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Abstract: The concept of k-subdirect sums of matrices, as a generalization of the usual sum and
the direct sum, plays an important role in scientific computing. In this paper, we introduce a new
subclass of S -Nekrasov matrices, called {i0}-Nekrasov matrices, and some sufficient conditions are
given which guarantee that the k-subdirect sum A

⊕
k B is an {i0}-Nekrasov matrix, where A is an
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conditions presented.
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1. Introduction

In 1999, Fallat and Johnson [1] introduced the concept of k-subdirect sums of square matrices,
which generalizes the usual sum and the direct sum of matrices [2], and has potential applications
in several contexts such as matrix completion problems [3–5], overlapping subdomains in domain
decomposition methods [6–8], and global stiffness matrices in finite elements [7, 9], etc.

Definition 1.1. [1] Let A ∈ Cn1×n1 and B ∈ Cn2×n2 , and k be an integer such that 1 ≤ k ≤ min{n1, n2}.
Suppose that

A =

 A11 A12

A21 A22

 and B =

 B11 B12

B21 B22

 , (1.1)

where A22 and B11 are square matrices of order k. Then
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C =


A11 A12 0
A21 A22 + B11 B12

0 B21 B22


is called the k-subdirect sum of A and B and is denoted by C = A

⊕
k B.

For the k-subdirect sums of matrices, one of the important problems is that if A and B lie in a
certain subclass of H-matrices must a k-subdirect sum C lie in this class, since it can be used to
analyze the convergence of Jacobi and Gauss-Seidel methods in solving the linearized system of
nonlinear equations [10]. Here, a square matrix A is called an H-matrix if there exists a positive
diagonal matrix X such that AX is a strictly diagonally dominant matrix [11]. To answer this question,
several results about subdirect sum problems for H-matrices and some subclasses of H-matrices have
been obtained, such as S -strictly diagonally dominant matrices [12], doubly diagonally dominant
matrices [13], Σ-strictly diagonally dominant matrices [14], α1 and α2-matrices [15], Nekrasov
matrices [16], weakly chained diagonally dominant matrices [17], QN-(quasi-Nekrasov)
matrices [18], SDD(p)-matrices [10], and H-matrices [19]. Besides, the subdirect sum problems for
some other structure matrices, including B-matrices, BR

π-matrices, P-matrices, doubly non-negative
matrices, completely positive matrices, and totally non-negative matrices, were also studied; for
details, see [1, 20–22] and references therein.

In 2009, Cvetković, Kostić, and Rauški [23] introduced a new subclass of H-matrices called S -
Nekrasov matrices.

Definition 1.2. [23] Given any nonempty proper subset S of N := {1, 2, . . . , n} and S = N \ S . A
matrix A = [ai j] ∈ Cn×n is called an S -Nekrasov matrix if |aii| > hS

i (A) for all i ∈ S , and(
|aii| − hS

i (A)
) (
|a j j| − hS

j (A)
)
> hS

i (A)hS
j (A), f or all i ∈ S , j ∈ S ,

where hS
1 (A) =

∑
j∈S \{1}

|a1 j| and

hS
i (A) =

i−1∑
j=1

|ai j|

|a j j|
hS

j (A) +

n∑
j=i+1, j∈S

|ai j|, i = 2, 3, . . . , n. (1.2)

Specially, if S = N, then Definition 1.2 coincides with the definition of Nekrasov matrices [23], that
is, a matrix A = [ai j] ∈ Cn×n is called a Nekrasov matrix if |aii| > hi(A) for all i ∈ N, where hi(A) :=
hN

i (A). It is worth noticing that the class of S -Nekrasov matrices has many potential applications in
scientific computing, such as estimating the infinity norm for the inverse of S -Nekrasov matrices [24],
estimating error bounds for linear complementarity problems [25–27], and identifying nonsingular
H-tensors [28], etc. However, to the best of the author’s knowledge, the subdirect sum problem for
S -Nekrasov matrices remains unclear. In this paper, we introduce the class of {i0}-Nekrasov matrices
and prove that it is a subclass of S -Nekrasov matrices, and then we focus on the subdirect sum problem
of {i0}-Nekrasov matrices. We provide some sufficient conditions such that the k-subdirect sum of {i0}-
Nekrasov matrices and Nekrasov matrices belongs to the class of {i0}-Nekrasov matrices. Numerical
examples are presented to illustrate the corresponding results.
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2. Subdirect sums of {i0}-Nekrasov matrices

We start with some notations and definitions. For a non-zero complex number z, we define arg(z) =

{θ : z = |z|exp(iθ),−π < θ ≤ π}. As is shown in [12], if we let C = A
⊕

k B = [ci j], where A = [ai j] ∈
Cn1×n1 and B = [bi j] ∈ Cn2×n2 , then

ci j =



ai j, i ∈ S 1, j ∈ S 1
⋃

S 2,

0, i ∈ S 1, j ∈ S 3,

ai j, i ∈ S 2, j ∈ S 1,

ai j + bi−t, j−t, i ∈ S 2, j ∈ S 2,

bi−t, j−t, i ∈ S 2, j ∈ S 3,

0, i ∈ S 3, j ∈ S 1,

bi−t, j−t, i ∈ S 3, j ∈ S 2
⋃

S 3,

where t = n1 − k and

S 1 = {1, 2, . . . , n1 − k}, S 2 = {n1 − k + 1, . . . , n1}, S 3 = {n1 + 1, . . . , n}, (2.1)

with n = n1 + n2 − k. Obviously, S 1
⋃

S 2
⋃

S 3 = N.
We introduce the following subclass of S -Nekrasov matrices by requiring S is a singleton.

Definition 2.1. A matrix A = [ai j] ∈ Cn×n is called an {i0}-Nekrasov matrix if there exists i0 ∈ N such
that |ai0,i0 | > ηi0(A), and that for all j ∈ N \ {i0},

(|ai0,i0 | − ηi0(A)) ·
(
|a j j| − h j(A) + η j(A)

)
> (hi0(A) − ηi0(A)) · η j(A),

where ηi(A) = 0 for all i ∈ N if i0 = 1, otherwise, η1(A) = |ai,i0 | and

ηi(A) =


i−1∑
j=1

|ai j |

|a j j |
η j(A) + |ai,i0 |, i = 2, . . . , i0 − 1,

i−1∑
j=1

|ai j |

|a j j |
η j(A), i = i0, i0 + 1, . . . , n.

(2.2)

Remark 2.1. (i) If A is an {i0}-Nekrasov matrix, then A is an S -Nekrasov matrix for S = {i0}. In
fact, using recursive relations (1.2) and (2.2), it follows that hS

i0
(A) = 0 = ηi0(A) if i0 = 1, otherwise,

hS
1 (A) = η1(A) and

hS
i (A) =

i−1∑
j=1

|ai j|

|a j j|
hS

j (A) +

n∑
j=i+1, j∈S

|ai j|

=


i−1∑
j=1

|ai j |

|a j j |
η j(A) + |ai,i0 |, i = 2, . . . , i0 − 1,

i−1∑
j=1

|ai j |

|a j j |
η j(A), i = i0, i0 + 1, . . . , n.

= ηi(A).
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In addition, hS
i (A) = hi(A) − ηi(A) follows from the fact that hi(A) = hS

i (A) + hS
i (A) for each i ∈ N.

These imply that an {i0}-Nekrasov matrix is an S -Nekrasov matrix for S = {i0}.
(ii) Since a Nekrasov matrix is an S -Nekrasov matrices for any S , it follows that a Nekrasov matrix

is an {i0}-Nekrasov matrices.

The following example shows that the k-subdirect sum of two {i0}-Nekrasov matrices may not be
an {i0}-Nekrasov matrix in general.

Example 2.1. Consider the {i0}-Nekrasov matries A and B for i0 = 2, where

A =


9 −4 −1 −2
−1 10 −1 −2
−1 −2 4 −2
−2 −1 −3 7

 and B =


1 −3

5 −
1
5 0

−1
4 −1 −1

4 −
1
2

−1
5 −

2
5 −1 −2

5

−9
7 0 0 1

 .
Then, the 3-subdirect sum C = A

⊕
3 B gives

C =



9 −4 −1 −2 0
−1 11 −8

5 −
11
5 0

−1 −9
4 3 −9

4 −
1
2

−2 −6
5 −

17
5 6 −2

5

0 −9
7 0 0 1


.

It is easy to check that C = A
⊕

3 B is not an {i0}-Nekrasov matrix for neither one index i0. This
motivates us to seek some simple conditions such that C = A

⊕
k B for any k is an {i0}-Nekrasov

matrix. First, we provide the following conditions such that A
⊕

1 B is an {i0}-Nekrasov matrix, where
A is an {i0}-Nekrasov matrix and B is a Nekrasov matrix.

Theorem 2.1. Let A = [ai j] ∈ Cn1×n1 be an {i0}-Nekrasov matrix with i0 ∈ S 1 and B = [bi j] ∈ Cn2×n2

be a Nekrasov matrix, partitioned as in (1.1), which defines the sets S 1, S 2 and S 3 as in (2.1), and let
t = n1 − 1. If arg(aii)=arg(bi−t,i−t) for all i ∈ S 2 and B21 = 0, then the 1-subdirect sum C = A

⊕
1 B is

an {i0}-Nekrasov matrix.

Proof. Since A is an {i0}-Nekrasov matrix and i0 ∈ S 1, it follows that if i0 = 1 then |c11| = |a11| >

η1(A) = 0 = η1(C), otherwise,

|ci0,i0 | = |ai0,i0 | > ηi0(A) =

i0−1∑
j=1

|ai0, j|

|a j j|
η j(A) =

i0−1∑
j=1

|ci0, j|

|c j j|
η j(C) = ηi0(C). (2.3)

Case 1: For i ∈ S 1, we have

hi(C) =

i−1∑
j=1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j| =

i−1∑
j=1

|ai j|

|a j j|
h j(A) +

n1∑
j=i+1

|ai j| = hi(A),
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and if i0 = 1, then ηi(C) = 0 = ηi(A), and if i0 , 1, then η1(C) = |ci,i0 | = |ai,i0 | = η1(A) and

ηi(C) =


i−1∑
j=1

|ci j |

|c j j |
η j(C) + |ci,i0 |, i = 2, . . . , i0 − 1,

i−1∑
j=1

|ci j |

|c j j |
η j(C), i = i0, . . . , n1 − k.

=


i−1∑
j=1

|ai j |

|a j j |
η j(A) + |ai,i0 |, i = 1, 2, . . . , i0 − 1,

i−1∑
j=1

|ai j |

|a j j |
η j(A), i = i0, . . . , n1 − k.

= ηi(A).

Hence, for all j ∈ S 1 \ {i0},

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
= (|ai0,i0 | − ηi0(A)) ·

(
|a j j| − h j(A) + η j(A)

)
> (hi0(A) − ηi0(A)) · η j(A)

= (hi0(C) − ηi0(C)) · η j(C).

Case 2: For i ∈ S 2 = {n1}, we have

hn1(C) =

n1−1∑
j=1

|cn1, j|

|c j j|
h j(C) +

n∑
j=n1+1

|cn1, j|

=

n1−1∑
j=1

|an1, j|

|a j j|
h j(A) +

n∑
j=n1+1

|bn1−t, j−t|

= hn1(A) + hn1−t(B),

and

ηn1(C) =

n1−1∑
j=1

|cn1, j|

|c j j|
η j(C) =

n1−1∑
j=1

|an1, j|

|a j j|
η j(A) = ηn1(A).

So,

(|ci0,i0 | − ηi0(C)) ·
(
|cn1,n1 | − hn1(C) + ηn1(C)

)
= (|ci0,i0 | − ηi0(C)) ·

(
|an1,n1 + b11| −

(
hn1(A) + h1(B)

)
+ ηn1(A)

)
= (|ai0,i0 | − ηi0(A)) ·

(
|an1,n1 | − hn1(A) + |b11| − h1(B) + ηn1(A)

)
> (|ai0,i0 | − ηi0(A)) ·

(
|an1,n1 | − hn1(A) + ηn1(A)

)
> (hi0(A) − ηi0(A)) · ηn1(A)

= (hi0(C) − ηi0(C)) · ηn1(C).

Case 3: For i ∈ S 3 = {n1 + 1, . . . , n}, we have

hi(C) =

i−1∑
j=1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j|
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=

n1−1∑
j=1

|ci j|

|c j j|
h j(C) +

|ci,n1 |

|cn1,n1 |
hn1(C) +

i−1∑
j=n1+1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j|

=
|bi−t,n1−t|

|an1,n1 + bn1−t,n1−t|
(hn1(A) + hn1−t(B)) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
h j−t(B) +

n∑
j=i+1

|bi−t, j−t|

=
|bi−t,n1−t|

|bn1−t,n1−t|
· hn1−t(B) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
h j−t(B) +

n∑
j=i+1

|bi−t, j−t| (by B21 = 0)

= hi−t(B).

It follows from B21 = 0 that

ηn1+1(C) =

n1∑
j=1

|cn1+1, j|

|c j j|
η j(C) =

n1−1∑
j=1

|cn1+1, j|

|c j j|
η j(C) +

|cn1+1,n1 |

|cn1,n1 |
ηn1(C) =

|bn1+1−t,n1−t|

|bn1−t,n1−t|
ηn1(C) = 0,

and for each i = n1 + 2, . . . , n,

ηi(C) =

i−1∑
j=1

|ci j|

|c j j|
η j(C) =

|ci,n1 |

|cn1,n1 |
ηn1(C) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
η j(C) = 0.

So, for all j ∈ S 3,

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
≥ (|ai0,i0 | − ηi0(A)) ·

(
|b j−t, j−t| − h j−t(B)

)
> 0 = (hi0(C) − ηi0(C)) · η j(C).

The conclusion follows from (2.3), Case 1–3. �

Next, we give some conditions such that C = A
⊕

k B for any k is an {i0}-Nekrasov matrix, where
A is an {i0}-Nekrasov matrix and B is a Nekrasov matrix. First, a lemma is given which will be used in
the sequel.

Lemma 2.1. Let A = [ai j] ∈ Cn1×n1 be an {i0}-Nekrasov matrix with i0 ∈ S 1 ∪ S 2 and B = [bi j] ∈ Cn2×n2

be a Nekrasov matrix, partitioned as in (1.1), k be an integer such that 1 ≤ k ≤ min{n1, n2}, which
defines the sets S 1, S 2 and S 3 as in (2.1), let t = n1 − k and C = A

⊕
k B. If arg(aii)=arg(bi−t,i−t) for all

i ∈ S 2, B12 = 0, and |ai j + bi−t, j−t| ≤ |ai j| for i , j, i, j ∈ S 2, then

hi0(C) − ηi0(C) ≤ hi0(A) − ηi0(A).

Proof. If i0 ∈ S 1, then it follows from the proof of Case I in Theorem 2.1 that hi(C) − ηi(C) = hi(A) −
ηi(A) for all i ∈ S 1, and thus hi0(C) − ηi0(C) = hi0(A) − ηi0(A).

If i0 ∈ S 2 = {n1 − k + 1, . . . , n1}, then from the assumptions and t = n1 − k we have

ht+1(C) − ηt+1(C) =


t∑

j=1

|ct+1, j |

|c j j |
(h j(C) − η j(C)) +

n∑
j=t+2
|ct+1, j| − |ct+1,i0 | if t + 1 < i0,

t∑
j=1

|ct+1, j |

|c j j |
(h j(C) − η j(C)) +

n∑
j=t+2
|ct+1, j| if t + 1 = i0,
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≤


t∑

j=1

|at+1, j |

|a j j |
(h j(A) − η j(A)) +

n1∑
j=t+2
|at+1, j| − |at+1,i0 | if t + 1 < i0,

t∑
j=1

|at+1, j |

|a j j |
(h j(A) − η j(A)) +

n1∑
j=t+2
|at+1, j| if t + 1 = i0,

= ht+1(A) − ηt+1(A).

Suppose that hi(C) − ηi(C) ≤ hi(A) − ηi(A) for all i < t + m, where m is a positive integer and
1 < m ≤ k. We next prove that ht+m(C) − ηt+m(C) ≤ ht+m(A) − ηt+m(A). Since

ht+m(C) − ηt+m(C) =


∑

j<t+m

|ct+m, j |

|c j j |
(h j(C) − η j(C)) +

n∑
j>t+m
|ct+m, j| − |ct+m,i0 |, t + m < i0,∑

j<t+m

|ct+m, j |

|c j j |
(h j(C) − η j(C)) +

n∑
j>t+m
|ct+m, j|, t + m ≥ i0,

≤


∑

j<t+m

|at+m, j |

|a j j |
(h j(A) − η j(A)) +

n∑
j>t+m
|at+m, j| − |at+m,i0 |, t + m < i0,∑

j<t+m

|at+m, j |

|a j j |
(h j(A) − η j(A)) +

n∑
j>t+m
|at+m, j|, t + m ≥ i0,

= ht+m(A) − ηt+m(A),

it follows that hi(C)− ηi(C) ≤ hi(A)− ηi(A) for all i ∈ S 2. Hence, hi0(C)− ηi0(C) ≤ hi0(A)− ηi0(A). The
proof is complete. �

Theorem 2.2. Let A = [ai j] ∈ Cn1×n1 be an {i0}-Nekrasov matrix with i0 ∈ S 1 and B = [bi j] ∈ Cn2×n2 be
a Nekrasov matrix, partitioned as in (1.1), k be an integer such that 1 ≤ k ≤ min{n1, n2}, which defines
the sets S 1, S 2 and S 3 as in (2.1), and let t = n1 − k. If arg(aii)=arg(bi−t,i−t) for all i ∈ S 2, A21 = 0, and
|ai j + bi−t, j−t| ≤ |bi−t, j−t| for i , j, i, j ∈ S 2, then the k-subdirect sum C = A

⊕
k B is an {i0}-Nekrasov

matrix.

Proof. Since A is an {i0}-Nekrasov matrix and i0 ∈ S 1, it is obvious that |ci0,i0 | > ηi0(C).
Case 1: For i ∈ S 1, since hi(C) = hi(A) and ηi(C) = ηi(A), it holds that for all j ∈ S 1 \ {i0},

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
> (hi0(C) − ηi0(C)) · η j(C).

Case 2: For i ∈ S 2, by the assumptions, we have

hn1−k+1(C) =

n1−k∑
j=1

|cn1−k+1, j|

|c j j|
h j(C) +

n∑
j=n1−k+2

|cn1−k+1, j| ≤

n∑
j=n1−k+2

|bn1−k+1−t, j−t| = h1(B).

Similarly, for i = n1 − k + 2, . . . , n1,

hi(C) =

n1−k∑
j=1

|ci j|

|c j j|
h j(C) +

i−1∑
j=n1−k+1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j|

≤

i−1∑
j=n1−k+1

|bi−t, j−t|

|b j−t, j−t|
h j−t(B) +

n∑
j=i+1

|bi−t, j−t|
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= hi−t(B).

And for i = n1 − k + 1, by A21 = 0,

ηn1−k+1(C) =

n1−k∑
j=1

|cn1−k+1, j|

|c j j|
η j(C) = 0,

implying that for all i ∈ S 2,

ηi(C) =

n1−k∑
j=1

|ci j|

|c j j|
η j(C) +

i−1∑
j=n1−k+1

|ci j|

|c j j|
η j(C) = 0.

So, for all j ∈ S 2,

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
> (|ai0,i0 | − ηi0(A)) ·

(
|b j−t, j−t| − h j−t(B)

)
> 0

= (hi0(C) − ηi0(C)) · η j(C). (2.4)

Analogously to the proof of Case 2, we can easily obtain that (2.4) holds for all j ∈ S 3. Combining
with Case 1 and Case 2, the conclusion follows. �

Example 2.2. Consider the following matrices:

A =


3 1 1 1
1 20 0 −2
0 0 10 2
0 0 2 4

 and B =


60 −15 −15 −15
−75 105 −45 0
−60 −60 120 −15
−15 −15 −15 45

 .
It is easy to verify that A is an {i0}-Nekrasov matrix for i0 ∈ S 1 = {1, 2} and B is a Nekrasov matrix,

which satisfy the hypotheses of Theorem 2.2. So, by Theorem 2.2, A
⊕

2 B is an {i0}-Nekrasov matrix
for i0 ∈ S 1 = {1, 2}. In fact, let C = A

⊕
2 B. Then,

C =



3 1 1 1 0 0
1 20 0 −2 0 0
0 0 70 −13 −15 −15
0 0 −73 109 −45 0
0 0 −60 −60 120 −15
0 0 −15 −15 −15 45


,

and from Definition 2.1, one can verify that C is an {i0}-Nekrasov matrix for i0 ∈ S 1 = {1, 2}.

Theorem 2.3. Let A = [ai j] ∈ Cn1×n1 be an {i0}-Nekrasov matrix with i0 ∈ S 1∪S 2 and B = [bi j] ∈ Cn2×n2

be a Nekrasov matrix, partitioned as in (1.1), k be an integer such that 1 ≤ k ≤ min{n1, n2}, which
defines the sets S 1, S 2 and S 3 as in (2.1), and let t = n1 − k. If arg(aii)=arg(bi−t,i−t) for all i ∈ S 2,
B12 = B21 = 0, and |ai j + bi−t, j−t| ≤ |ai j| for i , j, i, j ∈ S 2, then the k-subdirect sum C = A

⊕
k B is an

{i0}-Nekrasov matrix.
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Proof. Since A is an {i0}-Nekrasov matrix, it follows that if i0 ∈ S 1, then |ci0,i0 | > ηi0(C), and if i0 ∈ S 2,
then

ηn1−k+1(C) =


n1−k∑
j=1

|cn1−k+1, j |

|c j j |
η j(C) + |cn1−k+1,i0 |, n1 − k + 1 , i0,

n1−k∑
j=1

|cn1−k+1, j |

|c j j |
η j(C), n1 − k + 1 = i0.

≤


n1−k∑
j=1

|an1−k+1, j |

|a j j |
η j(A) + |an1−k+1,i0 |, n1 − k + 1 , i0,

n1−k∑
j=1

|an1−k+1, j |

|a j j |
η j(A), n1 − k + 1 = i0.

= ηn1−k+1(A).

Similarly, we can obtain that η j(C) ≤ η j(A) for all j ∈ {n1 − k + 2, . . . , n1}. Therefore,

ηi0(C) =

i0−1∑
j=1

|ci0, j|

|c j j|
η j(C) =

n1−k∑
j=1

|ci0, j|

|c j j|
η j(C) +

i0−1∑
j=n1−k+1

|ci0, j|

|c j j|
η j(C)

≤

n1−k∑
j=1

|ai0, j|

|a j j|
η j(A) +

i0−1∑
j=n1−k+1

|ai0, j|

|a j j|
η j(A)

= ηi0(A),

and

|ci0,i0 | = |ai0,i0 | + |bi0−t,i0−t| > |ai0,i0 | > ηi0(A) ≥ ηi0(C).

Case 1: For i ∈ S 1, proceeding as in the proof of Case 1 in Theorem 2.1, we have hi(C) = hi(A) and
ηi(C) = ηi(A), which implies that for all j ∈ S 1 \ {i0},

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
> (hi0(C) − ηi0(C)) · η j(C).

Case 2: For i ∈ S 2, by the assumptions, we have

hi(C) =

n1−k∑
j=1

|ci j|

|c j j|
h j(C) +

i−1∑
j=n1−k+1

|ci j|

|c j j|
h j(C) +

n1∑
j=i+1

|ci j|

≤

n1−k∑
j=1

|ai j|

|a j j|
h j(A) +

i−1∑
j=n1−k+1

|ai j|

|a j j|
h j(A) +

n1∑
j=i+1

|ai j|

= hi(A),

and

ηi(C) =


i−1∑
j=1

|ci j |

|c j j |
η j(C) + |ci,i0 |, i = n1 − k + 1, . . . , i0 − 1,

i−1∑
j=1

|ci j |

|c j j |
η j(C), i = i0, . . . , n1.
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≤


i−1∑
j=1

|ai j |

|a j j |
η j(A) + |ai,i0 |, i = n1 − k + 1, . . . , i0 − 1,

i−1∑
j=1

|ai j |

|a j j |
η j(A), i = i0, . . . , n1.

= ηi(A).

Hence, by Lemma 2.1, it follows that for all j ∈ S 2 \ {i0},

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C)

η j(C)
+ 1

)
> (|ai0,i0 | − ηi0(A)) ·

(
|a j j| − h j(A)

η j(A)
+ 1

)
> (hi0(A) − ηi0(A))

≥ (hi0(C) − ηi0(C)).

Case 3: For i ∈ S 3, similarly to the proof of Case 3 in Theorem 2.1, we show that for all i ∈ S 3,

hi(C) = hi−t(B), and ηi(C) = 0,

which implies that for all j ∈ S 3,

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
> (|ai0,i0 | − ηi0(A)) ·

(
|b j−t, j−t| − h j−t(B)

)
> 0

= (hi0(C) − ηi0(C))η j(C).

From the above three cases, the conclusion follows. �

Example 2.3. Consider the following matrices:

A =


9 −4 −1 −4
−1 10 −1 −2
−1 −2 4 −2
−2 −1 −3 7

 and B =


5 1 0.2 0
1 21 1 0
2 0.5 6.4 0
0 0 0 9

 ,
where A is an {i0}-Nekrasov matrix for i0 ∈ S 1 ∪ S 2 = {1, 2, 3, 4} and B is a Nekrasov matrix, and
they satisfy the hypotheses of Theorem 2.3. Then, from Theorem 2.3, we get that the 3-subdirect sum
C = A

⊕
3 B is also an {i0}-Nekrasov matrix for i0 ∈ S 1 ∪ S 2 = {1, 2, 3, 4}. Actually, by Definition 2.1,

one can check that

C =


9 −4 −1 −4 0
−1 15 0 −1.8 0
−1 −1 25 −1 0
−2 1 −2.5 13.4 0
0 0 0 0 9


is an {i0}-Nekrasov matrix for i0 ∈ S 1 ∪ S 2 = {1, 2, 3, 4}.

Theorem 2.4. Let A = [ai j] ∈ Cn1×n1 be an {i0}-Nekrasov matrix for some i0 ∈ S 2 and B = [bi j] ∈ Cn2×n2

be a Nekrasov matrix, partitioned as in (1.1), k be an integer such that 1 ≤ k ≤ min{n1, n2}, which
defines the sets S 1, S 2 and S 3 as in (2.1), and let t = n1 − k. If
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(i) arg(aii)=arg(bi−t,i−t) for all i ∈ S 2,
(ii) B12 = 0, hi(A) ≤ hi−t(B), ηi(A) ≤ ηi−t(B), and |ai j + bi−t, j−t| ≤ |ai j| for i , j, i, j ∈ S 2,

(iii) (hi0−t(B) − ηi0−t(B))(|ai0,i0 | − ηi0(A)) ≥ (|bi0−t,i0−t| − ηi0−t(B))(hi0(A) − ηi0(A)),

then the k-subdirect sum C = A
⊕

k B is an {i0}-Nekrasov matrix.

Proof. Due to A is an {i0}-Nekrasov matrix and i0 ∈ S 2, it follows from the proof of Case 2 in
Theorem 2.3 that ηi(C) ≤ ηi(A) for all i ∈ S 2, which leads to

|ci0,i0 | > |ai0,i0 | > ηi0(A) ≥ ηi0(C).

Case 1: For i ∈ S 1, it is obvious that hi(C) = hi(A) and ηi(C) = ηi(A). Hence, for all j ∈ S 1,

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C) + η j(C)

)
> (|ai0,i0 | − ηi0(A)) ·

(
|a j j| − h j(A) + η j(A)

)
> (hi0(A) − ηi0(A)) · η j(A)

≥ (hi0(C) − ηi0(C)) · η j(C). (2.5)

Case 2: For i ∈ S 2, it follows from B12 = 0 and |ai j + bi−t, j−t| ≤ |ai j| for i , j, i, j ∈ S 2 that
hi(C) ≤ hi(A), and thus for all j ∈ S 2 \ {i0}, (2.5) also holds.

Case 3: For i = n1 + 1 ∈ S 3, by the assumption, it follows that

hn1+1(C) =

n1−k∑
j=1

|cn1+1, j|

|c j j|
h j(C) +

n1∑
j=n1−k+1

|cn1+1, j|

|c j j|
h j(C) +

n∑
j=n1+2

|cn1+1, j|

≤

n1∑
j=n1−k+1

|bn1+1−t, j−t|

|c j−t, j−t|
h j(A) +

n∑
j=n1+2

|bn1+1−t, j−t|

≤

n1∑
j=n1−k+1

|bn1+1−t, j−t|

|c j−t, j−t|
h j−t(B) +

n∑
j=n1+2

|bn1+1−t, j−t|,

= hn1+1−t(B),

which recursively yields that for i = n1 + 2, . . . , n,

hi(C) =

i−1∑
j=1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j|

=

n1−k∑
j=1

|ci j|

|c j j|
h j(C) +

n1∑
j=n1−k+1

|ci j|

|c j j|
h j(C) +

i−1∑
j=n1+1

|ci j|

|c j j|
h j(C) +

n∑
j=i+1

|ci j|

≤

n1∑
j=n1−k+1

|bi−t, j−t|

|b j−t, j−t|
h j(A) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
h j−t(B) +

n∑
j=i+1

|bi−t, j−t|

≤

i−1∑
j=n1−k+1

|bi−t, j−t|

|b j−t, j−t|
h j−t(B) +

n∑
j=i+1

|bi−t, j−t|

= hi−t(B).
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Similarly, we have

ηn1+1(C) =

n1−k∑
j=1

|cn1+1, j|

|c j j|
η j(C) +

n1∑
j=n1−k+1

|cn1+1, j|

|c j j|
η j(C)

=

n1∑
j=n1−k+1

|bn1+1−t, j−t|

|a j j + b j−t, j−t|
η j(A)

≤

n1∑
j=n1−k+1

|bn1+1−t, j−t|

|b j−t, j−t|
η j−t(B)

= ηn1+1−t(B),

and for all i = n1 + 2, . . . , n,

ηi(C) =

i−1∑
j=1

|ci j|

|c j j|
η j(C)

=

n1−k∑
j=1

|ci j|

|c j j|
η j(C) +

n1∑
j=n1−k+1

|ci j|

|c j j|
η j(C) +

i−1∑
j=n1+1

|ci j|

|c j j|
η j(C)

≤

n1∑
j=n1−k+1

|bi−t, j−t|

|a j j + b j−t, j−t|
η j(A) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
η j−t(B)

≤

n1∑
j=n1−k+1

|bi−t, j−t|

|a j j + b j−t, j−t|
η j−t(B) +

i−1∑
j=n1+1

|bi−t, j−t|

|b j−t, j−t|
η j−t(B)

= ηi−t(B).

Hence, for all j ∈ S 3,

(|ci0,i0 | − ηi0(C)) ·
(
|c j j| − h j(C)

η j(C)
+ 1

)
> (|ai0,i0 | − ηi0(A)) ·

(
|b j−t, j−t| − h j−t(B)

η j(C)
+ 1

)
≥ (|ai0,i0 | − ηi0(A)) ·

(
|b j−t, j−t| − h j−t(B)

η j−t(B)
+ 1

)
> (|ai0,i0 | − ηi0(A)) ·

hi0−t(B) − ηi0−t(B)
|bi0−t,i0−t| − ηi0−t(B)

≥ (|ai0,i0 | − ηi0(A)) ·
hi0(A) − ηi0(A)
|ai0,i0 | − ηi0(A)

= hi0(C) − ηi0(C).

From Case 1, Case 2 and Case 3, we can conclude that C = A
⊕

k B is an {i0}-Nekrasov matrix. �

Example 2.4. Consider the following matrices:

A =


3 1 1 1
1 20 −2 −2
0 1 10 −1
−0.5 0.5 1 4

 and B =


9 4 1 0
−1 10 1 0
−1 −2 4 0
0 0 0 7

 ,
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where A is an {i0}-Nekrasov matrix for i0 = 2 and B is a Nekrasov matrix. By computation, we have
h1(A) = 3, h2(A) = 5, h3(A) = 1.25, h4(A) = 0.75, h1(B) = 5, h2(B) = 1.5556, h3(B) = 0.8667, h4(B) =

0, η1(A) = 1, η2(A) = 0.3333, η3(A) = 0.0167, η4(A) = 0.1767, η1(B) = 4, η2(B) = 0.4444, η3(B) =

0.5333, and η4(B) = 0, which satisfy the hypotheses of Theorem 2.4. Hence, from Theorem 2.4, we
have that A

⊕
3 B is also an {i0}-Nekrasov matrix for i0 = 2. In fact, let C = A

⊕
3 B. Then

C =


3 1 1 1 0
1 29 2 −1 0
0 0 20 0 0
−0.5 −0.5 −1 8 0

0 0 0 0 7

 ,
and one can verify that C is an {i0}-Nekrasov matrix for i0 = 2 from Definition 2.1.

3. Conclusions

In this paper, for an {i0}-Nekrasov matrix A as a subclass of S -Nekrasov matrices and a Nekrasov
matrix B, we provide some sufficient conditions such that the k-subdirect sum A

⊕
k B lies in the

class of {i0}-Nekrasov matrices. Numerical examples are included to illustrate the advantages of the
given conditions. The results obtained here have potential applications in some scientific computing
problems such as matrix completion problem and the convergence of iterative methods for large sparse
linear systems. For instance, consider large scale linear systems

Cx = b. (3.1)

Note that if the coefficient matrix C in (3.1) is an H-matrix, then the iterative methods of Jacobi
and Gauss-Seidel associated with (3.1) are both convergent [29], but it is not easy to determine C
as an H-matrix in general. However, if C is exactly the subdirect sum of matrices A and B, i.e.,
C = A

⊕
k B, where A and B satisfy the sufficient conditions given here, then it is easy to see that C is

an {i0}-Nekrasov matrix, and thus an H-matrix.
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