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1. Introduction

As fractional calculus has grown and developed, numerous investigations have been undertaken
on the existence and uniqueness of the solutions for initial and boundary value problems, including
fractional equations [1–4]. Recently, with the generalization of fractional operators on arbitrary spaces,
the study of fractional initial and boundary value problems (BVPs) has attracted the attention of many
scientists [5, 6]. One of these generalizations led to the definition of the fractional derivative on the
time scale interval space T = {qk : k ∈ N, 0 < q < 1} and the study on the existence and uniqueness of
solutions for initial and boundary value problems incorporating fractional differential equations were
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conducted on this space [7–10]. However, there are few papers about the investigation of q-difference
BVPs within the p-Laplacian operator [11–13].

In [14], Miao and co-authors used some fixed point theorems on partially or- dered sets and p-
Laplacian operators to study the positive solutions of q-difference BVP{

Dυ
qϕp(Dµ

qζ(τ)) + h(τ, ζ(τ)) = 0, 0 < τ < 1, 2 < µ, ν < 3,
ζ(0) = Dqζ(0) = 0, Dqζ(1) = γDqζ(ξ),

where 0 < υ < 1, 2 < µ < 3, 0 < γξµ−2 < 1, Dµ
q is the Riemann-Liouville derivative and ϕp(ζ) = |ζ |p−2ζ

is p-Laplacian operator, p > 1.
In [15], Mardanov and co-authors used some known fixed point theorems to study the q-difference

BVP of the form  cDβ
q,0+ϕp(cDα

q,0+ζ)(τ) = h(τ, ζ(τ)), 0 ≤ τ ≤ 1,
ζ(0) = ηζ(1), cDα

q,0+ζ(0) = γcDα
q,0+ζ(1),

where ϕp(ζ) = |ζ |p−2ζ is p-Laplacian operator, p > 1, ϕ−1
p (ζ) = ϕs(ζ), where p−1 + s−1 = 1 and

0 < α, β ≤ 1.
In a previous work by Aktuğlu and Özarslan [16], they investigated a Caputo-type q-fractional

boundary value problem involving the p-Laplacian operator. This problem can be expressed as:

Dq(φp(CDα
q x(t))) = f (t, x(t)), 0 < t < 1 (1.1)

subject to the boundary conditions:

Dk
qx(0) = 0, k = 2, 3, . . . , n − 1,

x(0) = a0x(1), x(0) = a0x(1), Dqx(0) = a1Dqx(1),

where a0, a1 , 0, α > 1 and f ∈ C([0, 1] × R,R). Aktuğlu and Özarslan employed the Banach
contraction mapping principle to establish the existence and uniqueness of a solution for this boundary
value problem under specific conditions.

Yan and Hou in [17] applied the Avery-Peterson fixed point to obtain some existing results for the
q-difference BVP 

cDβ
q,0+(ϕp(Dqζ(τ))) + h(τ) f (τ, ζ(τ),Dqζ(τ)) = 0, τ ∈ (0, 1),

ζ(0) − aDqζ(0) =
∫ 1

0
g1(ς)ζ(ς)dqς,

ζ(1) + ηDqζ(1) =
∫ 1

0
g2(ς)ζ(ς)dqς,

where a, η ≥ 0, f ∈ C([0, 1] × [0,+∞) × R, [0,+∞)), h ∈ C([0, 1] × [0,+∞)) and gi is nonnegative,
integrable and

∫ 1

0
gi(ς)dqς ∈ [0, 1), i = 1, 2.

In 2020, Ragoub and co-authors in [18], investigated the q-fractional boundary value problem with
the p-Laplace operator

aDβ
q(ϕp(aDα

qu(t)) + Q(t)ϕp(u(t)) = 0, t ∈ (a, b),
u(a) = 0, u(b) = Au(ξ),
aDα

qu(a) = 0, aDα
qu(b) = BaDα

qu(δ),
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where aDα
q , aDβ

q are the fractional q-derivative of the riemann-Liouville type with 1 < α, β < 2, 0 ≤
A, B ≤ 1, 0 < ξ, δ < 1, ϕp(s) = |s|p−2s, p > 1, ϕ−1

p = ϕr,
1
p +

1
r = 1, and Q : [a, b] → R is a continuous

function on [a, b].
Inspired by the aforementioned research, in this research, we examine q-difference BVP

