in (i) on the condition of

    12πiD{γ(ζ)[ζpTf(ζ)]}dζζl+1=0(l=0,1,,p1).

    In this section we discuss several boundary value problems for bi-polyanalytic functions with the Dirichlet, Riemann-Hilbert boundary conditions or the mixed boundary conditions.

    Theorem 4.1. Let D be the unit disk in C, and let λR{1,0,1}, φ,γ,fkC(D) with ˉzfk=fk+1 (k=1,2,,n1,n2) and fn=0. Then the problem

    {ˉzf(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD),f(ζ)=φ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD), (4.1)

    is solvable on D.

    (i) In the case of p0, the solution can be expressed as:

    f(z)=12πiDφ(ζ)dζζz1πD[λ14λ(ζpφ1(ζ)+T0,kfk(ζ))+λ+14λ¯(ζpφ1(ζ)+T0,kfk(ζ))]dσζζzλ14λ{k1s=0sl=0[lv=0αsl(vp)l+1zvˉzl+1++v=l+1αsl(vp)l+1zv(zl1ˉzl+1)]}λ+14λ{k1s=0sl=0[l1v=0¯αsl(vp)v+1zl(zv1ˉzv+1)++v=l¯αsl(vp)v+1zlˉzv+1]} (4.2)

    if and only if

    12πiDφ(ζ)dζ1ˉzζ+1πD[λ14λζpφ1(ζ)+λ+14λˉζp¯φ1(ζ)]dσζˉzζ1+1πD{(¯zζ)kfk(ζ)k!(ˉzζ1)¯fk(ζ)(k1)![k2s=0Csk1(ˉzζ1)k1s(1)k1s(k1s)ˉzk(1ˉzζ)s+(1ˉzζ)k1ln(1ˉzζ)zk]}dσζ=λ14λk1s=0sl=0lv=0αsl(vp)ˉzlvl+1+λ+14λk1s=0sl=0+v=l¯αsl(vp)ˉzvlv+1, (4.3)

    where T0,kfk and φ1 are represented by (3.1) and (3.3), respectively, and αsl(vp) are arbitrary complex constants satisfying (3.4);

    (ii) In the case of p<0, the solution can be expressed as (4.2) on the condition of (3.6) and (4.3), where T0,kfk and αsl(vp) are the same as in (i); however, φ1 is represented by (3.7).

    Proof. As

    ˉz[1πDg(ζ)ζzdσζ]=g(z),

    obviously,

    1πD[λ14λϕ(ζ)+λ+14λ¯ϕ(ζ)]dσζζz

    is a special solution to ˉzf(z)=λ14λϕ(z)+λ+14λ¯ϕ(z), then the solution of the problem (4.1) can be represented as

    f(z)=ψ(z)1πD[λ14λϕ(ζ)+λ+14λ¯ϕ(ζ)]dσζζz, (4.4)

    where ψ(z) is analytic on D to be determined, and ϕ(ζ) is the solution to

    [¯ζpϕ(ζ)]=γ(ζ)(ζD),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD).

    Since ψ(z) is analytic, by (4.4),

    ψ(z)=12πiDψ(ζ)ζzdζ=12πiD{φ(ζ)+1πD[λ14λϕ(˜ζ)+λ+14λ¯ϕ(˜ζ)]dσ˜ζ˜ζζ}dζζz=12πiDφ(ζ)dζζz+1πD[λ14λϕ(˜ζ)+λ+14λ¯ϕ(˜ζ)][12πiD1˜ζζdζζz]dσ˜ζ=12πiDφ(ζ)ζzdζ (4.5)

    if and only if

    12πiDˉzψ(ζ)1ˉzζdζ=0(zD),

    that is,

    12πiDˉz1ˉzζ{φ(ζ)+1πD[λ14λϕ(˜ζ)+λ+14λ¯ϕ(˜ζ)]dσ˜ζ˜ζζ}dζ=012πiDˉzφ(ζ)1ˉzζdζ+1πD[λ14λϕ(˜ζ)+λ+14λ¯ϕ(˜ζ)][12πiDˉz1ˉzζdζ˜ζζ]dσ˜ζ12πiDφ(ζ)1ˉzζdζ+1πD[λ14λϕ(ζ)+λ+14λ¯ϕ(ζ)]dσζˉzζ1=0. (4.6)

    Plugging (4.5) into (4.4),

    f(z)=12πiDφ(ζ)ζzdζ1πD[λ14λϕ(ζ)+λ+14λ¯ϕ(ζ)]dσζζz. (4.7)

    (i) In the case of p0, by Theorem 3.1,

    ϕ(z)=zpφ1(z)+k1s=0sl=0+v=0αsl(vp)zvˉzl+T0,kfk(z), (4.8)

    where T0,kfk and φ1 are represented by (3.1) and (3.3), respectively, and αsl(vp) are arbitrary complex constants satisfying (3.4).

