Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established.
Citation: Ridwanulahi Iyanda Abdulganiy, Shiping Wen, Yuming Feng, Wei Zhang, Ning Tang. Adapted block hybrid method for the numerical solution of Duffing equations and related problems[J]. AIMS Mathematics, 2021, 6(12): 14013-14034. doi: 10.3934/math.2021810
Problems of non-linear equations to model real-life phenomena have a long history in science and engineering. One of the popular of such non-linear equations is the Duffing equation. An adapted block hybrid numerical integrator that is dependent on a fixed frequency and fixed step length is proposed for the integration of Duffing equations. The stability and convergence of the method are demonstrated; its accuracy and efficiency are also established.
[1] | S. N. Jator, H. B. Oladejo, Block Nyström method for singular differential equations of the Lane-Emdem Type and problems with highly oscillatory solutions, Int. J. Appl. Comput. Math., 3 (2017), 1385–1402. doi: 10.1007/s40819-017-0376-7 |
[2] | T. Monovasilis, Z. Kalogiratou, H. Ramos, T. E. Simos, Modified two-step hybrid methods for the numerical integration of oscillatory problems, Math. Method Appl. Sci., 40 (2017), 5286–5294. doi: 10.1002/mma.4386 |
[3] | J. Sunday, Y. Skwane, M. R. Odekunle, A continuous block integrator for the solution of stiff and oscillatory differential equations, IOSR J. Math., 8 (2013), 75–80. |
[4] | W. H. Enright, Second derivative multistep method for stiff ODEs, SIAM J. Numer. Anal., 11 (1974), 321–331. doi: 10.1137/0711029 |
[5] | E. Hairer, S. P. Norsett, G. Wanner, Solving Ordinary Differential Equations I: Nonstiff Problems, Springer-Verlag, Berlin, 1993. |
[6] | J. D. Lambert, I. A. Watson, Symmetric multistep methods for periodic initial value problems, IMA J. Appl. Math., 18 (1976), 189–202. doi: 10.1093/imamat/18.2.189 |
[7] | S. N. Jator, Solving second order initial value problems by a hybrid multistep method without predictors, Appl. Math. Comput., 277 (2010), 4036–4046. |
[8] | J. M. Franco, An embedded pair of exponentially fitted explicit Runge-Kutta methods, J. Comput. Appl. Math., 149 (2002), 407–414. doi: 10.1016/S0377-0427(02)00485-5 |
[9] | J. M. Franco, Exponentially-fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2003), 1–19. |
[10] | W. Gautschi, Numerical integration of ordinary differential equations based on trigonometric polynomials, Numer. Math., 3 (1961), 381–397. doi: 10.1007/BF01386037 |
[11] | B. Neta, C. H. Ford, Families of methods for ordinary differential equations based on trigonometric polynomials, J. Comp. Appl. Math., 10 (1984), 33–38. doi: 10.1016/0377-0427(84)90066-9 |
[12] | B. Neta, Families of backward differentiation methods based on trigonometric polynomials, Int. J. Comput. Math., 20 (1986), 67–75. doi: 10.1080/00207168608803532 |
[13] | B. B. Sanugi, D. J. Evans, The numerical solution of oscillatory problems, Int. J. Comput. Math., 31 (1989), 237–255. |
[14] | S. C. Duxbury, Mixed Collocation Methods for $y'' = f(x, y)$, Durham Theses, Durham University, 1999. |
[15] | J. P. Coleman, S. C. Duxbury, Mixed collocation methods for $y'' = f(x, y)$, J. Comput. Appl. Math., 126 (2000), 47–75. doi: 10.1016/S0377-0427(99)00340-4 |
[16] | J. M. Franco, A class of explicit two-step hybrid methods for second-order IVPs, J. Comput. Appl. Math., 187 (2006), 41–57. doi: 10.1016/j.cam.2005.03.035 |
[17] | J. M. Franco, Exponentially fitted explicit Runge-Kutta-Nyström methods, J. Comput. Appl. Math., 167 (2004), 1–19. doi: 10.1016/j.cam.2003.09.042 |
[18] | Y. Fang, X. Wu, A trigonometrically fitted explicit Numerov-type method for second order initial value problems with oscillating solutions, Appl. Numer. Math., 58 (2008), 341–351. doi: 10.1016/j.apnum.2006.12.003 |
[19] | Y. Fang, Y. Song, X. Wu, A robust trigonometrically fitted embedded pair for perturbed oscillators, J. Comput. Appl. Math., 225 (2009), 347–355. doi: 10.1016/j.cam.2008.07.053 |
[20] | L. Gr. Ixaru, G. Vanden Berghe, M. Van Daele, Frequency evaluation in exponentially-fitted algorithms for ODEs, J. Comput. Appl. Math., 140 (2002), 423–434. doi: 10.1016/S0377-0427(01)00474-5 |
[21] | G. Vanden Berhe, M.Van Daele, Exponentially-fitted Numerov methods, J. Comput. Appl. Math., 200 (2007), 140–153. doi: 10.1016/j.cam.2005.12.022 |
[22] | J. Martin-Vaquero, J. Vigo-Aguiar, Exponential fitted Gauss, Radau and Lobatto methods of low order, Numer. Algorithms, 48 (2008), 327–346. doi: 10.1007/s11075-008-9202-y |
[23] | F. F. Ngwane, S. N. Jator, Solving oscillatory problems using a block hybrid trigonometrically fitted method with two off-step points, Electron. J. Differ. Eq., 20 (2013), 119–132. |
[24] | X. You, B. Chen, Symmetric and symplectic exponentially-Fitted Runge-Kutta-Nyström methods for Hamiltonian Problems, Math. Comput. Simulat., 94 (2013), 76–95. doi: 10.1016/j.matcom.2013.05.010 |
[25] | J. P. Coleman, L. G. Ixaru, P-stability and exponential fitting methods for $y'' = f(x, y)$, IMA J. Numer. Anal., 16 (1996), 179–199. doi: 10.1093/imanum/16.2.179 |
[26] | A. Konguetsof, T. E. Simos, An exponentially-fitted and trigonometrically-fitted methods for the numerical integration of periodic initial value problems, Comput. Math. Appl., 45 (2003), 547–554. doi: 10.1016/S0898-1221(03)80036-6 |
[27] | S. N. Jator, S. Swindell, R. D. French, Trigonmetrically fitted block numerov type method for $y{''} = f \left(x, y, y{'} \right)$, Numer. Algorithms, 62 (2013), 13–26. doi: 10.1007/s11075-012-9562-1 |
[28] | R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, Maximal order block trigonometrically fitted scheme for the numerical treatment of second order initial value problem with oscillating solutions, IJMSO, 2017 168–186. |
[29] | F. F. Ngwane, S. N. Jator, Trigonometrically-fitted second derivative method for oscillatory problems, SpringerPlus, 3 (2014). |
[30] | M. A. Razzaq, An analytical approximate technique for solving cubic-quintic Duffing oscillator, Alex. Eng. J., 55 (2016), 2959–2965. doi: 10.1016/j.aej.2016.04.036 |
[31] | P. L. Ndukum, T. A. Biala, S. N. Jator, R. B. Adeniyi, On a family of trigonometrically fitted extended backward differentiation formulas for stiff and oscillatory initial value problems, Numer. Algorithms, 74 (2017), 267–287. doi: 10.1007/s11075-016-0148-1 |
[32] | H. Ramos, J. Vigo-Aguiar, On the frequency choice in trigonometrically fitted methods, Appl. Math. Lett., 23 (2010), 1378–1381. doi: 10.1016/j.aml.2010.07.003 |
[33] | L. Schovanec, J. T. White, A power series method for solving initial value problems utilizing computer algebra systems, Int. J. Comput. Math., 47 (1993), 181–189. doi: 10.1080/00207169308804175 |
[34] | S. Nourazar, A. Mirzabeigy, Approximate solution for nonlinear Duffing oscillator with damping effect using the modified differential transform method, Sci. Iran., 20 (2013), 364–368. |
[35] | F. F. Ngwane, S. N. Jator, A family of trigonometrically fitted Enright second derivative methods for stiff and oscillatory initial value problems, J. Appl. Math., 2015 (2015) 1–17. |
[36] | J. Vigo-Aguiar, H. Ramos, On the choice of the frequency in trigonometrically fitted methods for periodic problems, J. Comput. Appl. Math., 277 (2015), 94–105. doi: 10.1016/j.cam.2014.09.008 |
[37] | R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, G. O. Oladimeji, A robust block hybrid trigonometric method for the numerical integration of oscillatory second order nonlinear initial value problems, Adv. Modell. Anal. A, 54 (2017), 497–518. |
[38] | A. Belendez, C. Pascual, M. Ortuno, T. Belendez, S. Gallego, Application of a modified He's homotopy perturbation method to obtain higher-order aroximations to a nonlinear oscillator with discontinuities, Nonlinear Anal-Real., 10 (2009), 601–610. doi: 10.1016/j.nonrwa.2007.10.015 |
[39] | H. S. Nguyen, R. B. Sidje, N. H. Cong, Analysis of trigonometric implicit Runge-Kutta methods, J. Comput. Appl. Math., 198 (2007), 187–207. doi: 10.1016/j.cam.2005.12.006 |
[40] | S. N. Jator, A. O. Akinfenwa, S. A. Okunuga, A. B. Sofoluwe, High-order continuous third derivative formulas with block extension for $y{''} = f \left(x, y, y{'} \right)$, Int. J. Comput. Math., 90 (2003), 1899–1914. |
[41] | J. D. Lambert, Computational Methods in Ordinary Differential System, the Initial Value Problem, New York: John Wiley & Sons, 1973. |
[42] | S. O. Fatunla, Numerical Methods for Initial Value Problems in Ordinary Differential Equations, Cambridge: Academic Press Inc., 1988. |
[43] | J. He, The homotopy perturbation method for nonlinear oscillators with discontinuous, Appl. Math. Comput., 151 (2004), 287–292. |
[44] | A. Bel$\acute{e}$ndez, A. Hern$\acute{a}$ndez, T. Bel$\acute{e}$ndez, E. Fern$\acute{a}$ndez, M. L. $\acute{A}$lvarez, C. Neipp, Application of He's homotopy perturbation method to the duffing-harmonic oscillator, Int. J. Nonlin. Sci. Num., 8 (2007), 79–88. |
[45] | S. O. Fatunla, Block methods for second order ODEs, Int. J. Comput. Math., 41 (1991), 55–63. doi: 10.1080/00207169108804026 |
[46] | R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, Construction of L stable second derivative trigonometrically fitted block backward differentiation formula for the solution of oscillatory initial value problems, Afr. J. Sci. Technol. In., 10 (2018), 411–419. |
[47] | D. V. V. Wend, Existence and uniqueness of solution of ordinary differential equations, P. Am. Math. Soc., 23 (1969), 27–33. doi: 10.1090/S0002-9939-1969-0245879-4 |
[48] | D. V. V. Wend, Uniqueness of solution of ordinary differential equations, Am. Math. Mon., 74 (1967), 948–950. doi: 10.1080/00029890.1967.12000056 |
[49] | C. Liu, W. Jhao, The power series method for a long-term solution of Duffing oscillator, Commun. Numer. Anal., 2014 (2014), 1–14. |
[50] | N. Senu, M. Suleimon, F. Ismail, M. Othman, A new diagonally implicit Runge-Kutta-Nyströ m method for periodic IVPs, WSEAS Trans. Math., 9 (2010), 679–688. |
[51] | J. Li, M. Lu, X. Qi, Trigonometrically fitted multi-step hybrid methods for oscillatory special second-order initial value problems, Int. J. Comput. Math., 95, (2018), 979–997. |
[52] | I. Kovacic, M. J. Brennan, The Duffing Equation: Nonlinear Oscillators and Their Behaviour, Chichester: John Wiley & Sons, 2011. |
[53] | R. I. Abdulganiy, O. A. Akinfenwa, S. A. Okunuga, A Simpson type trigonometrically fitted block scheme for numerical integration of oscillatory problems, UJMST, 5 (2017), 25–36. |
[54] | R. I. Abdulganiy, Trigonometrically fitted block backward differentiation methods for first order initial value problems with periodic solution, Adv. Math. Comput., 28 (2018), 1–14. |
[55] | R. I. Abdulganiy, O. A. Akinfenwa, O. A. Yusuff, O. E. Enobabor, S. A. Okunuga, Block third derivative trigonometrically-fitted methods for stiff and periodic problems, J. Niger. Soc. Phys. Sci., 2 (2020), 12–25. |
[56] | T. Ozis, A. Yildirim, A study of nonlinear oscillators with $u^{1/3}$ force by He's variational iteration method, J. Sound Vib., 306 (2007), 372–376. doi: 10.1016/j.jsv.2007.05.021 |
[57] | Ch. Tsitouras, Explicit eight order two step methods with nine stages for integrating oscillatory problems, Int. J. Mod. Phys. C, 17 (2006), 861–876. doi: 10.1142/S0129183106009357 |
[58] | D. Younesian, H. Askari, Z. Saadatnia, M. K. Yazdi, Periodic solutions for nonlinear oscillation of a centrifugal governor system using the He's frequency-amplitude formulation and He's energy balance method, Nonlinear Sci. Lett. A, 2 (2011), 143–148. |
[59] | F. Samat, E. S. Ismail, A two-step modified explicit hybrid method with step-size-dependent parameters for oscillatory problems, J. Math., 2020 (2020), Article ID 5108482482, 7 pages. |
[60] | V. Marinca, N. Herişanu, Explicit and exact solutions to cubic Duffing and double-well Duffing equations, Math. Comput. Model., 53 (2011), 604–609. doi: 10.1016/j.mcm.2010.09.011 |
[61] | Z. Gholam-Ali, Y. Emmanuel, Exact solutions of a generalized autonomous Duffing-type equation, Appl. Math. Model., 39 (2015), 4607–4616. doi: 10.1016/j.apm.2015.04.027 |
[62] | X. Li, J. Shen, H. Akca, R. Rakkiyappan, LMI-based stability for singularly perturbed nonlinear impulsive differential systems with delays of small parameter, Appl. Math. Comput., 250 (2015), 798–804. |
[63] | Y. Guo, A. C. J. Luo, Periodic motions in a double-well Duffing oscillator under periodic excitation through discrete implicit mappings, Int. J. Dyn. Control, 5 (2017), 1–16. doi: 10.1007/s40435-016-0251-0 |
[64] | A. C. J. Luo, Discretization and Implicit Mapping Dynamics: Nonlinear Physical Science, Springer: Higher Education Press, 2015. |