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Abstract: In this paper, we study a boundary value problem consisting of Hahn integro-difference
equation supplemented with four-point fractional Hahn integral boundary conditions. The novelty of
this problem lies in the fact that it contains two fractional Hahn difference operators and three fractional
Hahn integrals with different quantum numbers and orders. Firstly, we convert the given nonlinear
problem into a fixed point problem, by considering a linear variant of the problem at hand. Once
the fixed point operator is available, we make use the classical Banach’s and Schauder’s fixed point
theorems to establish existence and uniqueness results. An example is also constructed to illustrate
the main results. Several properties of fractional Hahn integral that will be used in our study are also
discussed.
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1. Introduction

The topic of fractional differential equations has gained considerable attention and has evolved as an
interesting field of research, mainly due to the fact that the tools of fractional calculus are found to be
more practical and effective than the corresponding ones of classical calculus in the mathematical
modeling real wold problems. In fact, fractional calculus has numerous applications in various
disciplines of science and engineering such as mechanics, chemistry, biology, economics, electricity,
control theory, signal and image processing, regular variation in thermodynamics, biophysics,
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aerodynamics, viscoelasticity and damping, etc. For the basic theory and applications of fractional
calculus, as well as for some recent developments in the field we refer to [1]-[9] and the references
cited therein.

Many physical phenomena are described by equations involving non-differentiable functions, e.g.,
generic trajectories of quantum mechanics [10]. The substitution of the classical derivative by
a difference operator, which allows to deal with sets of non-differentiable functions, give rise to
the so-called quantum calculus. Many different types of quantum difference operators appeared
in the literature, for example h-calculus, g-calculus, Hahn’s calculus, forward quantum calculus
and backward quantum calculus. These operators have applications in orthogonal polynomials,
basic hypergeometric functions, combinatorics, the calculus of variations, particle physics, quantum
mechanics and the theory of relativity (see [11]-[24] and the references therein for some applications
and new results of the quantum calculus).

Recently, many researchers have extensively studied calculus without limit that deals with a set
of non-differentiable functions, the so-called quantum calculus. Many types of quantum difference
operators are employed in several applications of mathematical areas such as the calculus of variations,
particle physics, quantum mechanics and theory of relativity (see [12]-[24] and the references therein
for some applications and new results of the quatum calculus).

In this paper, we study the Hahn quantum calculus that is one type of quantum calculus.
W. Hahn [25] introduced the Hahn difference operator D, in 1949 as follow:

fatw)-f@ @
g-D+w 0

v () 7
The Hahn difference operator is a combination of two well-known difference operators, the forward
difference operator and the Jackson g-difference operator. Notice that

D,.,f(t) =A,f(t) wheneverqg =1,
D, ,f(t) =D,f(t) whenever w = 0,
D,.,f(t)=f'(t) wheneverg=1w— 0.

The Hahn difference operator has been employed to construct families of orthogonal polynomials
and investigate some approximation problems (see [26]—[28] and the references therein).

In 2009, K. A. Aldwoah [29,30] defined the right inverse of D, , in the terms of both the Jackson g-
integral containing the right inverse of D, [31] and Norlund sum contaning the right inverse of A,, [31].

In 2010, A. B. Malinowska and D. F. M. Torres [32, 33] introduced the Hahn quantum variational
calculus. In 2013, A. B. Malinowska and N. Martins [34] studied the generalized transversality
conditions for the Hahn quantum variational calculus. Later, A. E. Hamza and S. M. Ahmed [35, 36]
studied the theory of linear Hahn difference equations, and investigated the existence and uniqueness
results for the initial value problems for Hahn difference equations by using the method of successive
approximations. Moreover, they proved Gronwall’s and Bernoulli’s inequalities with respect to the
Hahn difference operator and established the mean value theorems for this calculus. In 2016, A. E.
Hamza and S. D. Makharesh [37] investigated the Leibniz’s rule and Fubini’s theorem associated
with Hahn difference operator. In the same year, T. Sitthiwirattham [38] considered a nonlinear Hahn
difference equation with nonlocal boundary value conditions. In 2017, U. Sriphanomwan et al. [39]
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considered a nonlocal boundary value problem for second-order nonlinear Hahn integro-difference
equation with integral boundary condition.

In 2010, J. Cermdk and L. Nechvatal [40] proposed the fractional (g, h)-difference operator and
the fractional (g, h)-integral for ¢ > 1. In 2011, Cermdk et al. [41] studied discrete Mittag-Leffler
functions in linear fractional difference equations for g > 1, and M. R. S. Rahmat [42, 43] studied the
(g, h)-Laplace transform and some (g, h)-analogues of integral inequalities on discrete time scales for
g > 1. In 2016, F. Du et al. [44] presented the monotonicity and convexity for nabla fractional (g, h)-
difference for g > 0, g # 1. However, we realize that Hahn difference operator requires the condition
0 < g < 1. Therefore, to fill the gap, T. Brikshavana and T. Sitthiwirattham [45] have introduced the
fractional Hahn difference operators for 0 < g < 1.

In quantum calculus, there are apparently few research works related to boundary value problems of
fractional Hahn difference equations (see [46]—[48]). Motivated by the above discussion, to fill the gap
on contributions concerning boundary value problems of fractional Hahn difference equations, the goal
of this paper is to enrich this new research area. So, in this paper, we introduce and study a four-point
fractional Hahn integral boundary value problems for fractional Hahn integrodifference equation of the
form

DY u(t) = F|tu(), ¥ u®). 0, uw)|, te Iqu,
W) = G+ T, giun),  Em ey, —{wo, T), &>, (1.1)

uT) = ¢(u)+ /lzfpz 0, Q2mu(m),  m €1, —{w, T},

where Iiw = {¢"T + wlkl, : k € No} U{wo); @ € (1,21, B1,B2y,v € (0,11, w > 0, p1,pa,q,r,m €
O, D, pr =¢% pr=4q¢",r =q, m=¢g% ab,c,d € N, 6 :a)(lm) 0, = (]1__’;2),/):
w(iZ), x = w(12), W,k € R, F e CII, x RXRXR,R), g1,82 € C(I1,,R*) and given
functions, ¢;,¢, : C(I},,R) — R are given functlonals, and for ¢ € C(I], x I ,[0,0)) and ¢ €
C(IT xIT [0, )), we define

my my’

q.w’

1
(7)

V() = (Ipu)n) = o f (r a,p<s>) Pt 5) U(S) dr,

T, ’Xu(t)

(D}, u)) = ~ O (9))] w<r $) () dyyS.

m(_ )

We emphasize that our problem contains two fractional Hahn difference operators and three
fractional Hahn integrals with different quantum numbers and orders. To the authors’ best knowledge,
this is the new development on the topic as the quantum number and order of the problems studied in
the literature are the same.

We aim to show the existence and uniqueness of a solution to the problem (1.1) by using the Banach
fixed point theorem, and the existence of at least one solution by using the Schauder’s fixed point
theorem. In addition, an example is provided to illustrate our results in the last section.

The rest of this paper is organized as follows: We present our existence and uniqueness result in
Section 3, and our existence result in Section 4, while Section 2 contains some preliminary concepts
related to our problem. An example is constructed to illustrate the main results in Section 5. Finally,
Section 6 is a conclusion section.
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2. Preliminaries

In this section, we briefly recall some definitions and lemmas used in this research work. In this

work, we use the Banach space C = C ( 20’ R) of all function u with the norm defined as

lullc = llull + 11D5,  ull,

where [|ul| = max {|u()]} and D}, ,ull = max {|D;, u(@)}.
rell, [

Let g € (0, 1), w > 0. We define the notations

l-q" T11-4¢
nly= g ="'+ kgl and [n]q!::l;[l_q, neR.

The forward jump operator and the backward jump operator are defined as

t— wlk]
ok () = gt + wlk], and pf @) = T‘f for k € N.

The g-analogue of the power function (a — b)g and the g, w-analogue of the power function (a — b)g’w
withn e Ny :=1[0,1,2,...], a,b € R are defined as

n—1
(@a-byg:=1, (a=b):=]|@-bd),
k=0

n—1

(@=-bgo=1, (a=bfju:=| [|a- b +wlkl)],

k=0

respectively.
In generally, if @ € R, we get

(a—b);’:aﬂl_( a#0,

=0 qa+n

Lo l- (z:_zg) gt

Note that ag = a“, (a — wy)g, = (@ — wp)?, and (0); = (wy)y,, = 0 for @ > 0. The g-gamma and
g-beta functions are defined as

(2)a
)

(a=bYy, = (@—w)" =(a-w) - -w) . at .

(1-q)
Fq(X) W, xeR\{0,-1,-2,...},
ro _ I,(x),(s)
o =101 _ s—1 _tq q
B,(x,s) = fo N1 = gry,dyt = Tars

respectively.
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Definition 2.1. For g € (0,1), w > 0 and f defined on an interval I C R which containing wy := %{,
the Hahn difference of f is defined as

f(gt +w) - f(1)
Hg-—1+w

and D, f(wo) = f'(wy), provided that f is differentiable at wy. We call D, f the q, w-derivative of f,
and say that f is q, w-differentiable on I.

D,,f() = for t # wy,

The Hahn difference operator has the following properties:

Lemma 2.1. [30] Let f,g : I — R are q, w-differentiable on I. Then we have:

(]) Dq,w[f(t) + g(t)] = Dq,wf(t) + Dq,wg(t)-

(2) Dq,a)[a/f(t)] = a/Dq,wf(t)~

(3) Dyl f(8()] = f(1)Dg8(1) + g(qt + W)Dy ., f(1).
(4) qu [f(t)] _ g(t)Dq,wf(t) - f(t)Dq,wg(t)

g | g(Dg(gt + w)
Definition 2.2. Let I be any closed interval of R that contains a,b and wy. If f : I — R is a given
function, we define the q, w-integral of f from a to b by

b b a
f FOdyot = f FOdy ot f FOd,ot,

FOdgot = [x(1 - q) - w] )" " f(xg" + wlkl,), xel,
0 k=0

where

—

W

and the series converges at x = a and x = b. We say f is q, w-integrable on [a, b] and the sum to the
right hand side of this equation is called the Jackson-Norlund sum.

Notice that the actual domain of function f is defined on [a, b],,, C I.
Next, we introduce the fundamental theorem of Hahn calculus.

Lemma 2.2. [29] Let f : I — R be continuous at wy and define

F(x) = f fd,ut, xel
wo
Then, F is continuous at wy. In addition, D, ., F(x) exists for every x € I and

Dy F(x) = f(x).
Conversely,

b
f D, F(t)d,,t = F(b)— F(a) forall a,b € 1.

Lemma 2.3. [38] Let g € (0,1), w > 0and f : I = R be continuous at wy. Then

! r ! !
f f x(s)dy,sdg,r f f x(8)dyordy,s.
wo Y wo wy vV gstw
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Lemma 2.4. [38] Let g € (0,1) and w > 0. Then
(t — wp)’

! !
f dywS=1—wy and f [t —0gu($)]dgws =
wo 1+

wo

Now, we give the definitions of fractioanal Hahn integral and fractional Hahn difference of

Riemann-Liouville type, as follows:
— R, the fractional Hahn integral is defined by

Definition 2.3. Fora,w >0, g€ (0,1) and f : .

1 o
L0 = 7 | (- Tg(8))go f(9)dys
[t -¢q) -w] . 0
F@ Z ~o o) f(aq,w(t)),
and (I5,f)(t) = f(2).
T — R, the fractional Hahn difference of the

Definition 2.4. For a,w > 0, g € (0,1) and f :
Riemann-Liouville type of order « is defined by

Dy, f(0) (DyoLya" N

q,w™ q,w

1
- o fw O(I—O'qw(s)) = (5)d s,

and D)), f(1) = f(1), where N—1 <a <N, N €N.

Lemma 2.5. [45] Letting a > 0,9 €(0,1),w>0and f: o R
T% D f(t) = f() + Ci(t — wo)™ ' + ...+ Cn(t — wp)™™

q.w" q.w
forsome C;eR,i=1,2,...,N and N-1<a <N,NeN.

Next, we give some auxiliary lemmas to use in simplifying calculations

Lemma 2.6. [45] Let a,8>0, p,q € (0,1)and w > 0,
(t — wp)”

(i f (- ) s = g

(id f (1= 00u®). (5 = 0 s = (¢ = 0 BB + 1,0

wo
Lemma 2.7. Let a,B,v>0,neN, g,y € (0,1), o,m > 0and y = w( )Then

(i) f (- O'qw(s)) (s — wo) " dyys = (t — wo) P "By —n+ 1,B),

wo

Volume 7, Issue 1, 632-650.
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(id) f (1-0uu®), s = w0) " dys = (1 — o)™ "By —n + 1,-v),

—y-1 1
€11)) ff (TmX(x) . (x O'qw(s)) dy S dyyX

_ (t — wo)™™”

[a],

B, (a+1,-v).

Proof. From the definition of ¢, w-analogue of the power function and Definition 2.3, we obtain

0] f (1= Guu®) (5= 00" dys

—n

= (t- Pl —q)Zq ) g - o)’

— (l _ wo)a’"'ﬁ—” (1 _ q) Z qi (1 l+1)7 i(a—n)
i=0
=(t— wo)"™* ™" B(a—n+1,p).

Similarly, we obtain (ii).

(ii7) f[ fx (t - O'm,X(x))f(x - O'Q,w(s)):’;w1 dywS Ay x
= f’ (t_o-m’)((x));‘;l[fx(x O-qw(S)) = qws]dm’)(x

wo wo

1 !
= @ LO (t o-mX(x)) (x wo)" dpyx
_ - @)™ _[;’]Oq)a B+ 1,-).

O
The following lemma, dealing with a linear variant of problem (1.1), plays an important role in the
forthcoming analysis.

Lemma 28. Let Q # 0, w > 0, g € (0,1), a € (1,2], andfori: 1,2, 6, > 0, B; € (0,1],
pi € 0.1), pi=q" m €N, 6 = w(£L), 4 €R*; heCUL,.R). g.8 € C(

functions, ¢y, ¢, : C(IL 1.0 R) = Rare given functionals. Then the problem

M )
o qw,R ) are given

Dy u(t) = hr), tel]

qw’
w@ = G+ I , giutn),  Em el —{w,Th, &>, 2.1
uT) = ¢(u) + /lzfp2 0,82mu(m),  m €1, — {w,T),

has the unique solution
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Lt(t) T ( ) — Oy, w(s) ]’l(S) dqws
— a-1
%(BTﬂzof’m [¢l, h] — B‘f»’]lOTJ]z [¢2’ h])
— a-2
B %(AT’UZO&UI [¢1 ’ h] - A";JIIOTJIZ [¢2, h])’

where the functionals Og,,, [¢1, hl, Or,,[¢2, h] are defined by

PN ~ a1 A
Ofﬂh [¢1,h] :=¢1(0) Fq((l) fa: ('f O'q,w(S))q’w h(s) dq,wS + Fq(a)Fpl(,Bl)X

N e pi-1 a-l
(771 — O 0, (S))ﬂ (x - O'q,w(S))qw 81(0)h(s) dy s dp, 6.,
wo wo ’ ’

Orp,[¢2, h] = ga(u) —

1 fT T = o)) h(5) s + ——2——x
Ty(@) # g TR T ()T, (Ba)
f f b= ) (x- aqw(s)) 82(N(8) dyg 5 dp, .,

and the constants A¢ y,,,Aty,, Bey,, Br,,, and Q are defined by

A T

Aé"Jll = (f — (J,)Q)a_l - Fpl(lﬂl) ( — Opy, 91(5)) gl(s)(s - (UO) p1 015>
A 112

Arp =T =00 = =5 | (=0 0O 8255 = @0) dpy

A Uil Bi-1
—(E_ -2 _ 1 _ L _ a-2
B§J71 T (g (1)0) Fpl(ﬁl) jﬂ:o (771 0-[71,91('3)>p|’61 gl(S)(S (1)0) dP1,91Sa

Br,, = (T - wy)* % - =
T2 ° sz(ﬁZ)
Q:=AgyBry, —Ar,;,Bey,

Proof. Taking fractional Hahn ¢, w-integral of order « to (2.1), we obtain

1) = C1lt = 0™ + Calt = ) +

! (t O'qw(s))gh(x) dyws.
Ly(@) Ju,

Next, we take fractional Hahn p;, 6;-integral of order §;, i = 1,2 to (2.10) to get

!
. Bi_l a— a—
Iﬁ’iﬁiu(t) = f (t = 0p6(9),0 [Ci(s — wo) P+ Cols — w0) ) dygs

1
sz (ﬁl

T (@r (ﬂ)f f (t=0p0 (x))pe(x O'qa,(s))a;h(s)d wSdp X,
gL (b

Substituting i = 1 into (2.11) and employing the first condition of (2.1), we have

Aen C1+Be Cy = Ogyp 1, hl.

2 Br-1 o
[ (= o) x50 - 00 ds
wo

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

2.7)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)
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Taking i = 2 into (2.11) and employing the second condition of (2.1), we have

AT,T]ZCI + BT,UZCZ = OTJ]z [¢2, h],

(2.13)

where O, [¢1,h], Or,, (02, h], Agyy, s A7y Be . Bry, and Q are defined as (2.3)—(2.9), respectively.

The constants C; and C, are revealed from solving the system of equations (2.12) and (2.13) as

BT?UZO&TII ’ [¢1’ h] - Bf,TnOTJn’ [¢27 h]
Q

Aé:,ﬂloT,nz’ [¢2’ h] - AT,nzof,m s [¢1 5 h]
Q .

C

and C,

Substituting the constants Cy, C; into (2.10), we obtain (2.2).

On the other hand, it’s easy to show that (2.2) is the solution of problem (2.1), by taking fractional

Hahn ¢, w-difference of order a to (2.2), we get (2.1).

3. Existence and uniqueness result

O

In this section, we show the existence and uniqueness result for problem (1.1). In view of

Lemma 2.8 we define an operator A : C — C as

1 ! a—1
(Au)(t) := @ f (t - O'q,w(S))qj F [s, u(s), ¥7 u(s), T;Wu(s)] dyws
q wo ’
(1 — wp)™™! . .
g (BrnO%, 61 Fi] - B, O, 100, F)
f— -2
- %(AT,TIQO;JII [¢19 Fu] - Af,mo;‘,m [¢2, Fu]),

where the functionals O;m [¢1, F.], O’}m [¢,, F,] are defined by

1 : a-
Ocp 191, Ful 1= 1) = s f (£- aq,w(s>);f F |5 u(s), 92, u(s), ), u(s)| dyos
q wp ’

4 "o Bi-1 a1
"L @T,, (B fw 0 fw 0 (m = Tpa®) (= Tul®), 100X
F [s, u(s), Y7 ,u(s), T,Vn,Xu(s)] dg.wsdy 0 X,
1 r a—1
Oiplda Ful = 420) = s f (7 = 4l®),, F 5.0, ¥7,us). Y, u(5) | dyos
q wp ’

A L fo-t a1
+ m fwo fa:() (772 - O'pz,ez(s))mﬁz (X - O-q,w(s))q’w g2 (x)X
F [s, u(s), ¥ u(s), ‘I’;wu(s)] dywSdy, g,x,

rp

and the constants A;,,, Az,,, B¢, . Br,, and Q are defined by (2.5)-(2.9), respectively.

Obviously the problem (1.1) has solutions if and only if the operator A has fixed points.

3.1

(3.2)

(3.3)

AIMS Mathematics Volume 7, Issue 1, 632—-650.
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Theorem 3.1. Assume that F : I;w X RXRXR — R is continuous, ¢ : pr X IT — [0,00), ¥ :

rp

I X 1If = [0, 00) are continuous with ¢y = max {¢(t, s) : (t,5) € I7, X IT } and o = max {y(z, s) :

my
(t,s) € I, x I, }. In addition, assume that the following conditions hold:

(H,) There exist positive constants €y, {,, {3, such that for each t € I;w and u;,v; R, i=1,2,3,
|F (2, ur, uz, uz] = F [t,v1,v2, V3] | < blur =i + Goluz = vo| + G3fus — w3,

(H;) There exist positive constants T, T, such that for each u,v € C,

g1 (1) — (W < Tillu—vlle  and () — po(V)| < Tollu — V.

(H3) There exist positive constants g;,G;, i = 1,2, such that for each t € I;w,

gi < gi(H) <G,
(H4) = =LX+ T1®;~J72 + T2®;JII <1,
where
(T — wo)” (T — wy)™
= O+ bhpg——— + Gipp———,
LA TN Aoy

X = [(T —wo)" (T —wy)"™”

T a+1) Dhla—v+l) o Tm T 20w &m]

1 (m — wo)™P T, (@ + 1)
D = — - Y+ 4G ;
e L e sy sy
1 (12 — W)™ P, (@ + 1)
10)) = —— (T = wp)* + 1,G )
T = e [T e RGO e
®j§<—‘,m = ®§Jll + ®§J71’
6;’772 = ®TJ]2 + ®TJI2’
1 a— a—
Ociy 1= ey (T = w0)™ max|Bey | + (T = o)™ max W]
= 1 (T - wO)a_V_lrm(a')
® = B
én = in |Q|[ Ty  maxiBel
(T — w)* Tyl - 1)
+
Ta—v-n  maxdenl)
1 a— a—
Oy, = (T = wo)*™" max Bz, | + (T = w0)*> max |Ar,,||
— 1 [(T = w)*™ ()
® = B
T T hin |Q|[ Ty  maxiBrl
(T — w)* Tyl - 1) max Ay |
X .
[u(@—v—1) T

Then problem (1.1) has a unique solution in I;w.

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)
(3.9)

(3.10)

(3.11)

(3.12)

(3.13)
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Proof. For each t € I] , we have

bo
r( )

F(y) |u—v||f T 0',p(s) dps

_ ¢ (T — wy)”
= Torn ol

qupu(t)—\yzpv(t)‘s f (r- a,p(s)) U (s) = v(s)| dyps

IA

Similarly, for each z € IT | we obtain

myy°

o (T - wO)_V”u _ v”
Lu(1=v) '

T, 1(0) = 0, (1) <
To show that F' is contraction, we denote that

Flu = vI(0) = |F [t u(e), ¥,0), 0, ()] = F 1,900, %20, 05, v0)] |,

foreach r € I] , and u,v € C. We find that

[¢1’ Ful- 02,771 [¢1’ F,]
1
Ly )f(f Gq‘”(s)) Flu—vI|(s)dgws +

71
ffm Gp]el(S)) ( qw(S)) §1(OF |u = vI(s) dgoS dp, 9, %

1
_—X
Fya+1)

<1o1@) = hiWl + ¢

IA

tillu = vllo + (G1fu = v| + &

—_ g
rpH lPr,p

\4 \4
+ {3 Dm,)(” - Dm’Xv|)

(1 = wo)**PT (@ + 1)
FPl(a +:81 + 1)

(T — wy)’ (T = wy)™

T S L

[(f —wp)" + 4,Gy

IA

Tillu = vllc + [51 + {0

IA

[T + L‘Df,m]”“ —Vle.

Similarly, we get

l@2, Ful = 07, [, FL]| < [12 + LOr, |l = Ve

Next, we have

|(Aw)() — (AV)D)|

1 ' (T — wy)*!
T, (@) Jo, (T O-qw(s)) Flu —vI(s) dy s + |Tlo

+{1Bz..| 05, [¢2. F.] = 05, (62, F]

O;JII [¢1’ Fu] - O;JII [¢19 Fv] + |B§,771

}

A 9
Ly()l,, (B1)

(3.14)

(3.15)
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(T —w )a—z . .
—|Q|° (1A71|0%, (01, Ful = O, [61, Fu| + Ay X

07,42, Fl = O, (62, F,|}

LT —wo) [Tl + ﬁq’f,m]
= | T,@+1) min Q]

{ max [By.,,I(T = wp)"™" + max |A7,,,[(T = wy)* 2}

[T2 +L q)Tm]

min |Q| {max Be,, (7' = w)*™" + max|A,, (T - wo)“‘z}]llu ~le

(T — wo)”
= {L [m + @, Or, + D1, O

+ Tl@TJ]z + T2®§,m}||u - V”C- (316)

Taking fractional Hahn m, y-difference of order v to (3.1), we obtain

(D, ﬂu)(t)

—v=1 a=1
T (a)rm< v)f f =T, (¥ 0au®) X

F [0 W3,u(5), 3, (5)] iy 6+ G =5

(B7nO%, (61, Ful = B, Oy, (62, F1) f [ (1= o), S (5 = 00)" s

wo
1

_m(Arm e 11, Ful — Agy, T;n[‘ﬁz,F])

f (t - O'm)((s)) (s — wp)* 2 dpyS. (3.17)

wp
By the same expression as above, we obtain

Dy AU)@) = (D, AV)(?)|

- {L[ (T — w)* T+ 1)
Fp@-v+ DIy(a+1)

X lu = vl

+ (Df’m@T,nz + (DTJn@th

+ 1,07, + r@,nl} (3.18)

From (3.16) and (3.18), we get

1A = AVle < [LX + 7105, + 120}, |l = viie = Ellu = vllc.

T

By (H,4) and Banach fixed point theorem, we get that A is a contraction and hence A has a fixed
point. Consequently problem (1.1) has a unique solution of on I;w. O

4. Existence of at least one solution
In this section, we prove an existence result for the problem (1.1) via Schauder’s fixed point theorem.
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Lemma 4.1. [49] (Schauder’s fixed point theorem) Let (D,d) be a complete metric space, U be a
closed convex subset of D, and T : D — D be the map such that the set Tu : u € U is relatively
compact in D. Then the operator T has at least one fixed point u* € U: Tu* = u".

Theorem 4.1. Suppose that (H,), (H3) and (Hy) hold. Then, problem (1.1) has at least one solution
onl! .
q,w

Proof. The proof is organized into three steps as follows:

Step I. A maps bounded sets into bounded sets in Bgx = {u € C : ||ullc < R}. Let max |F(2,0,0,0)| =
tell,

sup |¢;(u)| = N;, i = 1,2 and choose a constant

ueC

MX+N1 77 +N2®;771
R > T 71X . “4.1)

Letting

|F (t,u,0)| = ‘F[t u(®), ¥, u(0), ¥, u(®)] - F[t,0,0,0]| + |F[t,0,0,0]|

for each r € IT , and u € Bg, we obtain

o1
1 a-
T ( ) f ('f - O-q,w(s))il |7:(S, u, 0)| dq,ws

F(a)rpl(ﬂl) wof m - 0'1719(5) (x O'qw(S)) gl(x)|?'(su0)|dwsdplex

< N +

(T - wo)y (T — wy)™
< Ny +| |6+ pp—2 =Y Nl + M|
< N ( 1+ Lo T+ D) + 4o T el ) £
< Ny + (Llullc + M) D, 4.2)
Similarly,
O7 p,[#2, ]| < Ny + (Lllullc + M) @r,. (4.3)
Then, we have
— wo)*
(A @) < (Lllulle + M) 01) D Ory + O Oy | + N1Ory, + NoO,,,  (44)
and
(DA Ll + M ‘”O)W + @, Oy, + Or,,0
oy M) (f)| (Lllulle + ) v+ D) em OT i T P O,
+ N1®T’,]2 + N2®§JI1 . (45)

From (4.4) and (4.5), we obtain || Aullc < R. Hence A is uniformly bounded.
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Step II. By the continuity of F, the operator (A is continuous on By.

Step III. Next, we show that (A is equicontinuous on Bg. For any 7,1, € I;w with #; < t,, we have

(A1) — (At

i = w0 = - o

'(12 —we)* = (1 - wo)a_l‘

|Q| {lBTJ]zl OZ‘J]] [¢l’ Fu] ¢2’ F]|}
'(fz —wp)* 2 = (t - wo)a_z‘
+ o (A7 110z, (61, Ful| + &gy 1|05, (02, F1]
and
(D Fu)(ty) = (D), Fu)(t)|
”F”rq(_y) a-v _ _ a-v
Tona—v+D) |(f2 — wy) (t1 — wo)
L@l y(=v)
|QIT,(—v)C, (@ — v){l 102 (91, Full + Bel|Or, 02, Flx
‘(lz — W) = (1) = wp)* !
[y(a— DI(-v) .
QI (I — v - 1){'AT””' Oen 91 Full + g [0, [0 FI]

‘(fz — W) = (t — wp) 2.

(4.6)

4.7)

Clearly the right-hand side of (4.6) and (4.7) tend to be zero when |t, — t;| — 0. So A is relatively

compact on Bg.

Hence the set # (Bg) is an equicontinuous set. As a result of Steps I to III and the Arzeld-Ascoli
theorem, we can conclude that A : C — C is completely continuous. By Schauder’s fixed point

theorem, we obtain that problem (1.1) has at least one solution.
5. Example

Consider the following fractional Hahn integro-difference equation

1 “3t+1 (.2 —(7+sin? z)
— 2 T+S1In~ 7T
u“t) = 00T+ Iu(t)l)[e (1 +20u) + e

oo\—- =

Z
’6

(t)‘

_i_e—(27r+cos2 nit)

'1'4 u(t)” tel“’2
2°3

with four-point fractional Hahn integral boundary condition

15 : 699055\ (699055) < Cilu(®)
=10e 73 ,ul2 10
M(S) T u( Hsm524288) u(524288)+ 2T ) " 73300

5
164

O

(5.1)
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(10),

1 65549\° (65549\ < Difu(r)|
10) = —1I° .
ut0) = 10,1 3‘”(”+C°S 49125) ”(49125)+ Triay €7

10r =53

where (, 5) = N W(t,s) = and C;, D; are given constants with <2 Ci < Too5 and

(4203 (z+30)2 10013
1 s3] b
02 = Zi=o D E 20062 1 2 1 1 1 1 1 1 1
Hege @ = §7 ﬁl = 3§ ﬁ 7§ 7 = Ea Vv = Z’ q = %’ pl = E, p2 = i r = 8’ m = Z’
w = §9 91 = Za 91 - _4 p 63 X = 1’ Wy = li)q = 37 T = 10’ é‘: (10) - 8’ 771 =
5 _ 699055 _ _ 65549 _ _ 1 _ v Cilu() _
0-%’%(10) T~ 524288° M = 0-3712’%(10) — 49125° /11 - 106, /12 = 10n° ¢1(M) - Zi:O L+u()|? ¢2 -
oo Djlu(t; : 2 2
Yoo Ml () = (e+sint)’, g(f) = (m+cost)’, and F(t u(t), Whpu(0), T, u(t)) =
1
1 341 (2 —(7+sin? 1) p2 —(2n+cos? nit) i
—(100n2+t3)(1+w)|)[e (s + 20u) + ¥y )| +e T u() |

Forall t € 1'%, and u,v € R, we have
2°3

‘F (t, u, ‘I‘Zpu, 'Y';wu) -F (t, v, ‘PZ’pv, T;Wv)‘
1 1
er((4) + 100)

e’ ((‘3—‘)g + 1007r2)
+ |D,Vn,Xu - D,Vn’)(v| .

1
e ((%)3 + 100772)

‘I”’u—‘Py

rp

lu —v| +

Thus, (H;) holds with £; = 0.0000503, ¢, = 0.00004367 and ;3 = 1.8876 x 107°.

For all u,v e C,

|#1() = ¢1 (V)| =

llu —vllc,
100 (%)’ e

|¢2(u) = ¢o(v)| =

N = .

200(3)

So, (H,) holds with 7; = 0.011468 and 7, = 0.0066268.
Moreover, (H3) holds with g; = 19.6831,G| = 41.4294, g, = 4.5864 and G, = 17.1528.
We can find that
|Agn | < 1.27503, |Ary,| <2.05422, [Bg,, | <61548.5314, [Bs,,| <0.08082
and |Q[ > 60067.4763.
Also, we can show that

£=0.0000503, @, =0.39607, ®r,, =15.96844,
@, =2.10473, O, =125309, Or,, =0.0000357, O, =0.00001716,
@;, =3.35782, ©;, =0.00005286, and X=79.7178.
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Hence, (H,) holds with
== 0.02626 < 1.

Therefore, by Theorem 3.1, problem (5.1) has a unique solution. Moreover, by Theorem 4.1, this
problem has at least one solution. O

6. Conclusions

In the present research we considered a boundary value problem for Hahn integro-difference
equation subject to four-point fractional Hahn integral boundary conditions. Notice that the problem
at hand contains two fractional Hahn difference operators and three fractional Hahn integrals with
different quantum numbers and orders. We note that if we let ¢ = r = m = p; = p, and
w = p = 0; = 6,, our results reduce to the results obtained in [46]— [48]. After proving an auxiliary
result concerning a linear variant of the considered problem, the problem at hand is transformed into
a fixed point problem. Existence and uniqueness results are established via Banach’s and Schauder’s
fixed point theorems. The main results are illustrated by a numerical example. Some properties of
fractional Hahn integral needed in our study are also discussed. The results of the paper are new and
enrich the subject of boundary value problems for Hahn integro-difference equations. In the future
work, we may extend this work by considering new boundary value problems.
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