Dν
qφr

(
Dµ

qζ(τ)
)
= Λ(τ, ζ(τ)), τ ∈ [0, 1],

ζ(0) = Dqζ(0) = Dqζ(1) = Dµ
qζ(0) = Dµ+1

q ζ(0) = 0,
Dµ+1

q ζ(1) = λ[µ − 1]q

∫ 1

0
g(θ)ζ(θ)dqθ,

(1.2)

where 2 < ν, µ < 3, Dµ
q is the Riemann-Liouville fractional derivative and ϕr(ζ) = |ζ |r−2ζ is p-Laplacian

operator, r > 1, ϕ−1
r (ζ) = ϕs(ζ), 1

s +
1
r = 1, g : [0, 1]→ [0,∞) be a function such that τµ−1g(τ) ∈ L1[0, 1]

and λ is a constant such that λ
∫ 1

0
τµ−1g(τ)dqτ < 1. Unlike earlier studied equations, Eq (1.2) is formed

using the p-Laplace operator and a high order fractional derivative, making Green’s function analysis
challenging. Using a new fixed point theorem that incorporates an a − η-Geraghty contraction, the
existence of a positive solution for Eq (1.2) is investigated.

This is how the remainder of the paper is structured. In Section 2, we present a few baseline data
and relevant resources. In Section 3, the Green function of the problem and its required attributes are
calculated. In Section 4, the existence and uniqueness of positive solutions are demonstrated using a
new fixed point theorem. Further, we study the existence of the solution to the fractional q-difference
boundary value issue of the Riemann-Liouville derivative by using a a − η-Geraghty contraction.
Finally, a few examples are provided to demonstrate the usefulness of our findings. We concluded
the paper by drawing a brief conclusion.

2. Preliminaries

Prior to delving into the primary notion of this work, a few fundamental ideas must be introduced,
and several helpful instruments used in this work should be mentioned (see [19, 20]).

Let q ∈ (0, 1), we denote

[ν]q =
1 − qν

1 − q
= qν−1 + · · · + 1, ν ∈ R. (2.1)

The q-analog of the power function (ν − ω)κ with κ ∈ N0 = {0, 1, 2, . . .} is

(ν − ω)0 = 1, (ν − ω)(κ) =

κ−1∏
i=0

(ν − ωqi), κ ∈ N, ν, ω ∈ R. (2.2)

Furthermore, let γ ∈ R, then

(ν − ω)(γ) = νγ
∞∏

i=0

ν − ωqi

ν − ωqi+γ ν , 0. (2.3)

If ω = 0, then ν(γ) = νγ and we denote 0(γ) = 0 for γ ≥ 0.
The q-gamma function is given by

Γq(µ) =
(1 − q)(µ−1)

(1 − q)µ−1 , µ ∈ R \ {0,−1,−2, . . .}. (2.4)
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Similar to the gamma function, the following relationship is also established for the q-gamma function.

Γq(µ + 1) = [µ]qΓq(µ), Γq(µ) = [µ − 1]q.

The q-integral on [0, b] is given by

(Iq f )(τ) =
∫ b

0
f (τ)dqτ = τ(1 − q)

∞∑
n=0

f (τqn)qn. (2.5)

Let a ∈ [0, b] and f be given on [0, b], then its q-integral from a to b stated as follows:∫ b

a
f (τ)dqτ =

∫ b

0
f (τ)dqτ −

∫ a

0
f (τ)dqτ. (2.6)

Definition 2.1. Let υ ≥ 0 and f be a real function on [a, b]. The RL q-integral of order υ is given by

(I0
qτ) = f (τ),

(Iυq f )(τ) =
1
Γq(υ)

∫ τ

a
(τ − qς)(υ−1) f (ς)dqς, υ > 0, τ ∈ [a, b]. (2.7)

Definition 2.2. The fractional q-derivative of the RL- type of order υ ≥ 0 for the function f is defined
by

(0
D
υ
q f )(τ) = f (τ)

and
(0
D
υ
q f )(τ) = (D[υ]

q I
[υ]−υ
q f )(τ),

where [υ] is the smallest integer greater than or equal to υ.

Definition 2.3. Let υ ≥ 0 and the Caputo q-derivatives of f be given by

(c
D
υ
q f )(τ) = (I[υ]−υ

q D
[υ]
q f )(τ), (2.8)

where [υ] is the smallest integer greater than or equal to υ.

If f (τ) = τγ−1 for γ < N, then

c
D
υ
q f (τ) =

Γq(γ)
Γq(γ − υ)

τγ−υ−1. (2.9)

Lemma 2.4. [19] Let υ, γ ≥ 0 and f : [a, b]→ R is continuous on [a, b]. Then

D
υ
q(Iυq f )(τ) = f (τ), I

υ
qI

γ
q f (τ) = Iυ+γq f (τ).

Lemma 2.5. [19] Let f : [a, b]→ R be differentiable and p be a positive integer. Then

I
υ
qD

p
q f (t) = Dp

qI
υ
q f (t) −

p−1∑
k=0

tυ−p+k

Γq(υ − p + k + 1)
(Dk

q f )(0), t ∈ [a, b].
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Definition 2.6. We set Ψ be the set of ψ that satisfy the following condition

(1) ψ : [0,∞)→ [0,∞) is a continuous and nondecreasing;
(2) ψ(τ) > 0 for all τ ∈ (0,∞);
(3) ψ(0) = 0;
(4) limτ→∞ ψ(τ) = ∞.

Theorem 2.7. [21] Suppose (E, d) be a partially ordered (with respect the order ≤ ) complete metric
space such that satisfy the following conditions

i) If {ζn} is a nondecreasing convergent in E (limn→∞ ζn = ζ) then ζn < ζ, n ∈ N;
ii) Let ψ ∈ Ψ, 𭟋 : E→ E be a nondecreasing with

d(𭟋ζ, 𭟋ω) ≤ d(ζ, ω) − ψ(d(ζ, ω)), ζ ≥ ω,

and ζ0 ≤ 𭟋(ζ0).

Then 𭟋 has a fixed point.

Theorem 2.8. [22] By considering the following extra condition,

iii) For each pair ζ and ω in E, there exists a member like ϖ in E such that it is comparable to ζ and
ω.

to the assumptions of the previous theorem, we reach the uniqueness of the fixed point.

3. Green function

This section is dedicated to constructing the Green’s function of equations and demonstrating some
of its features.

Lemma 3.1. [23] Assume ϱ : [0, 1]→ [0,∞) be a continuous, then fractional q-difference BVP

Dν
qy(τ) = ϱ(τ) 0 ≤ τ ≤ 1, 2 < ν < 3,

y(0) = Dqy(0) = Dqy(1) = 0,
(3.1)

is equivalent to:

y(τ) = −
∫ 1

0
Hν(τ, qς)ϱ(ς)dqς, (3.2)

where

Hν(τ, qς) =

 1
Γq(ν)

(
τν−1(1 − qς)(ν−2) − (τ − qς)(ν−1)

)
qς ≤ τ,

1
Γq(ν)τ

ν−1(1 − qς)(ν−2) qς ≥ τ.
(3.3)

Lemma 3.2. Let h ∈ C([0, 1]), 2 < µ ≤ 3, then fractional q-difference BVP Dµ
qζ(τ) + h(τ) = 0, τ ∈ [0, 1],

ζ(0) = Dqζ(0) = 0,Dqζ(1) = λ[µ − 1]q

∫ 1

0
g(θ)ζ(θ)dqθ,

(3.4)
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is equivalent to:

ζ(τ) =
∫ 1

0
G(τ, qς)h(ς)dqς, (3.5)

where
G(τ, ς) = Hν(τ, qς) + K(τ, qς), (3.6)

with

K(τ, qς) =
λτµ−1

Γq(µ)(1 − λ
∫ 1

0
θµ−1g(θ)dqθ)

∫ 1

0
g(θ)Hµ(θ, qς)dθ. (3.7)

Proof. By integrating of order µ from Eq (3.4) one can get

ζ(τ) = −
1
Γq(µ)

∫ τ

0
(τ − qς)(µ−1)h(ς)dqς + c1τ

µ−1 + c2τ
µ−2 + c3τ

µ−3. (3.8)

Utilizing the conditions ζ(0) = 0, we get c3 = 0. On the other hand by differentiating from relation (3.8)
we have

(Dqζ)(τ) = −
1
Γq(µ)

∫ τ

0
[µ − 1]q(τ − qς)(µ−2)h(ς)dqς + [µ − 1]qc1τ

µ−2 + [µ − 2]qc2τ
µ−3,

by applying boundary condition Dqζ(0) = 0, we have c2 = 0, and from the last boundary condition
we get

Dqζ(1) = −
1
Γq(µ)

∫ 1

0
[µ − 1]q(1 − qς)(µ−2)h(ς)dqς + [µ − 1]qc1

= λ[µ − 1]q

∫ 1

0
g(θ)ζ(θ)dqθ.

So

c1 =
1
Γq(µ)

∫ 1

0
[µ − 1]q(1 − qς)(µ−2)h(ς)dqς + λ[µ − 1]q

∫ 1

0
g(θ)ζ(θ)dqθ. (3.9)

If we replace ζ(τ) from the relation (3.8) into the relation (3.9) we have

c1 =
1
Γq(µ)

∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

+λ

∫ 1

0
g(θ)

(
−

1
Γq(µ)

∫ θ

0
(θ − qς)(µ−1)h(ς)dqς + c1θ

µ−1
)

dqθ

=
1
Γq(µ)

∫ 1

0
(1 − qς)(µ−2)h(ς)dqς + c1λ

∫ 1

0
θµ−1g(θ)dqθ

−
λ

Γq(µ)

∫ 1

0
g(θ)

∫ θ

0
(θ − qς)(µ−1)h(ς)dqςdqθ.

Hence
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c1

(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

)
=

1
Γq(µ)

∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

−
λ

Γq(µ)

∫ 1

0
g(θ)

∫ θ

0
(θ − qς)(µ−1)h(ς)dqςdqθ.

So

c1 =
1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

−
λ

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
g(θ)

∫ θ

0
(θ − qς)(µ−1)h(ς)dqςdqθ.

Consequently,

ζ(τ) = −
1
Γq(µ)

∫ τ

0
(τ − qς)(µ−1)h(ς)dqς

+
τµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

−
λτµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
g(θ)

∫ θ

0
(θ − ς)(µ−1)h(ς)dqςdqθ

= −
1
Γq(µ)

∫ τ

0
(τ − qς)(µ−1)h(ς)dqς +

τµ−1

Γq(µ)

∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

+
λτµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
θµ−1g(θ)dqθ

∫ 1

0
(1 − qς)(µ−2)h(ς)dqς

−
λτµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
g(θ)

∫ θ

0
(θ − qς)h(ς)dqςdqθ

=

∫ 1

0
Hµ(τ, qς)h(ς)dqς +

+
λτµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
g(θ)

∫ 1

0
Hµ(θ, qς)h(ς)dqςdqθ

=

∫ 1

0
Hµ(τ, qς)h(ς)dqς

+

∫ 1

0

λτµ−1

Γq(µ)
(
1 − λ

∫ 1

0
θµ−1g(θ)dqθ

) ∫ 1

0
g(θ)Hµ(θ, qς)h(ς)dqθdqς

=

∫ 1

0
Hµ(τ, qς)h(ς)dqς +

∫ 1

0
K(τ, qς)h(ς)dqς =

∫ 1

0
G(τ, qς)h(ς)dqς.

□
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Lemma 3.3. Fractional BVP (1.2) is equivalent to:

ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ς, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς, (3.10)

where G and H were given by (3.3) and (3.6) respectively.

Proof. Let ϱ(τ) = φs(ζ(τ)), h(τ) = −Λ(τ, ζ(τ)). Then from Lemma 3.1 we get

ϱ(τ) = φs

(∫ 1

0
Hν(τ, qς)Λ(ς, ζ(ς))dqς

)
.

Now from Lemma 3.2 we have

ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ς, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς.

□

Lemma 3.4. [14,23] Let α := µ or α = ν, also let H(τ, qς) := Hν(τ, qς) or H(τ, qς) := Hµ(τ, qς), then
H satisfies the following conditions

(1) H is continuous and H(τ, qς) ≥ 0 for all τ, ς ∈ [0, 1];
(2) H is a strictly increasing function concerning the first variable;
(3) τα−1H(1, qς) ≤ H(τ, qς) ≤ H(1, qς) for all τ, ς ∈ [0, 1].

Lemma 3.5. Let G be the function that defined by (3.6), then G satisfies the following conditions.

(1) G is a continuous function and G(τ, qς) ≥ 0 for all τ, ς ∈ [0, 1];
(2) G is a strictly increasing function concerning the first variable;
(3) τµ−1G(1, qς) ≤ G(τ, qς) ≤ G(1, qς) for all τ, ς ∈ [0, 1].

The proof is straightforwardly attained from Lemma 3.4.

4. Main results

Here, we will use all of the items reported in the preceding sections to develop the primary findings
of this research.

Let P be defined as
P = {ζ ∈ C([0, 1]) : ζ(τ) ≥ 0}.

It is easy to check that P is a cone and since it is a closed set of C([0, 1]), hence it is a complete metric
space that is equipped with the meter

d(ζ, ω) = sup
τ∈[0,1]

|ζ(τ) − ω(τ)|,

also for convenience, we set

∆ = ϕs

(∫ ς

0
Hµ(ς, qξ)dqξ

)
sup

0≤τ≤1

∫ 1

0
G(τ, qς)dqς.
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Now consider the 𭟋 : P → P defined by

𭟋ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς. (4.1)

Since BVP (1.2) is equivalent with (3.10), so the solutions of BVP (1.2) are the fixed points of the
operator (4.1). To prove the existence of fixed points of (3.10), we apply Theorems 2.7 and 2.8.

We make use of the following conditions:

(A1) Let g : [0, 1] → [0,∞) such that τµ−1g(τ) ∈ L1[0, 1] and λ is a constant such that
λ
∫ 1

0
τµ−1g(τ)dqτ < 1.

(A2) Λ ∈ C([0, 1] × [0,∞), [0,∞)) and it is non-decreasing respect to the second variable.
(A3) There exists 0 < (η + 1)∆ < 1 such that for all 0 ≤ ω ≤ ζ < ∞ we have

ϕr(ln(ω + 2)) ≤ Λ(τ, ω) ≤ Λ(τ, ζ) ≤ ϕr(ln(ζ + 2)(ζ − ω + 1)η).

Theorem 4.1. Assume that (A1), (A2) and (A3) hold, then BVP (1.2) has a unique positive solution.

Proof. Given Lemma 3.5 and (A1), it is concluded that 𭟋(P) ⊂ P. Now we check all conditions of
Theorems 2.7 and 2.8 for the operator (3.10). Let ζ, ω ∈ P and ζ ≥ ω, by (A1) we get

𭟋ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς

≥

∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ω(ξ))dqξ

)
dqς

= 𭟋ω(τ).

That is the operator 𭟋 is nondecreasing.
Now let ζ ≥ ω, in view of (A2) we obtain

d(𭟋ζ, 𭟋ω)
≤ sup

0≤τ≤1
|(𭟋ζ(τ) − 𭟋ω(τ))

= sup
0≤τ≤1

[∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς

−

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)Λ(ξ, ω(ξ))dqξ

)
dqς

]
≤(ln(ζ + 2)(ζ − ω + 1)η − ln(ω + 2)) sup

0≤τ≤1

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
dqς

≤ ln
(ζ + 2)(ζ − ω + 1)η

ω + 2
sup

0≤τ≤1

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
dqς

≤(η + 1) ln(ζ − ω + 1) sup
0≤τ≤1

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
dqς

≤(ln(ζ + 2)(ζ − ω + 1) − ln(ω + 2))ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
sup

0≤τ≤1

∫ 1

0
G(τ, qς)dqς.

AIMS Mathematics Volume 9, Issue 9, 23770–23785.



23779

The function g(ζ) := ln(ζ + 1) is a nondecreasing function, so by (A2), we have

d(𭟋ζ, 𭟋ω) ≤(η + 1) ln(∥ζ − ω∥ + 1)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
sup

0≤τ≤1

∫ 1

0
G(τ, qς)dqς

=(η + 1) ln(∥ζ − ω∥ + 1)∆
≤∥ζ − ω∥ − (∥ζ − ω∥ − ln(∥ζ − ω∥ + 1)).

Now if we set ψ(ζ) := ζ − ln(ζ + 1), then ψ ∈ Ψ. Thus for all ζ ≥ ω we obtain

d(𭟋ζ, 𭟋ω) ≤ d(ζ, ω) − ψ(d(ζ, ω)).

Since G(τ, qς) ≥ 0, Hν(τ, qς) ≥ 0 and Λ ≥ 0, so

(𭟋0)(τ) =
∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
H(ς, qξ)Λ(ξ, 0)dqξ

)
dqς ≥ 0,

hence by Theorem 2.7, BVP (1.2) has at least one positive solution. On the other hand since (P,≤)
satisfies condition (iii) of Theorem 2.8, hence, the BVP (1.2) has a unique positive solution. □

Let Θ contains all θ : R+ → [0, 1) which satisfy the condition: θ(tn)→ 1 implies tn → 0.

Definition 4.2. [24] Let (X, d) is MS and a, ϑ : X × X → R+ two functions. g : X → X is said to be an
a-ϑ-Geraghty contraction if there exists θ ∈ Θ such that for ν, ω ∈ X,

a(ν, ω) ≥ ϑ(ν, ω)⇒ d(gν, gω) ≤ θ
(
d(ν, ω)

)
d(ν, ω).

Definition 4.3. [24] Let g : X → X and a, ϑ : X × X → R+ be given. Then g is called a-admissible
with respect to ϑ, if for ν, ω ∈ X,

a(ν, ω) ≥ ϑ(ν, ω)⇒ a(gν, gω) ≥ ϑ(gν, gω).

Theorem 4.4. [24] Let (X, d) be a complete metric space and φ : X → X be a a − θ-Geraghty
contraction such that
(i) φ is a-admissible respect to ϑ;
(ii) ∃ w0 ∈ X with a(w0, φw0) ≥ ϑ(w0, φw0);
(iii) φ is continuous.
Then φ has a fixed point.

Theorem 4.5. Let (X, d) be a complete metric space and φ : X → X be a a − θ-Geraghty contraction
such that
(i) φ is a-admissible respect to ϑ;
(ii) ∃ w0 ∈ X with a(w0, φw0) ≥ ϑ(w0, φw0);
(iii) {wn} ⊆ X, wn → u in X and a(wn,wn+1) ≥ ϑ(wn,wn+1) then a(wn,w) ≥ ϑ(wn,w).
Then φ has a fixed point.

The proof can be concluded by following the same arguments as in the proof of Theorem 2.4 in [25].

Theorem 4.6. Suppose that (A1) hold and there exist ρ : R2 → R and θ ∈ Θ with the following
property:
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(i) For all ζ, ω ∈ C([0, 1]) and τ ∈ [0, 1] we have

|Λ(τ, ζ) − Λ(τ, ω)| ≤ |ϕr(
1
∆
ωθ(ζ − ω)) − ϕr(

1
∆
ζθ(ζ − ω))|;

(ii) For ζ, ω ∈ C([0, 1]), ρ(ζ(τ), ω(τ)) ≥ 0 and there exists ζ0 ∈ C([0, 1]) with

ρ

(
ζ0(τ),

∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ0(ξ))dqξ

)
dqς

)
≥ 0;

(iii) If ρ(ζ(ξ), ω(ξ)) ≥ 0, then

ρ

(∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς,∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ω(ξ))dqξ

)
dqς

)
≥ 0;

(iv) if {ζn} ⊆ C([0, 1]), ζn → ζ in C([0, 1]), and ρ(ζn, ζn+1) ≥ 0, then ρ(ζn, ζ) ≥ 0.

Then Problem (3.1) has at least one solution.

Proof. From Lemma 3.3, ζ ∈ C([0, 1]) is a solution of (3.1) if and only if is a solution of

𭟋ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς.

Thus we find the fixed point of 𭟋 : C([0, 1])→ C([0, 1]) given by

𭟋ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς.

Let ζ, ω ∈ C([0, 1]) with ρ(ζ(τ), ω(τ)) ≥ 0. By (i), we obtain∣∣∣d(𭟋ζ, 𭟋ω)| = sup
0≤τ≤1
|(𭟋ζ(τ) − 𭟋ω(τ))

∣∣∣
= sup

0≤τ≤1

∣∣∣∣ ∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς

−

∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ω(ξ))dqξ

)
dqς

∣∣∣∣
≤|Λ(ξ, ω(ξ)) − Λ(ξ, ζ(ξ))| sup

0≤τ≤1

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
dqς

≤|
1
∆
ωθ(ζ − ω)) −

1
∆
ζθ(ζ − ω))| sup

0≤τ≤1

∫ 1

0
G(τ, qς)ϕs

(∫ ς

0
Hν(ς, qξ)dqξ

)
dqς

≤
1
∆

(ζ − ω)θ(ζ − ω)∆ = (ζ − ω)θ(ζ − ω)

≤∥ζ − ω∥∞θ(∥ζ − ω∥∞) = d(ζ, ω)θ(d(ζ, ω)).
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Let a : C([0, 1]) ×C([0, 1])→ R+ be stated as:

a(ζ, ω) =
{
ϑ(ζ(τ), ω(τ)) ρ

(
ζ(τ), ω(τ)

)
≥ 0, τ ∈ [0, 1],

0 otherwise.

Thus, we have

a(ζ, ω)d(𭟋ζ, 𭟋ω) ≤ a(ζ, ω)θ(d(ζ, ω)).

Then 𭟋 is an a-θ-contractive. From (iii) and the definition of a we get

a(ζ, ω) ≥ ϑ(ζ(τ), ω(τ))⇒ ρ
(
ζ(τ), ω(τ)

)
≥ 0

⇒ ρ
(
𭟋(ζ), 𭟋(ω)

)
≥ 0

⇒ a
(
𭟋(ζ), 𭟋(ω)

)
≥ ϑ(𭟋(ζ(τ)), 𭟋(ω(τ))),

for ζ, ω ∈ C([0, 1]). Thus, 𭟋 is a-admissible. By (ii) ∃ ζ0 ∈ C([0, 1]) with a(ζ0, 𭟋ζ0) ≥ ϑ(ζ0(τ), 𭟋(ζ0(τ))).
From (iv) and Theorem 4.5, there is ζ∗ ∈ C([0, 1]) with ζ∗ = 𭟋ζ∗. Hence ζ∗ is a solution of the
problem. □

5. Examples

The following are two supportive examples that adhere to all theoretical presumptions.

Example 5.1. Consider the q-difference BVP
Dν

qφr

(
Dµ

qζ(τ)
)
= Λ(τ, ζ(τ)), τ ∈ [0, 1],

ζ(0) = Dqζ(0) = Dqζ(1) = Dµ
qζ(0) = Dµ+1

q ζ(0) = 0,
Dµ+1

q ζ(1) = λ[µ − 1]
∫ 1

0
g(θ)ζ(θ)dqθ,

(5.1)

where µ = ν = 5
2 , q = λ = 1

2 , g(τ) = 1
10τ, r = 7

3 and Λ(τ, ζ(τ)) = ( 1
100 sin2 τ+ 1

2 ) ln(2+ ζ(τ)). It is easy to
see that Λ is a continuous function and for τ ∈ [0, 1] we have Λ(τ, ζ) , 0. Also Λ is a nondecreasing
with respect to the second variable. Now since in this problem µ = ν, we let H := Hµ = Hν and due to
the fact that∫ ς

0
H(ς, qξ)dqξ ≤

∫ 1

0
H(ς, qξ)dqξ ≤

∫ 1

0

(1 − qξ)(ν−2)

Γq(ν)
dqξ ≤

∫ 1

0

1
Γ0.5(2.5)

d0.5ξ ≈ 0.8397.

By using Mathematica software, one can calculate the following quantities:

K(τ, qς) ≤ 0.4316,
∫ 1

0
G(τ, qς)dqς ≤ 0.43615,

∆ = ϕs

(∫ ς

0
Hµ(ς, qξ)dqξ

)
sup

0≤τ≤1

∫ 1

0
G(τ, qς)dqς ≤ 0.37945.

Moreover, we get
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Λ(τ, ζ) − Λ(τ, ω) =
(

1
100

sin2 τ +
1
2

)
) ln(2 + ζ) −

(
1

100
sin2 τ +

1
2

)
ln(2 + ω)

≤

(
1

100
sin2 τ +

1
2

)
ln

(
2 + ζ
2 + ω

)
=

(
1

100
sin2 τ +

1
2

)
ln

(
2 + ω + ζ − ω

2 + ω

)
=

(
1

100
sin2 τ +

1
2

)
ln

(
1 +

ζ − ω

2 + ω

)
≤

(
1

100
sin2 τ +

1
2

)
ln(1 + (ζ − ω))

≤0.51 ln(1 + ζ − ω).

So η = 0.51 and (η+1)∆ = 1.51×0.3794 = 0.5728 < 1. Consequently all conditions of the Theorem 4.1
hold and the q-difference BVP has a unique positive solution like ζ(τ) that satisfies

ζ(τ) =
∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς.

Example 5.2. Let θ(τ) = (cos(τ))
3
4 , ρ(y, z) = yz, ζn(τ) =

τ

n2 + 1
. Consider Λ : I × C(I) → [0,∞] and

the BVP 
Dν

qφr

(
Dµ

qζ(τ)
)
= Λ(τ, ζ(τ)), τ ∈ [0, 1],

ζ(0) = Dqζ(0) = Dqζ(1) = Dµ
qζ(0) = Dµ+1

q ζ(0) = 0,
Dµ+1

q ζ(1) = λ[µ − 1]
∫ 1

0
g(θ)ζ(θ)dqθ.

(5.2)

One can easily see that Λ(τ, ζ(τ)) = 1
4 sin2 2(ζ(τ)), (τ, v(τ)) ∈ I × [1,∞). θ(tn) → 1 implies tn → 0,

hence θ ∈ Θ.
Furthermore, we get

1
4
| sin2(2ζ(τ)) − sin2(2ω(τ))| =

1
4
| sin(2ζ(τ)) − sin(2ω(τ))(sin(2ζ(τ)) + sin(2ω(τ))|

=| sin(ζ(τ) − ω(τ))|| cos(ζ(τ) + ω(τ))|| sin(ζ(τ) + ω(τ))|| cos(ζ(τ) − ω(τ))|
≤|ζ(τ) − ω(τ)|| cos(ζ(τ) − ω(τ))|

≤(
1
./38

ζ(τ))
4
3 cos(ζ(τ) − ω(τ))) − (

1
./38

ω(τ) cos(ζ(τ) − ω(τ)))
4
3
∣∣∣

=|ϕr(
1
∆
ωθ(ζ − ω)) − ϕr(

1
∆
ζθ(ζ − ω))|,

when τ ∈ I and ζ(τ), ω(τ) ∈ [1,∞) with ρ(ζ(τ), ω(τ)) ≥ 0. So the condition (i) from Theorem 4.6 hold.
If ζ0(τ) = τ, then

ρ
(
ζ0(τ)

)
,

∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ0(ξ))dqξ

)
dqς ≥ 0,

for τ ∈ I. Further, ρ(ζ(τ), ω(τ)) = ζ(τ)ω(τ) ≥ 0 implies that

ρ

(∫ 1

0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ζ(ξ))dqξ

)
dqς,
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0
G(τ, qς)φs

(∫ ς

0
Hν(ξ, qξ)Λ(ξ, ω(ξ))dqξ

)
dqς

)
≥ 0.

It is obvious that condition (iv) in Theorem 4.6 hold. Hence, the all conditions of Theorem 4.6 are
satisfied. Thus, Eq (1.2) has at least one solution.

6. Conclusions

There are few papers in the literature about p-Laplacian q-fractional boundary value problems,
thus we investigated a class of p-Laplacian q-fractional boundary value problems with an integral
boundary condition. The Green function of the problem was computed and some properties of the
Green function were determined. By using a new fixed point theorem that involves a a-η-Geraghty
contraction, the existence of positive solutions was proved. Two examples are provided to support the
theoretical findings.

The technique applied in this paper is different and may be used effectively to verify the existence
of solutions to many sorts of equations. Moreover, one can use this technique to verify the existence
of positive solutions for some boundary value problems including a system of q-fractional differential
equations in the future.
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