    Applying the Cauchy-Pompeiu formula (1.1),

    1πDζvˉζlζzdσζ=1πDˉζ(ζvˉζl+1l+1)dσζζz=12πiDζvˉζl+1l+1dζζzzvˉzl+1l+1=1l+112πiDζvl1ζzdζzvˉzl+1l+1={zvl+1(zl1ˉzl+1),vl+1,zvl+1ˉzl+1,v<l+1. (4.9)

    Similarly,

    1πDˉζvζlζzdσζ={zlv+1(zv1ˉzv+1),vl1,zlv+1ˉzv+1,v>l1. (4.10)

    Plugging (4.8)–(4.10) into (4.7), the solution (4.2) follows.

    In order to obtain the solvable conditions, the following integrals need to be calculated: First, by Lemma 2.3,

    1πDζvˉζlˉzζ1dσζ=1πDˉζ(ˉζl+1l+1ζvˉzζ1)dσζ=12πiDˉζl+1l+1ζvdζˉzζ1=1l+112πiDζvl1ˉzζ1dζ={0,vl+1,ˉzlvl+1,v<l+1. (4.11)

    Similarly,

    1πDˉζvζlˉzζ1dσζ={0,vl1,ˉzvlv+1,v>l1. (4.12)

    Secondly, by the Cauchy-Pompeiu formula (1.1),

    1πDT0,kfk(ζ)dσζˉzζ1=1πD[1πD1(k1)!(¯ζ˜ζ)k1˜ζζfk(˜ζ)dσ˜ζ]dσζˉzζ1=1πDfk(˜ζ)(k1)![1πD(¯ζ˜ζ)k1˜ζζdσζˉzζ1]dσ˜ζ=1πDfk(˜ζ)(k1)![1πDˉζ(¯ζ˜ζ)kk(1ˉzζ)dσζζ˜ζ]dσ˜ζ=1πDfk(˜ζ)(k1)![12πiD(¯ζ˜ζ)kk(1ˉzζ)dζζ˜ζ0]dσ˜ζ=1πDfk(˜ζ)(k1)![1k¯12πiD(ζ˜ζ)kdζ(ζz)(1¯˜ζζ)]dσ˜ζ=1πD(¯zζ)kfk(ζ)k!(ˉzζ1)dσζ. (4.13)

    In addition, for z,˜ζD, setting ˜z=1/ˉz, in view of

    1πD(ζ˜ζ)k1¯˜ζζdσζˉzζ1=˜zπD(ζ˜ζ)k1ζ˜zdσζ¯ζ˜ζ=˜zπD[k2s=0Csk1(ζ˜z)k2s(˜z˜ζ)s+(˜z˜ζ)k1ζ˜z]dσζ¯ζ˜ζ=˜zπDζ[k2s=0Csk1(ζ˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln(ζ˜z)]dσζ¯ζ˜ζ=˜z[k2s=0Csk1(ζ˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln(ζ˜z)]ζ=˜ζ+˜z2πiD[k2s=0Csk1(ζ˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln(ζ˜z)]dˉζ¯ζ˜ζ=˜z[k2s=0Csk1(˜ζ˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln(˜ζ˜z)]˜z[k2s=0Csk1(˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln(˜z)]=˜z[k2s=0Csk1(˜ζ˜z)k1s(˜z)k1sk1s(˜z˜ζ)s+(˜z˜ζ)k1ln˜ζ˜z˜z]=k2s=0Csk1(ˉz˜ζ1)k1s(1)k1s(k1s)ˉzk(1ˉz˜ζ)s+(1ˉz˜ζ)k1ln(1ˉz˜ζ)ˉzk,

    in which the logarithmic functions take the principal value, therefore,

    1πD¯T0,kfk(ζ)dσζˉzζ1=1πD[1πD1(k1)!(ζ˜ζ)k1¯˜ζζ¯fk(˜ζ)dσ˜ζ]dσζˉzζ1=1πD¯fk(˜ζ)(k1)![1πD(ζ˜ζ)k1¯˜ζζdσζˉzζ1]dσ˜ζ=1πD[k2s=0Csk1(ˉzζ1)k1s(1)k1s(k1s)ˉzk(1ˉzζ)s+(1ˉzζ)k1ln(1ˉzζ)ˉzk]¯fk(ζ)dσζ(k1)!. (4.14)

    Plugging (4.11)–(4.14) into (4.6), the condition (4.3) follows.

    (ii) In the case of p<0, similar to (i), by Theorem 3.1, the result follows.

    Given that k=1 in Theorem 4.1, we can get the solution to the following boundary value problem for bi-analytic functions.

    Corollary 4.2. Let D be the unit disk in C, and let λR{1,0,1}. For φ,γC(D), the problem

    {ˉzf(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),ˉzϕ(z)=0(zD),f(ζ)=φ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD)

    is solvable on D.

    (i) In the case of p0, the solution can be expressed as:

    f(z)=12πiDφ(ζ)dζζz1πD[λ14λζpφ1(ζ)+λ+14λ¯ζpφ1(ζ)]dσζζz+λ14λ[αpˉz++v=1αvpzv(ˉzz1)]+λ+14λ+v=0¯αvpˉzv+1

    if and only if

    12πiDφ(ζ)dζ1ˉzζ+1πD[λ14λζpφ1(ζ)+λ+14λˉζp¯φ1(ζ)]dσζˉzζ1=λ14λα(p)+λ+14λ+v=0¯αvpˉzv,

    where

    φ1(z)=12πiDγ(ζ)ζ+zζzdζζ

    and αvp are arbitrary complex constants satisfying

    αv=0(vp+1),αv+¯αv=0(pvp).

    (ii) In the case of p<0, the solution is the same as in (i) on the condition that

    12πiDγ(ζ)dζζl+1=0(l=0,1,,p1).

    Applying Corollary 3.2 and Theorem 4.1 we can get the solution to the following boundary value problem of higher order for bi-polyanalytic functions.

    Corollary 4.3. Let D be the unit disk in C, and let λR{1,0,1}, φ,˜γ,γ,fkC(D) with ˉzfk=fk+1 (k=1,2,,n1,n2) and fn=0. Then the problem

    {2ˉzW(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD),ˉζW(ζ)=φ(ζ),[¯ζqW(ζ)]=˜γ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD)

    is solvable on D.

    (i) In the case of q0, the solution can be expressed as:

    W(z)=zq2πiD˜γ(ζ)ζ+zζzdζζz2q+1πD¯f(ζ)1zˉζdσζ+2qv=0αvqzv1πDf(ζ)ζzdσζ,

    where αvq are arbitrary complex constants satisfying αv+¯αv=0(qvq) and f(z) is the solution of the problem (4.1) in Theorem 4.1;

    (ii) In the case of q<0, the solution is the same as in (i) on the condition of

    12πiD{γ(ζ)[ζqTf(ζ)]}dζζl+1=0(l=0,1,,q1).

    ies

    Remark 4.4. Applying Corollaries 3.2 and 4.3 we can get the solution of the problem:

    {3ˉzW(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD),2ˉζW(ζ)=φ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD),[¯ζq1W(ζ)]=~γ1(ζ),[¯ζq2W(ζ)]=~γ2(ζ)(ζD),

    where λR{1,0,1}, φ,~γ1,~γ2,γ,fkC(D) with ˉzfk=fk+1 (k=1,2,,n1,n2) and fn=0. Similarly, the corresponding higher-order problems can be solved.

    Applying Theorem 4.1 and the results for the half-Neumann-n problem in [27], we can draw the following conclusion:

    Corollary 4.5. Let D be the unit disk in C, and let λR{1,0,1}, csC, γsC(D) (0sm2,m2,mN), φ,γ,fkC(D) with ˉzfk=fk+1 (k=1,2,,n1,n2) and fn=0. Then the problem

    {mˉzW(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD),m1ˉζW(ζ)=φ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD),ζsˉζWζ(ζ)=γs(ζ)(ζD),sˉzW(0)=cs(0sm2,m2,mN)

    is solvable on D, and the solution is given by

    W(z)=m2s=0csˉzs+m2s=0(1)s+12πiDγs(ζ)[(1|z|2)szslog(1zˉζ)+s1r=0ˉζsm(sm)zrrl=0Cls(|z|2)l]dζ+(1)m1zπDf(ζ)ζ(ζz)(¯ζz)m2(m2)!dσζ

    if and only if

    12πiDγm2(ζ)(1ˉzζ)ζdζ+ˉzπDf(ζ)(1ˉzζ)2dσζ=0

    and

    12πiDγm1s(ζ)(1ˉzζ)ζdζ+ˉz2πiDγms(ζ)ζlog(1ˉzζ)dζ=s1r=2(1)rr!(r1)ˉz2πiDγm1s+r(ζ)ζ[(¯ζz)r1(ˉz)r1]dζ+(1)s(s1)!ˉzπDf(ζ)(¯ζz)s1(1ˉzζ)2dσζ,2sm1,

    where f(z) is the solution of the problem (4.1) in Theorem 4.1.

    Remark 4.6. By Theorem 4.1 and the mixed boundary value problems with combinations of Schwarz, Dirichlet, and Neumann conditions in [27], we can discuss the corresponding mixed boundary value problems for bi-polyanalytic functions, for example,

    {mˉzW(z)=λ14λϕ(z)+λ+14λ¯ϕ(z),nˉzϕ(z)=0,kˉzϕ(z)=fk(z)(zD),m1ˉζW(ζ)=φ(ζ),[¯ζpϕ(ζ)]=γ(ζ)(ζD),ζsˉζWζ(ζ)=γs(ζ)(ζD),sˉzW(0)=cs(0sm3,m3,mN),m2ˉζW(ζ)=γm2(ζ)(ζD).

    By using the Cauchy-Pompeiu formula in the complex plane, we first discuss a Riemann-Hilbert boundary value problem of higher order on the unit disk D in C and obtain the expression of the solution under different solvable conditions. On this basis, we get the specific solutions to the boundary value problems for bi-polyanalytic functions with the Dirichlet and Riemann-Hilbert boundary conditions and the corresponding higher-order problems. Therefore, we obtain the solution to the half-Neumann problem of higher order for bi-polyanalytic functions. The conclusions provide a favorable method for discussing other boundary value problems of bi-polyanalytic functions, such as mixed boundary value problems and the related systems of complex partial differential equations of higher order, and also provide a solid basis for future research on bi-polyanalytic functions.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors are grateful to the anonymous referees for their valuable comments and suggestions, which improved the quality of this article. This work was supported by the NSF of China (No.11601543), the NSF of Henan Province (Nos. 222300420397 and 242300421394), and the Science and Technology Research Projects of the Henan Provincial Education Department (No.19B110016).

    The authors declare that they have no conflicts of interest.



    [1] D. Pompeiu, Sur une classe de fonctions d'une variable complexe et sur certaine equations integrals, Rend. Circ. Mat. Palermo, 35 (1913), 277–281.
    [2] I. N. Vekua, Generalized Analytic Functions, Oxford: Pergamon Press, 1962.
    [3] M. M. Sirazhudinov, S. P. Dzhamaludinova, Estimates for the locally periodic homogenization of the Riemann-Hilbert problem for a generalized Beltrami equation, Diff. Equat., 58 (2022), 771–790. https://doi.org/10.1134/S0012266122060064 doi: 10.1134/S0012266122060064
    [4] Y. Li, H. Sun, A note on the Julia sets of entire solutions to delay differential equations, Acta. Math. Sci., 43 (2023), 143–155. https://doi.org/10.1007/s10473-023-0109-4 doi: 10.1007/s10473-023-0109-4
    [5] E. V. Seregina, V. V. Kalmanovich, M. A. Stepovich, Comparative analysis of the matrix method and the finite-difference method for modeling the distribution of minority charge carriers in a multilayer planar semiconductor structure, J. Math. Sci., 267 (2022), 773–780. https://doi.org/10.1007/s10958-022-06168-1 doi: 10.1007/s10958-022-06168-1
    [6] D. B. Katz, B. A. Kats, Non-rectifiable Riemann boundary value problem for bi-analytic functions, Complex Var. Ellipt. Equ., 66 (2021), 843–852. https://doi.org/10.1080/17476933.2020.1751134 doi: 10.1080/17476933.2020.1751134
    [7] H. Begehr, D. Q. Dai, X. Li, Integral representation formulas in polydomains, Complex Var., 47 (2002), 463–484. https://doi.org/10.1080/02781070290016241 doi: 10.1080/02781070290016241
    [8] H. Begehr, A. O. Celebi, W. Tutschke, Complex Methods for Partial Differential Equations, Dordrecht: Kluwer Academic Publishers, 1999.
    [9] E. Ariza, A. D. Teodoro, C. J. Vanegas, Ψ-weighted Cauchy-Riemann operators and some associated integral representation, Quaest. Math., 43 (2020), 335–360. https://doi.org/10.2989/16073606.2019.1574928 doi: 10.2989/16073606.2019.1574928
    [10] P. Ciatti, E. Gonzalez, M. L. De Cristoforis, G. P. Leonardi, Topics in Mathematical Analysis, London: World Scientific, 2008.
    [11] H. Begehr, G. N. Hile, A hierarchy of integral operators, Rocky Mount. J. Math., 27 (1997), 669–706.
    [12] I. N. Dorofeeva, A. B. Rasulov, A linear matching problem for a generalized Cauchy-Riemann equation with super-singular points on a half-plane, Comput. Math. Math. Phys., 62 (2022), 1859–1864. https://doi.org/10.1134/S0965542522110069 doi: 10.1134/S0965542522110069
    [13] S. Wang, F. He, On the variable exponent Riemann boundary value problem for Liapunov open curve, J. Geom. Anal., 33 (2023), 62. https://doi.org/10.1007/s12220-022-01113-9 doi: 10.1007/s12220-022-01113-9
    [14] Z. Du, Y. Wang, M. Ku, Schwarz boundary value problems for polyanalytic equation in a sector ring, Complex Anal. Oper. Theory, 17 (2023), 33. https://doi.org/10.1007/s11785-023-01329-9 doi: 10.1007/s11785-023-01329-9
    [15] H. Begehr, B. Shupeyeva, Polyanalytic boundary value problems for planar domains with harmonic Green function, Anal. Math. Phys., 11 (2021), 137. https://doi.org/10.1007/s13324-021-00569-2 doi: 10.1007/s13324-021-00569-2
    [16] Y. Cui, Z. Li, Y. Xie, Y. Qiao, The nonlinear boundary value problem for k holomorphic functions in C2, Acta. Math. Sci., 43 (2023), 1571–1586. https://doi.org/10.1007/s10473-023-0408-9 doi: 10.1007/s10473-023-0408-9
    [17] N. Vasilevski, On polyanalytic functions in several complex variables, Complex Anal. Oper. Theory, 17 (2023), 80. https://doi.org/10.1007/s11785-023-01386-0 doi: 10.1007/s11785-023-01386-0
    [18] W. Wang, A. Mao, The existence and non-existence of sign-changing solutions to bi-harmonic equations with a p-Laplacian, Acta. Math. Sci., 42 (2022), 551–560. https://doi.org/10.1007/s10473-022-0209-6 doi: 10.1007/s10473-022-0209-6
    [19] W. Ma, Riemann-Hilbert problems and soliton solutions of nonlocal reverse-time NLS hierarchies, Acta. Math. Sci., 42 (2022), 127–140. https://doi.org/10.1007/s10473-022-0106-z doi: 10.1007/s10473-022-0106-z
    [20] P. Drygaˊs, V. Mityushev, Lattice sums for double periodic polyanalytic functions, Anal. Math. Phys., 13 (2023), 75. https://doi.org/10.1007/s13324-023-00838-2 doi: 10.1007/s13324-023-00838-2
    [21] J. Sander, Viscous fluids elasticity and function theory, Trans. Amer. Math. Soc., 98 (1961), 85–147.
    [22] H. Begehr, A. Kumar, Boundary value problems for bi-polyanalytic functions, Appl. Anal., 85 (2006), 1045–1077. https://doi.org/10.1080/00036810600835110 doi: 10.1080/00036810600835110
    [23] J. Lin, Y. Z. Xu, Riemann problem of (λ,k) bi-analytic functions, Appl. Anal., 101 (2022), 3804–3815. https://doi.org/10.1080/00036811.2021.1987417 doi: 10.1080/00036811.2021.1987417
    [24] J. Lin, A class of inverse boundary value problems for (λ,1) bi-analytic functions, Wuhan Uni. J. Natural Sci., 28 (2023), 185–191. https://doi.org/10.1051/wujns/2023283185 doi: 10.1051/wujns/2023283185
    [25] D. E. G. Valencia, R. A. Blaya, M. P. ˊA. Alejandre, Y. P. Pérez, On the Riemann problem in fractal elastic media, Anal. Math. Phys., 13 (2023), 3. https://doi.org/10.1007/s13324-022-00764-9 doi: 10.1007/s13324-022-00764-9
    [26] A. Kumar, Riemann Hilbert problem for a class of nth order systems, Complex Var. Theory Appl.: Int. J., 25 (1994), 11–22. https://doi.org/10.1080/17476939408814726 doi: 10.1080/17476939408814726
    [27] H. Begehr, A. Kumar, Boundary value problems for the inhomogeneous polyanalytic equation I, Analysis, 25 (2005), 55–71. https://doi.org/10.1515/anly-2005-0103 doi: 10.1515/anly-2005-0103
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(767) PDF downloads(36) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog