Research article Special Issues

The method of fundamental solutions for analytic functions in complex analysis

  • Received: 22 November 2021 Revised: 05 January 2022 Accepted: 09 January 2022 Published: 26 January 2022
  • MSC : 30E10, 35E05, 65E05, 65N80

  • This paper extends the method of fundamental solutions (MFS) for solving the boundary value problems of analytic functions based on Cauchy-Riemann equations and properties of harmonic functions. The conformal mapping technique is applied to introduce the singularities of the approximate analytic functions and reconstruct the fundamental solutions. The presented method can naturally introduce the information of homogeneous boundary conditions and singularity properties, when the conformal mapping technique or the reconstructed fundamental solutions are used. The numerical examples show that the proposed method has the advantages of conciseness, reliability, efficiency, high accuracy and easy-using, respectively. The developed method can be used to solve the boundary value problems (BVPs) of analytic functions without considering single-valuedness, which simplify the numerical analysis.

    Citation: Xiaoguang Yuan, Quan Jiang, Zhidong Zhou, Fengpeng Yang. The method of fundamental solutions for analytic functions in complex analysis[J]. AIMS Mathematics, 2022, 7(4): 6820-6851. doi: 10.3934/math.2022380

    Related Papers:

  • This paper extends the method of fundamental solutions (MFS) for solving the boundary value problems of analytic functions based on Cauchy-Riemann equations and properties of harmonic functions. The conformal mapping technique is applied to introduce the singularities of the approximate analytic functions and reconstruct the fundamental solutions. The presented method can naturally introduce the information of homogeneous boundary conditions and singularity properties, when the conformal mapping technique or the reconstructed fundamental solutions are used. The numerical examples show that the proposed method has the advantages of conciseness, reliability, efficiency, high accuracy and easy-using, respectively. The developed method can be used to solve the boundary value problems (BVPs) of analytic functions without considering single-valuedness, which simplify the numerical analysis.



    加载中


    [1] V. H. Theodore, C. Lai, The complex variable boundary element method in engineering analysis, New York: Springer-Verlag, 1987. http://dx.doi.org/10.1007/978-1-4612-4660-2
    [2] M. A. Lavrentiev, B. V. Shabat, Methods of functions of a complex variable (Chinese Edition), 6 Eds., Beijing: Higher Education Press, 2006.
    [3] N. I. Muskhelishvili, Some basic problems of the mathematical theory of elasticity: Fundamental equations plane theory of elasticity torsion and bending, Dordrecht: Springer, 1977. http://dx.doi.org/10.1007/978-94-017-3034-1
    [4] V. D. Kupradze, A method for the approximate solution of limiting problems in mathematical physics, USSR Comp. Math. Math. Phys., 4 (1964), 199–205. http://dx.doi.org/10.1016/0041-5553(64)90092-8 doi: 10.1016/0041-5553(64)90092-8
    [5] V. D. Kupradze, M. A. Aleksidze, The method of functional equations for the approximate solution of certain boundary value problems, USSR Comp. Math. Math. Phys., 4 (1964), 82–126. http://dx.doi.org/10.1016/0041-5553(64)90006-0 doi: 10.1016/0041-5553(64)90006-0
    [6] A. Karageorghis, G. Fairweather, The method of fundamental solutions for the numerical solution of the biharmonic equation, J. Comput. Phys., 69 (1987), 434–459. http://dx.doi.org/10.1016/0021-9991(87)90176-8 doi: 10.1016/0021-9991(87)90176-8
    [7] V. D. Kupradze, Potential methods in the theory of elasticity, Israel Program for Scientific Translations, 1965.
    [8] M. A. Jankowska, J. A. Kolodziej, On the application of the method of fundamental solutions for the study of the stress state of a plate subjected to elastic-plastic deformation, Int. J. Solids Struct., 67–68 (2015), 139–150. http://dx.doi.org/10.1016/j.ijsolstr.2015.04.015 doi: 10.1016/j.ijsolstr.2015.04.015
    [9] V. A. Buryachenko, Estimation of effective elastic moduli of random structure composites by the method of fundamental solutions, Eng. Anal. Bound. Elem., 62 (2016), 13–21. http://dx.doi.org/10.1016/j.enganabound.2015.09.004 doi: 10.1016/j.enganabound.2015.09.004
    [10] V. A. Buryachenko, Method of fundamental solutions in micromechanics of elastic random structure composites, Int. J. Solids Struct., 124 (2017), 135–150. http://dx.doi.org/10.1016/j.ijsolstr.2017.06.023 doi: 10.1016/j.ijsolstr.2017.06.023
    [11] G. C. DeMedeiros, P. W. Partridge, J. O. Brandão, The method of fundamental solutions with dual reciprocity for some problems in elasticity, Eng. Anal. Boun. Elem., 28 (2004), 453–461. http://dx.doi.org/10.1016/S0955-7997(03)00099-7 doi: 10.1016/S0955-7997(03)00099-7
    [12] G. S. A. Fam, Y. F. Rashed, The method of fundamental solutions applied to 3D elasticity problems using a continuous collocation scheme, Eng. Anal. Bound. Elem., 33 (2009), 330–341. http://dx.doi.org/10.1016/j.enganabound.2008.07.002 doi: 10.1016/j.enganabound.2008.07.002
    [13] C. Y. Lee, H. Wang, Q. H. Qin, Method of fundamental solutions for 3D elasticity with body forces by coupling compactly supported radial basis functions, Eng. Anal. Bound. Elem., 60 (2015), 123–136. http://dx.doi.org/10.1016/j.enganabound.2014.12.009 doi: 10.1016/j.enganabound.2014.12.009
    [14] E. F. Fontes, J. A. F. Santiago, J. C. F. Telles, On a regularized method of fundamental solutions coupled with the numerical Green's function procedure to solve embedded crack problems, Eng. Anal. Bound. Elem., 37 (2013), 1–7. http://dx.doi.org/10.1016/j.enganabound.2012.08.013 doi: 10.1016/j.enganabound.2012.08.013
    [15] T. Buchukuri, O. Chkadua, D. Natroshvili, Method of fundamental solutions for mixed and crack type problems in the classical theory of elasticity, T. A Razmadze Math. In., 171 (2017), 264–292. http://dx.doi.org/10.1016/j.trmi.2017.04.004 doi: 10.1016/j.trmi.2017.04.004
    [16] J. Ma, W. Chen, C. Zhang, J. Lin, Meshless simulation of anti-plane crack problems by the method of fundamental solutions using the crack Green's function, Comput. Math. Appl., 79 (2020), 1543–1560. http://dx.doi.org/10.1016/j.camwa.2019.09.016 doi: 10.1016/j.camwa.2019.09.016
    [17] C. J. S. Alves, P. R. S. Antunes, Determination of elastic resonance frequencies and eigenmodes using the method of fundamental solutions, Eng. Anal. Bound. Elem., 101 (2019), 330–342. http://dx.doi.org/10.1016/j.enganabound.2019.01.014 doi: 10.1016/j.enganabound.2019.01.014
    [18] C. J. S. Alves, N. F. M. Martins, S. S. Valtchev, Extending the method of fundamental solutions to non-homogeneous elastic wave problems, Appl. Numer. Math., 115 (2017), 299–313. http://dx.doi.org/10.1016/j.apnum.2016.06.002 doi: 10.1016/j.apnum.2016.06.002
    [19] O. Askour, A. Tri, B. Braikat, H. Zahrouni, M. Potier-Ferry, Method of fundamental solutions and high order algorithm to solve nonlinear elastic problems, Eng. Anal. Bound. Elem., 89 (2018), 25–35. http://dx.doi.org/10.1016/j.enganabound.2018.01.007 doi: 10.1016/j.enganabound.2018.01.007
    [20] C. C. Tsai, D. L. Young, C. L. Chiu, C. M. Fan, Numerical analysis of acoustic modes using the linear least squares method of fundamental solutions, J. Sound Vib., 324 (2009), 1086–1110. http://dx.doi.org/10.1016/j.jsv.2009.02.032 doi: 10.1016/j.jsv.2009.02.032
    [21] O. Askour, S. Mesmoudi, A. Tri, B. Braikat, H. Zahrouni, M. Potier-Ferry, Method of fundamental solutions and a high order continuation for bifurcation analysis within Föppl-von Karman plate theory, Eng. Anal. Bound. Elem., 120 (2020), 67–72. http://dx.doi.org/10.1016/j.enganabound.2020.08.005 doi: 10.1016/j.enganabound.2020.08.005
    [22] S. Guimaraes, J. C. F. Telles, The method of fundamental solutions for fracture mechanics-Reissner's plate application, Eng. Anal. Bound. Elem., 33 (2009), 1152–1160. https://doi.org/10.1016/j.enganabound.2009.04.010 doi: 10.1016/j.enganabound.2009.04.010
    [23] A. Karageorghis, G. Fairweather, The simple layer potential method of fundamental solutions for certain biharmonic problems, Int. J. Numer. Meth. Fl., 9 (1989), 1221–1234. http://dx.doi.org/10.1002/fld.1650091005 doi: 10.1002/fld.1650091005
    [24] J. Guevara-Jordan, S. Rojas, A method of fundamental solutions for modeling porous media advective fluid flow, Appl. Numer. Math., 47 (2003), 449–465. http://dx.doi.org/10.1016/S0168-9274(03)00084-9 doi: 10.1016/S0168-9274(03)00084-9
    [25] K. Mrozek, M. Mierzwiczak, Application of the method of fundamental solutions to the analysis of fully developed laminar flow and heat transfer, J. Theor. Appl. Mech., 53 (2015), 505–518. http://dx.doi.org/10.15632/jtam-pl.53.3.505 doi: 10.15632/jtam-pl.53.3.505
    [26] B. Sarler, Solution of a two-dimensional bubble shape in potential flow by the method of fundamental solutions, Eng. Anal. Bound. Elem., 30 (2006), 227–235. http://dx.doi.org/10.1016/j.enganabound.2005.09.007 doi: 10.1016/j.enganabound.2005.09.007
    [27] A. Basílio, F. Lobato, F. Arouca, Solution of direct and inverse conduction heat transfer problems using the method of fundamental solutions and differential evolution, Eng. Computation., 37 (2020), 3293–3319. http://dx.doi.org/10.1108/EC-01-2020-0017 doi: 10.1108/EC-01-2020-0017
    [28] R. Kumar, V. Chawla, A study of fundamental solution in orthotropic thermodiffusive elastic media, Int. Commun. Heat Mass, 38 (2011), 456–462. http://dx.doi.org/10.1016/j.icheatmasstransfer.2010.12.028 doi: 10.1016/j.icheatmasstransfer.2010.12.028
    [29] K. Amano, A charge simulation method for the numerical conformal mapping of interior, exterior and doubly-connected domains, J. Comput. Appl. Math., 53 (1994), 353–370. http://dx.doi.org/10.1016/0377-0427(94)90063-9 doi: 10.1016/0377-0427(94)90063-9
    [30] K. Amano, A charge simulation method for numerical conformal mapping onto circular and radial slit domains, SIAM J. Sci. Comput., 19 (1998), 1169–1187. http://dx.doi.org/10.1137/S1064827595294307 doi: 10.1137/S1064827595294307
    [31] K. Sakakibara, Bidirectional numerical conformal mapping based on the dipole simulation method, Eng. Anal. Bound. Elem., 114 (2020), 45–57. http://dx.doi.org/10.1016/j.enganabound.2020.01.009 doi: 10.1016/j.enganabound.2020.01.009
    [32] A. Karageorghis, D. Lesnic, L. Marin, The method of fundamental solutions for an inverse boundary value problem in static thermo-elasticity, Comput. Struct., 135 (2014), 32–39. http://dx.doi.org/10.1016/j.compstruc.2014.01.007 doi: 10.1016/j.compstruc.2014.01.007
    [33] L. Marin, Regularized method of fundamental solutions for boundary identification in two-dimensional isotropic linear elasticity, Int. J. Solids Struct., 47 (2010), 3326–3340. http://dx.doi.org/10.1016/j.ijsolstr.2010.08.010 doi: 10.1016/j.ijsolstr.2010.08.010
    [34] L. Marin, A. Karageorghis, D. Lesnic, Regularized MFS solution of inverse boundary value problems in three-dimensional steady-state linear thermoelasticity, Int. J. Solids Struct., 91 (2016), 127–142. http://dx.doi.org/10.1016/j.ijsolstr.2016.03.013 doi: 10.1016/j.ijsolstr.2016.03.013
    [35] F. Dou, L. P. Zhang, Z. C. Li, C. S. Chen, Source nodes on elliptic pseudo-boundaries in the method of fundamental solutions for Laplace's equation; selection of pseudo-boundaries, J. Comput. Appl. Math., 377 (2020), 112861. http://dx.doi.org/10.1016/j.cam.2020.112861 doi: 10.1016/j.cam.2020.112861
    [36] T. Kitagawa, Asymptotic stability of the fundamental solution method, J. Comput. Appl. Math., 38 (1991), 263–269. http://dx.doi.org/10.1016/0377-0427(91)90175-J doi: 10.1016/0377-0427(91)90175-J
    [37] C. Gáspár, A multi-level technique for the method of fundamental solutions without regularization and desingularization, Eng. Anal. Bound. Elem., 103 (2019), 145–159. http://dx.doi.org/10.1016/j.enganabound.2019.03.006 doi: 10.1016/j.enganabound.2019.03.006
    [38] W. Chen, F. Z. Wang, A method of fundamental solutions without fictitious boundary, Eng. Anal. Bound. Elem., 34 (2010), 530–532. http://dx.doi.org/10.1016/j.enganabound.2009.12.002 doi: 10.1016/j.enganabound.2009.12.002
    [39] J. S. Chen, D. D. Wang, S. B. Dong, An extended meshfree method for boundary value problems, Comput. Method. Appl. M., 193 (2004), 1085–1103. http://dx.doi.org/10.1016/j.cma.2003.12.007 doi: 10.1016/j.cma.2003.12.007
    [40] A. H. D. Cheng, Y. Hong, An overview of the method of fundamental solutions-Solvability, uniqueness, convergence, and stability, Eng. Anal. Bound. Elem., 120 (2020), 118–152. http://dx.doi.org/10.1016/j.enganabound.2020.08.013 doi: 10.1016/j.enganabound.2020.08.013
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2278) PDF downloads(124) Cited by(0)

Article outline

Figures and Tables

Figures(8)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog