The concept of $ k $-subdirect sums of matrices, as a generalization of the usual sum and the direct sum, plays an important role in scientific computing. In this paper, we introduce a new subclass of $ S $-Nekrasov matrices, called $ \{i_0\} $-Nekrasov matrices, and some sufficient conditions are given which guarantee that the $ k $-subdirect sum $ A\bigoplus_k B $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix. Numerical examples are reported to illustrate the conditions presented.
Citation: Jing Xia. Note on subdirect sums of $ \{i_0\} $-Nekrasov matrices[J]. AIMS Mathematics, 2022, 7(1): 617-631. doi: 10.3934/math.2022039
The concept of $ k $-subdirect sums of matrices, as a generalization of the usual sum and the direct sum, plays an important role in scientific computing. In this paper, we introduce a new subclass of $ S $-Nekrasov matrices, called $ \{i_0\} $-Nekrasov matrices, and some sufficient conditions are given which guarantee that the $ k $-subdirect sum $ A\bigoplus_k B $ is an $ \{i_0\} $-Nekrasov matrix, where $ A $ is an $ \{i_0\} $-Nekrasov matrix and $ B $ is a Nekrasov matrix. Numerical examples are reported to illustrate the conditions presented.
[1] | S. M. Fallat, C. R. Johnson, Subdirect sums and positivity classes of matrices, Linear Algebra Appl., 288 (1999), 149–173. doi: 10.1016/S0024-3795(98)10194-5. doi: 10.1016/S0024-3795(98)10194-5 |
[2] | R. A. Horn, C. R. Johnson, Matrix analysis, Cambridge University Press, 1990. |
[3] | J. H. Drew, C. R. Johnson, The completely positive and doubly nonnegative completion problems, Linear Multilinear A., 44 (1998), 85–92. doi: 10.1080/03081089808818550. doi: 10.1080/03081089808818550 |
[4] | C. R. Johnson, R. L. Smith, The completion problem for $M$-matrices and inverse $M$-matrices, Linear Algebra Appl., 241 (1996), 655–667. doi: 10.1016/0024-3795(95)00429-7. doi: 10.1016/0024-3795(95)00429-7 |
[5] | L. Gao, Q. L. Liu, C. Q. Li, Y. T. Li, On $\{P_1, P_2\}$-Nekrasov Matrices, Bull. Malays. Math. Sci. Soc., 44 (2021), 2971–2999. doi: 10.1007/s40840-021-01094-y. doi: 10.1007/s40840-021-01094-y |
[6] | A. Frommer, D. B. Szyld, Weighted max norms, splittings, and overlapping additive Schwarz iterations, Numer. Math., 83 (1999), 259–278. doi: 10.1007/s002110050449. doi: 10.1007/s002110050449 |
[7] | B. Smith, P. Bjorstad, W. Gropp, Domain decomposition: Parallel multilevel methods for elliptic partial differential equations, Cambridge University Press, 2004. |
[8] | R. Bru, F. Pedroche, D. B. Szyld, Additive Schwarz iterations for Markov chains, SIAM J. Matrix Anal Appl., 27 (2005), 445–458. doi: 10.1137/040616541. doi: 10.1137/040616541 |
[9] | Y. Saad, Iterative methods for sparse linear systems, 2003. |
[10] | Q. Liu, J. He, L. Gao, C. Q. Li, Note on subdirect sums of SDD($p$) matrices, Linear Multilinear A., 2020, doi: 10.1080/03081087.2020.1807457. doi: 10.1080/03081087.2020.1807457 |
[11] | M. Fiedler, V. Pták, Generalized norms of matrices and the location of the spectrum, Czech. Math. J., 12 (1962), 558–571. |
[12] | R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of $S$-strictly diagonally dominant matrices, Electron. J. Linear Al., 15 (2006), 201–209. doi: 10.13001/1081-3810.1230. doi: 10.13001/1081-3810.1230 |
[13] | Y. Zhu, T. Z. Huang, Subdirect sum of doubly diagonally dominant matrices, Electron. J. Linear Al., 16 (2007), 171–182. doi: 10.13001/1081-3810.1192. doi: 10.13001/1081-3810.1192 |
[14] | R. Bru, L. Cvetković, V. Kostić, F. Pedroche, Sums of $\Sigma$-strictly diagonally dominant matrices, Linear Multilinear A., 58 (2010), 75–78. doi: 10.1080/03081080802379725. doi: 10.1080/03081080802379725 |
[15] | R. Bru, L. Cvetković, V. Kostić, F. Pedroche, Characterization of $\alpha_1$ and $\alpha_2$-matrices, Cent. Eur. J. Math., 8 (2010), 32–40. doi: 10.2478/s11533-009-0068-6. doi: 10.2478/s11533-009-0068-6 |
[16] | C. Q. Li, Q. L. Liu, L. Gao, Y. T. Li, Subdirect sums of Nekrasov matrices, Linear Multilinear A., 64 (2016), 208–218. doi: 10.1080/03081087.2015.1032198. doi: 10.1080/03081087.2015.1032198 |
[17] | C. Q. Li, R. D. Ma, Q. L. Liu, Y. T. Li, Subdirect sums of weakly chained diagonally dominant matrices, Linear Multilinear A., 65 (2017), 1220–1231. doi: 10.1080/03081087.2016.1233933. doi: 10.1080/03081087.2016.1233933 |
[18] | L. Gao, H. Huang, C. Q. Li, Subdirect sums of $QN$-matrices, Linear Multilinear A., 68 (2020), 1605–1623. doi: 10.1080/03081087.2018.1551323. doi: 10.1080/03081087.2018.1551323 |
[19] | Y. Zhu, T. Z. Huang, J. Liu, Subdirect sums of $H$-matrices, Int. J. Nonlinear Sci., 8 (2009), 50–58. |
[20] | C. Mendes Araújo, J. R. Torregrosa, Some results on $B$-matrices and doubly $B$-matrices, Linear Algebra Appl., 459 (2014), 101–120. doi: 10.1016/j.laa.2014.06.048. doi: 10.1016/j.laa.2014.06.048 |
[21] | C. Mendes Araújo, S. Mendes-Gonçalves, On a class of nonsingular matrices containing $B$-matrices, Linear Algebra Appl., 578 (2019), 356–369. doi: 10.1016/j.laa.2019.05.015. doi: 10.1016/j.laa.2019.05.015 |
[22] | R. Bru, F. Pedroche, D. B. Szyld, Subdirect sums of nonsingular $M$-matrices and of their inverse, Electron. J. Linear Al., 13 (2005), 162–174. doi: 10.13001/1081-3810.1159. doi: 10.13001/1081-3810.1159 |
[23] | L. Cvetković, V. Kostić, S. Rauški, A new subclass of $H$-matrices, Appl. Math. Comput., 208 (2009), 206–210. doi: 10.1016/j.amc.2008.11.037. doi: 10.1016/j.amc.2008.11.037 |
[24] | L. Cvetković, V. Kostić, K. Doroslovačkic, Max-norm bounds for the inverse of $S$-Nekrasov matrices, Appl. Math. Comput., 218 (2012), 9498–9503. doi: 10.1016/j.amc.2012.03.040. doi: 10.1016/j.amc.2012.03.040 |
[25] | M. García-Esnaola, J. M. Peña, Error bounds for linear complementarity problems of Nekrasov matrices, Numer. Algorithms, 67 (2014), 655–667. doi: 10.1007/s11075-013-9815-7. doi: 10.1007/s11075-013-9815-7 |
[26] | P. F. Dai, J. Li, J. Bai, L. Dong, New error bounds for linear complementarity problems of $S$-Nekrasov matrices and $B$-$S$-Nekrasov matrices, Comp. Appl. Math., 38 (2019), 61. doi: 10.1007/s40314-019-0818-4. doi: 10.1007/s40314-019-0818-4 |
[27] | L. Gao, Y. Q. Wang, C. Q. Li, Y. T. Li, Error bounds for the linear complementarity problem of $S$-Nekrasov matrices and $B$-$S$-Nekrasov matrices, J. Comput. Appl. Math., 336 (2018), 147–159. doi: 10.1016/j.cam.2017.12.032. doi: 10.1016/j.cam.2017.12.032 |
[28] | J. Zhang, C. Bu, Nekrasov tensors and nonsingular $H$-tensors, Comp. Appl. Math., 37 (2018), 4917–4930. doi: 10.1007/s40314-018-0607-5. doi: 10.1007/s40314-018-0607-5 |
[29] | C. Y. Zhang, New advances in research on $H$-matrices, Science Press, 2017. |