Research article Special Issues

Regularization of a final value problem for a linear and nonlinear biharmonic equation with observed data in $ L^{q} $ space

  • Received: 15 May 2022 Revised: 05 August 2022 Accepted: 21 August 2022 Published: 23 September 2022
  • MSC : 35A05, 35A08, 26A33, 35B05, 35B65, 35R11

  • In this work, we focus on the final value problem of an inverse problem for both linear and nonlinear biharmonic equations. The aim of this study is to provide a regularized method for the bi-harmonic equation, once the observed data are obtained at a terminal time in $ L^{q}(\Omega) $. We obtain an approximated solution using the Fourier series truncation method and the terminal input data in $ L^{q}(\Omega) $ for $ q \ne 2 $. In comparision with previous studies, the most highlight of this study is the error between the exact and regularized solutions to be estimated in $ L^{q}(\Omega) $; wherein an embedding between $ L^{q}(\Omega) $ and Hilbert scale spaces $ \mathcal{H}^{\rho}(\Omega) $ is applied.

    Citation: Anh Tuan Nguyen, Le Dinh Long, Devendra Kumar, Van Thinh Nguyen. Regularization of a final value problem for a linear and nonlinear biharmonic equation with observed data in $ L^{q} $ space[J]. AIMS Mathematics, 2022, 7(12): 20660-20683. doi: 10.3934/math.20221133

    Related Papers:

  • In this work, we focus on the final value problem of an inverse problem for both linear and nonlinear biharmonic equations. The aim of this study is to provide a regularized method for the bi-harmonic equation, once the observed data are obtained at a terminal time in $ L^{q}(\Omega) $. We obtain an approximated solution using the Fourier series truncation method and the terminal input data in $ L^{q}(\Omega) $ for $ q \ne 2 $. In comparision with previous studies, the most highlight of this study is the error between the exact and regularized solutions to be estimated in $ L^{q}(\Omega) $; wherein an embedding between $ L^{q}(\Omega) $ and Hilbert scale spaces $ \mathcal{H}^{\rho}(\Omega) $ is applied.



    加载中


    [1] E. Berchio, F. Gazzola, T. Weth, Critical growth biharmonic elliptic problems under Steklov-type boundary conditions, Adv. Differ. Equ., 12 (2007), 381–406.
    [2] E. Berchio, F. Gazzola, E. Mitidieri, Positivity preserving property for a class of biharmonic elliptic problems, J. Differ. Equ., 229 (2006), 1–23. https://doi.org/10.1016/j.jde.2006.04.003 doi: 10.1016/j.jde.2006.04.003
    [3] F. Gazzola, On the moments of solutions to linear parabolic equations involving the biharmonic operator, Discrete Cont. Dyn. Syst., 33 (2013), 3583–3597. https://doi.org/10.3934/dcds.2013.33.3583 doi: 10.3934/dcds.2013.33.3583
    [4] G. Sweers, A survey on boundary conditions for the biharmonic, Complex Var. Elliptic Equ., 54 (2009), 79–93. https://doi.org/10.1080/17476930802657640 doi: 10.1080/17476930802657640
    [5] F. Gazzola, H. C. Grunau, G. Sweers, Polyharmonic boundary value problems: Positivity preserving and nonlinear higher order elliptic equations in bounded domains, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-12245-3
    [6] J. Smith, The coupled equation approach to the numerical solution of the biharmonic equation by finite differences. Ⅱ, SIAM J. Numer. Anal., 7 (1970), 104–111.
    [7] L. W. Ehrlich, Solving the biharmonic equation as coupled finite difference equations, SIAM J. Numer. Anal., 8 (1971), 278–287. https://doi.org/10.1137/0708029 doi: 10.1137/0708029
    [8] R. Glowinski, O. Pironneau, Numerical methods for the first biharmonic equation and for the two-dimensional Stokes problem, SIAM Rev., 21 (1979), 167–212. https://doi.org/10.1137/1021028 doi: 10.1137/1021028
    [9] Y. J. Wang, Y. T. Shen, Multiple and sign-changing solutions for a class of semilinear biharmonic equation, J. Differ. Equ., 246 (2009), 3109–3125. https://doi.org/10.1016/j.jde.2009.02.016 doi: 10.1016/j.jde.2009.02.016
    [10] L. Mu, J. P. Wang, X. Ye, Weak Galerkin finite element methods for the biharmonic equation on polytopal meshes, Numer. Methods Partial Differ. Equ., 30 (2014), 1003–1029. https://doi.org/10.1002/num.21855 doi: 10.1002/num.21855
    [11] N. H. Tuan, Y. Zhou, T. N. Thach, N. H. Can, An approximate solution for a nonlinear biharmonic equation with discrete random data, J. Comput. Appl. Math., 371 (2020), 112711. https://doi.org/10.1016/j.cam.2020.112711 doi: 10.1016/j.cam.2020.112711
    [12] H. A. Matevossian, G. Nordo, G. Migliaccio, Biharmonic problems and their applications in engineering and technology, In: 13th Chaotic Modeling and Simulation International Conference, Cham: Springer, 2021,575–596. https://doi.org/10.1007/978-3-030-70795-8
    [13] H. A. Matevossian, M. U. Nikabadze, G. Nordo, A. R. Ulukhanyan, Biharmonic Navier and Neumann problems and their application in mechanical engineering, Lobachevskii J. Math., 42 (2021), 1876–1885. https://doi.org/10.1134/S1995080221080199 doi: 10.1134/S1995080221080199
    [14] D. H. Q. Nam, V. V. Au, N. H. Tuan, D. O'Regan, Regularization of a final value problem for a nonlinear biharmonic equation, Math. Methods Appl. Sci., 42 (2019), 6672–6685, https://doi.org/10.1002/mma.5771 doi: 10.1002/mma.5771
    [15] J. M. Arrieta, A. N. Carvalho, Abstract parabolic problems with critical nonlinearities and applications to Navier-Stokes and heat equations, Trans. Amer. Math. Soc., 352 (2000), 285–310. https://doi.org/10.1090/S0002-9947-99-02528-3 doi: 10.1090/S0002-9947-99-02528-3
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1613) PDF downloads(74) Cited by(1)

Article outline

Figures and Tables

Figures(6)  /  Tables(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog