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1. Introduction

Quantum calculus initiated at the beginning of the twentieth century, is the calculus without the
limits, see [1-5]. As well as known, many pratical problems can be reduced to the g-difference
equations boundary value problems (BVPS), therefore the g-difference equations become a very
interesting field in difference equations and gain widespread attention and considerable importance.
In the last few decades, it has evolved into a multidisciplinary subject and plays an important role
in several fields of physics and mathematics such as cosmic strings and black holes, conformal
quantum mechanics, nuclear and high energy physics, combinations, orthogoral polynomials, basic
hypergeometric functions and so on, see [6—8] and the reference therein.

At present, the research on solvability of linear g-difference equations has made great progress,
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see [3-5,9] and the reference therein. Relative to the linear g-difference equations, nonlinear g-
difference equations can describe some phenomenon more accurately in the natural world. In 2010,
M. EL-Shanhed and H. A. Hassan firstly studied the existence of positive solutions for nonlinear g-
difference equations by Kransnoselskii’s fixed point theorem in cone [10]. In the last years, many
scholars have denoted to doing some research on this kind of BVPS, such as local or nonlocal
problems for nonlinear g-difference equations, impulsive g-difference equations, fractional g-difference
equations and so on, and obtained some results, see [11-24] and the reference therein. However, many
aspects of theory for nonlinear g-difference equations BVPS need to be explored.

In 1945, Leibenson [25] obtained the following nonlinear diffusion equation when studying the
one-dimensional polytropic turbulence problem of gas passing through a porous medium,

ou™

0 (ﬁu’" ou”
0x

u—1
= —| — s = —+ 1,
o ox\ Ox ) m=n

when m > 1, the equation is the porous medium equation [26], when O < m < 1, the equation becomes
the rapid diffusion equation, and when m = 1, it is the heat equation. However, when m = 1 and u # 1,
the above equations often applied to the study of non-Newtonian fluids [27]. In view of the importance
of such equations, they are abstracted into the following p-Laplacian equation

(6p()) = f(t,0),

where

(,(5)) = |s]"2s(s # 0), ¢,(0)=0, p> 1.

Obviously, when p = 2, the p-Laplacian equation degenerates into a classical second-order differential
equation. In [28], Anderson et al. studied the existence of at least one positive solution for
the time scale delta-nabla dynamic equation (g(u*))¥ + c(t)f(u) = 0, with boundary conditions,
u(a) — Bow®(v)) = 0 and u*(b) = 0. Here, g(z) = |z7/P?z for p > 1, v € (a,b). In [29], Dogan
considers the p-Laplacian dynamic equation on time scales

(@p* @)Y + g f(t,u(r),u®) =0, 1€[0,Tlr,
u(0) = Bou®(v)) = 0, u™(T) =0,

or
u*(0) =0, w() - B’ () =0,

and obtained the existence of at least three positive solutions for the boundary-value problem by using
the Avery and Peterson fixed-point theorem. Here, T is s a time scale, namely any closed subset of R.
Significantly, let0 < ¢ < 1,T = [,,T = 1, then

XA(l) — M = qu(t/q)’ xV(l_) — M

(I-g)t/q) (I -qrx

To the best of our knowledge, limited work has been done in the BVPs nonlinear g-difference
equations with p-Laplacian operator. In particular, there is little research on uniqueness of solutions

= D x(1).
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for BVPS of nonlinear g-difference equations with p-Laplacian. To fill this gap, we investigate
the existence and uniqueness of solutions for nonlinear second-order g-difference equations with p-
Laplacian operator

Dy(®,(D,x(1)) + a(t) f(t, x(t), D,x(1)) = 0, te€l, (L.1)
ax(0) — fD,x(0) = 0, D,x(1) = 0, ’

where @,(s) = [s/"s(p > 1) is an increasing function, @,'(s) = ®u(s), % +
CU, xR ,R), I, ={¢q" : n € N}\J{0,1}, @ # 0, a(r) € C(I,,R"), R* = [0, o0).
Throughout this paper, we adopt the following assumptions.
(Hy) f(t,x,y) e C(, X R?,R) and there exists g(t) € C(I,, R") such that

=1, f(t,x,y) €

lf (2 x,y)| < g(0),

fort €1, (x,y) € R%.
(Hy) f(t,x,y) € C(, X R?,R) and there exist L,(f), L() € C(,,R") such that

Lf( x1,31) = f(t, x2,y2)| < Li(®)lx1 — x2| + LoDy — yal,

fort e Iqa (xl,)’l), (XZ,)’Z) € R2'
(H3) f(t,x,y) € C(I, X R*,R) and there exist two positive constants L;, L, such that

|f (2, x1,y1) = f(t, X2, y2)| < Lilx1 — x| + Laly1 — y2l,

fort e Iq, (xl,yl), (Xz,yz) € R%.
(Hy) f(t,x,y) € C(, X R?,R) and there exist L,(f), L() € Ll(Iq,R+) such that

Lf(, x1,31) = f(t, x2,y2)| < Li(®)lx1 — x2| + La(D|y1 — yal,

fort e Iqa (xlayl)7 (XZ,YZ) € Rz'
(Hs) f(t,x,y) € C(I, X R*,R) and there exists h(t) € C(I,, R*) and h # 0 such that

lf (2, x, )| = h(2),

fort €1, (x,y) € R
(He) f(t,x,y) € C(I, X R*,R) and there exist three functions g(7), h(1), r(t) € L'(I,, R*) such that

£, x, 9l < g(OP,(Ix]) + AP (Iy]) + r(7),

fort €1, (x,y) € R%.
(Hy) f(t,x,y) € C(I, X R*,R) and there exist three positive real numbers a, b, ¢ such that

|f(t, x, )| < a®,(|x]) + bD,(Iy]) + c,

2
forrel, (x,y) € R".
For convenience, we denote

1 1
M = f a(s)g(s)dys, m= f a(s)h(s)dys,
0 0
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1 1
A= f a(s)dys, B = f a(s)[Li(s) + Lo(s)]dys,
0 0

1
L= mallx{Ll(t) + Ly(1)}, K = CD;l(f a(s)gor(s)dqs).
rel, 0

We aim to obtain the existence and uniqueness of solutions for the BVP (1.1) via Banach’s
Contraction Mapping Principle, Leray-Schauder Nonlinear Alternative theorem and Schaefer’s fixed
point theorem. The organization of this paper is as follows. In Section 2, we provide some definitions
and preliminary lemmas which are key tools for our main results. In Section 3, we give and prove our
main results. Finally, in Section 4, we give some examples to illustrate how the main results can be
used in practice.

2. Preliminary results

In this section, we provide some definitions of g-calculus [9,30] and preliminary lemmas which are
key tools for our main results.
Definition 2.1. For 0 < g < 1, we define the g-derivative of a real-value function f as

f@®) - f(gD)
(I-qgx

Note that lil‘{l D,f(t) = f'(0).
q—1"
Definition 2.2. The higher order g-derivatives are defined inductively as
DYf() = f(t), Djf(t)=DyDy'f(1), neN.

Definition 2.3. The g-integral of a function f defined in the interval [a, b] is given by

D,f(1) = . Dyf(0) = lim Dyf().

[ee)

f fdgt == x(1 - q)q" f(xq" - af(q'a), x€[a,bl,

a n=0

and for a = 0, we denote

[ee]

LW = [ fd = ) (1 =00 fxa'.

n=0

b b
f f(dyt = fo fd,t - f f(t)d,t.

b
f D, f(0d,t = fb) - ().

Then

Notice that

Remark 2.4. In the limit ¢ — 17, the above results correspond to their counterparts in standard
calculus.
Definition 2.5. ([15]) f : I, X R* — R is called an S-Carathéodory function if and only if
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(i) for each (u,v) € R*,t — f(t,u,v) is measurable on 1,
(ii) for a.e. ¢ € I, (u,v) — f(t,u,v) is continuous on R
(iii) for each r > 0, there exists ¢,(1) € L'(1,, R*) with t,(r) € L' (I,, R*) on I such that max{|ul, [v|} <
r implies |f(t, u,v)| < ¢,(¢), for a.e. I, where Ll(Iq,R+) ={ueC,: fol u(t)d,t exists}, and normed by

lllos = [ lu(@)ld,t for all u € L'(I,, R").
Theorem 2.6. (Nonlinear alternative for single value maps [31]) Let E be a Banach space, C a closed,
convex subset of E, U an open subset of C and 0 € U. Suppose that F : U — C is a continuous,
compact (that is F(U) is a relatively compact subset of C) map. Then either

(i) F has a fixed point in U, or

(ii)there is a u € AU (the boundary of U in C) and A € (0, 1) with u = AF(u).
Theorem 2.7. (Schaefer’s fixed point theorem [32]) Let T be a continuous and compact mapping of a
Banach space X into itself, such that the set £ = {x € X : x = ATx for some 0 < A < 1} is bounded.
Then T has a fixed point.

Finally, we list below the following basic properties of the p-Laplacian operator which will be used
in the sequel.
Lemma 2.8. ([33]) Assume ®,(s) is a p-Laplacian operator, then

2P 1D, (s5) + D, (1)) p=2, 5,t>0
< p p > H s 5
Cpls +1) < { D,(s) + D, (1), l<p<?2, st>0,
and
(-1 -1
(D_I(S + l) S 2_1 ((Dp (S)_Il- (I)p (t))’ p > 2, s’t > O’
P D (s) + @, (D), l<p<2, 5,t>0.

Lemma 2.9. ([34]) (D If1 < p <2, uv > 0and [ul, [v| > m > 0, then
D, (v) = @, (w)] < (p = Dm" v — ul.
2)If p > 2 and |ul, [v| £ M, then
(V) = @p@)] < (p = DMy — ul.
3. Existence and uniqueness results

In this section, we establish some existence and uniqueness criteria for nonlinear g—difference
equation (1.1).
Lemma 3.1. Let y € C[O0, 1], then the BVP

{ Dy(Q,(Dygx(1))) + (1) = 0, 1€ I, (3.1)

ax(0) —BD,x(0) =0, D,x(1) =0

has a unique solution

() = gcp;l( fo 1 y(s)dqs)+ fo t cp;,l( f l y(T)qu)dqs.
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Proof. Integrating the g-difference equation from ¢ to 1, we get

1
®,(Dyx(1)) — ©,(Dyx(t)) = —f y(s$)dys.

By the BC D,x(1) = 0, we have

1
qu(t):CD;‘( f y(s)dqs). (3.2)

Integrate (3.2) from O to ¢, we have

t 1
x(0) = x(0) + f @;1( f y(T)dq‘r)dqs. (3.3)
0 s

Using the BC ax(0) — 8D,x(0) = 0 in (3.3), we find that

1
x(0) = 'qux(O) - gq);l( fo y(s)dqs).

Hence, the BVP (3.1) has a unique solution

x(t) = gd);l(f: y(s)dqs)+ f(: CD;l(fSl y(T)qu)qu.

This completes the proof.

We consider the Banach space C, = C(,R) equipped with standard norm |[[x|| =
max{|[xlle, [[DgXlleo}, and [| - [l = supfll - I, 7 € 1}, x € Cy.

Define an integral operator 7' : C, — C, by

B 1
Tx(t) = E(D;l(fo a(s)f(s, x(s),qu(s))dqs)

t 1
" fo cp;l( f a(?) (7, x(1), qu(T))qu)dqs. tel, xeC, (3.4)
Obviously, T is well defined and x € C, is a solution of BVP (1.1) if and only if x is a fixed point of 7.
First, we give the uniqueness result based on Banach’s Contraction Mapping Principle.
Theorem 3.2. Suppose 1 < p < 2, and (H,), (H,) hold. Then the BVP (1.1) has a unique solution
2-p
provided that T < 1, where I’ = ('§| + 15 M LA,

Proof. Let us set sup,; |f(,0,0)| = M and choose
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whereI' <6 < land I = (‘g‘ + 1)(I);1(M0A). Now, we show that TB, C B,, where B, = {x € C, :
||x|| < r}. For each x € B,, we have

|T x(t)| < sup

tel,

1 ! !
207 ([ awsisaopxsnas)+ [0 ( [ ato e, Dol

ﬁ 1 1
Sfﬁ,f(a‘q)l_’l( fo a(s)f(s,x(s),qu(s))dqs)—cp;l( fo a(s)f(s,O,())dqs)
1
+ay( f a(s)f(5,0,0)d,5)
0
¢ 1 1
' fo c1>;,1( f a@f(, x(T),qu(T))qu)—d);,l( f a0, O)qu)

1
+<1>;1( f a(0)f (1, 0,0)d,7)

N

dqs)

B ! 1
P CI);I( f a(s)f (S,X(S),qu(s))dqs)—(D;l( f a(s)f(s,O,o)dqs)
(01 0 o

<

+

! 1
o, fo A (5, 3(0), Dy, ) - 0 fo a0 (2,0, 0)d7)

! 1
_(D;I(fo a(s)lf(S,O,O)Ia’qs)+c1);1(f0 a(T)|f(T,(),0)|qu)

IA

n 1)1%1\4‘;2? fo ()1 (s, 2(5), Dyx(s) — f(s,0,0)qus)+("§'+ 1)¢;1(M0 fol a(s)qu)
1

1
1)FM fo a<s><L1<s>|x<s>|+Lz(s>|qu<s>l>dq~“+(

1 P2 ﬁ

+1)—1M1>-1LA||x||+ +1 q> (MoA)
p—

r+I"<(A+1-0)r<r,

+

|,3
8
a
g g‘ + I)CD;I(MOA)
B

a

IA

IA
-~ —~ =~  +
R

<

and

|D,Tx(1)| < sup |D

tel,

1
@ ( f a(s)f (5, (5), D(5))dys ) — 0 f a(5)f(5,0,0d,5)
0 0

( f a($)f(s, x(5), D,x(s))d, s)

t

<

+

1
@, fo a(s)f(5,0,0)d,5)

<T|x|+T" < r.
Hence, we obtain that ||Tx|| < r, so TB, C B,.
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Now, for x,y € C, and for each € I,, we have
T x(2) = Ty(1)|

1 1
’g(CD;I( fo a(s)f(s,x(s),qu(s))dqs)—cD;l( fo a(s)f(s,y(s),qu(s))dqs))

< sup
tel,

/ 1 / 1
+ ( f(; (D;l( f a(t) f (T, x(1), qu(T))qu)qu — f(; (I);l( f a(t) f (T, y(1), qu(T))qu)qu)

s s

1 1
< |21y ( f a(s)f (5, 3(), D)5 ) - 03 f a()f (5,309, Dy()dy)
a 0 0
1
!
0

+1 p—Mf’ ‘ f a()|f (s, x(5), Dgx(s)) = f(5,¥(5), Dgy(s))ldys

1 1
q);l( f a(t) f(r, x(r),qu(r))dqr)—cD—l( f a(t) f(r, y(T),qu(T))dq‘r) d,s

IA

RI™RI™®™ RI™®

IA

(5] 1)
(%] + 1)p—Mp 1 f a(S) LK) = Y(5)| + La()|Dg(s) — Dyy(5)[1d,s
(5] 1)

2-
M LA|lx = Il < Tllx = yll < [lx = I,

IA

+1

and
|D,T x(t) — D,Ty(t)|

< sup
tel,

! 1
cp;,l( fo a(S)f(s,x(s),DqX(s))qu)—(D;‘( fo a(s)f(s,y(s),qu(s))dqs)

1 1
dD;l(f a(s)f(s,x(s),qu(s))qu)—q);l(f a(s)f(s,y(s),qu(s))dqs)

t t

<

1 2-p !
< M [ a5, 560 Do) = 6. Dy

2-p
— M7 LA||x — yll < Tllx = yll < [lx = yll.
Therefore, we obtain that ||Tx—TYy|| < ||x—y||, so T is a contraction. Thus, the conclusion of the theorem

follows by Banach’s contraction mapping principle. This completes the proof of Theorem 3.2.
Corollary 3.3. Suppose 1 < p < 2, and (Hl) (H’;) hold. Then the BVP(1.1) has a unique solution
provided that T’y < 1, where I'; = ‘ﬂ ‘ + 1)L MA L + LA,

Corollary 3.4. Suppose 1 < p < 2, and (Hl) (H4) hold. Then the BVP(1.1) has a unique solution
provided that I'; < 1, where I', = (’ﬁ‘ + 1) Mp B,

Theorem 3.5. Suppose p > 2, and (H,), (H5) hold. Then the BVP(1.1) has a unique solution provided
thatI's < 1, where I'; = ("8‘ + 1)—mf TLA.

Proof. It is similar to the proof of Theorem 3.1.

Corollary 3.6. Suppose p > 2, and (H3), (Hs) hold. Then the BVP(1.1) has a unique solution provided

2-p
that Ty < 1, where Ty = (\g\ +1)55m (L + LA,
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Corollary 3.7. Suppose p > 2, and (H,), (Hs) hold. Then the BVP(1.1) has a unique solution provided
thatI's < 1, where I's = ( g + I)Iﬁm%’B.

The next existence result is based on Leray-Schauder nonlinear alternative theorem.
Lemma 3.8. Let f : I X R? — R be an S-Carathéodory function. Then T : C, — C, is completely
continuous.
Proof. The proof consists of several steps.

(1) T maps bounded sets into bounded sets in C,. Let B, = {x € C, : ||x]| < r} be a bounded set in
C, and x € B,. Then we have

B
a

B

1 t 1
|Tx(1)] < '(D;l(j; a(s)lf(s,x(s),qu(s))qus)+j(;@;l(f a(T)|f(T,X(T),qu(‘['))|dq‘l')dqs

s

1 ! !
a (D;l(ﬁ a(S)QOr(S)dqs)-l_‘fo (D;l(fv (a(T)%(T))qu)dqs

g‘ + 1)@;1( fo 1 a(S)cpr(S)qu),

<

|

and

1
|D,Tx(t)| < q);l(fo a(s)|f(s, x(s),qu(s))ldqs)

< cI);l(fol a(s)gor(s)dqs).

Thus 7] < max{ITxlle. 1D, Txle} < ([2] + 1)K
(i1) T maps bounded sets into equicontinuous sets of C,.
Lett,1, € I,,1) < 1, and B, be a bounded set of C, as before. Then for x € B,, we have

Tx(1)) = Tx(r)] =

15} 1
f @, f A, 10, DX ), s

153 1
< f cD;l( f a(T)gor(T)qu)dqs

1

f 1
< ‘[ d);l( fo a(T)(p,(T)qu)dqs

1

1
<l =l fo apiDd,7)

=ltb-4HlK—>0, (H-t—0),

and by the Lebesgue dominated convergence theorem, we have

|DqT.X(t2) - DqTX(t1)|

-0, (-1, = 0).

! 1
d);l(f a(s)f(s,x(s),qu(s))qu)—q);l(f a(s)f(s,x(S),qu(s))dqs)

[5) n

As a consequence of the Arzela-Ascoli theorem, we can conclude that T : C, — C, is completely
continuous. This proof is be completed.
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Theorem 3.9. Let f : I X R* — R be an S-Carathéodory function. Suppose further that there exists a
real number N > 0O such that

& > 1
(lal + IBDK

holds, where

1
K =) fo a(s),(5)dys) # 0

Then the BVP (1.1) has at least one solution.
Proof. In view of Lemma 3.7, we obtain that T : C, — C, is completely continuous. Let 4 € (0, 1),
and x = AT x. Then, for r € I,, we have

|x(O)] = |AT x(2)|

1
—cb;l( f a(s)lf(s,x(s),qu(s))lds f f a(‘r)lf(‘r,x(T),qu(T))quT)dqs

(2] o [ o) = (E]

and

\D,Tx(1)| = |AD, Tx(t)|

t 1
< L CD;‘( f a(r)lf(T,X(T),DqX(T))quT)qu

1 1
< f CD;I( f a(T)(,Or(T)qu)qu
0 s
1
Sd);l(fo a(s)(p,(s)dqs):K

Hence, consequently

Therefore, there exists N > 0 such that ||x]| # N. Letus set U = {x € C, : ||x|| < N}. Note that the
operator T : U — C, is completely continuous. From the choice of U, there is no x € dU such that
x = AT x for some A € (0, ). Consequently, by Theorem 2.6, we deduce that T has a fixed point x € U
which is a solution of the problem (1.1). This completes the proof.

Finally, we give the existence result is based on Schaefer’s fixed point theorem.

Theorem 3.10. Assume that (Hg) holds. Suppose further A < 1 holds, then BVP(1.1) has at least one
solution, where A = (|£] + 1277, [ a(s)lg(s) + h(s)1d,).
Proof. It is easy to know that 7' is completely continuous. Next, we show that the set

AIMS Mathematics Volume 7, Issue 6, 10439-10453.
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x(t) = AT x(t) for 0 < A < 1. By (Hp), for each 1 € I, we have

E={xeC,: x=ATxfor 0 < A < 1} is bounded, which is independent of A. Let x € E, then

[X(Ol = ATx(0)| < |Tx(0)
|
< (8] ([ a0 + b1l + €] + 1) | | peen
< Al + A",

g‘ + 1)q>,;1( fo a9l (5. 1(5), qu<s>>|dqs)

and

|Dyx(8)] = |AD,T x(1)]
< |D,Tx(t)|

1
s@;l( fo a(s)| f(s,x(s),qu(s))ldqs)

| I
< 2q—1q);1(f a(s)[g(s) + h(S)]qu) [l + zq_lq),_,l(f a(s)r(s)dqs)
0 0

< Allxdl + A,

where A* = ('f—j‘ + I)ZP‘ICD;l( fol a(s)r(s)dqs).

Therefore,
lIxll < Allxll + A"

Hence,

*

< ::M
Il < 7=

This shows that the set E is bounded. By Theorem 2.7, we obtain that BVP(1.1) has at least one
solution. This proof is completed.
Corollary 3.11. Assume that (H) holds. In addition, if A, < 1 holds, where A, = (1§\ +1)2770, (a+
b)A). Then the BVP(1.1) has at least one solution.

4. Applications

In this section, we give two examples to illustrated our results.
Example 4.1. Consider the following g-difference equation BVP:

Vi

{ Dy (@,(D,x(1))) + L[5(1 + Vi) sin(x(0)) + L arctan(D,x(1)] = 0, t € I, n
x(0) = 1D,x(0) =0, Dyx(1) = 0. (4.1)

Here, f(1, x(t), Dyx(1)) = 15(1+ Vi) sin(x(1) + ¢ arctan(Dyx(1)), p=32, g=1, a=1, =1, at) = %ﬁ,
g =5+5+ 5V
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Obviously, ¥z € I, (x1,y1), (x2,y2) € R?, we have
|f(ta xlayl) - f(ta x2ay2)| < él-xl - x2| + %b’l - y2|a and |f(t7 x,)’)| < g(t)

1 1
Then, L =Ly = , A= [ a(s)d,s = 3, M = [ a(s)g(s)dys = BF - 3+ 5 = 2 + 3% = 3% and

Fio= Gt DML+ LA =42 33 L 3= s o
By Corollary 3.3, we obtain that BVP (4.1) has a unique solution.

Example 4.2. Consider the following g-difference equation BVP:

{ Dy(®,(D,x(1))) + “=[L sin(x(0)]) + 3 In(1 + |Dx(®)D] = 0, €1, 42)

x(0) = D,x(0) =0, D,x(1) = 0.

Here, a(t) = <=, f(t, x(), Dyx(t)) = Lsin(Ix(O)) + 1 In(1 + IDxO) + 1, p=3,g=1 a=p=1
Obviously, Yt € 1, (x,y) € R.?, we have

1f(2, %, )] < glx(@0)] + gIDgx(n)] + 1.
Thena=b=¢, A= fol a(s)dys = 3(1 —e™"),and A; = V1 — ¢! < 1. By Corollary 3.11, we obtain
that BVP (4.2) has at least one solution.

5. Concluding remarks and observations

Basic (or g-) series and basic (or g-) polynomials, especially the basic (or g-) hypergeometric
functions and basic (or g-) hypergeometric polynomials, are known to have widespread applications,
in particular, in several areas of combinatorial analysis and number theory such as (for example) the
theory of partitions. In fact, g-calculus is widely used in many fields, such as finite vector spaces,
Lie theory, particle physics, non-linear electric circuit theory, mechanical engineering, cosmology and
so on. We now choose to indicate some obvious connection between the classical g-analysis and the
so-called (p, g)-analysis. Srivastava et al. have observed the fact that the results for the g-analogues,
which we have considered in this article for 0 < g < 1, can easily (and possibly trivially) be translated
into the corresponding results for the (p, g)-analogues (with 0 < g < p < 1) by applying some obvious
parametric and argument variations, the additional parameter p being redundant, see Page 340 of the
work [35] and Pages 1511-1512 of the work [36].

The so-called (p, g)-number [n],, is given (for 0 < g < p < 1) by

u, (n€{1’2,3,...})
[n]p,q =

pP—q

0, (n=0)

= P"_l[n]g, (GRY

where, for the classical g-number [n],, we have

:ﬂ: l_npn_—(l)q)n
g 1—q 7 (p—(pq)

Furthermore, the so-called (p, g)-derivative or the so-called (p, g)-difference of a suitably constrained
function f(z) is denoted by (D, ,f)(z) and defined, in a given subset of C,by

) = p' "1l pg- (5.2)

f(p2)—f(q2) .
e (zeC{0};0<g<p<l
- (p—q)z
(D)) { f,”(()")’ z=0:0<g<p<l) (5.3)
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Thus, clearly, we have the following connection with the familiar g-derivative or the g-difference
(D,4f)(z) given by the definition 5.3:

(D)@ = (Def)(p2) and (Dyf)() = <D,,,,,qf>(§) (:eCi0<g<p<l). (54)

From the Eqgs (5.1)—(5.4), we can find that the subject for 0 < ¢ < 1 can easily (and possibly
trivially) be translated into the corresponding (p, g)-analogues (with 0 < g < p < 1) by applying
some straightforward parametric and argument variations of the types indicated above, the additional
parameter p being redundant. Therefore, it is worthwhile to draw the attention of the interested readers
toward.

In the last few decades, quantum difference equation has evolved into a multidisciplinary subject
and plays an important role in several fields of physics and mathematics. In this paper, we obtain
existence and uniqueness of solutions for nonlinear second-order quantum difference equation BVPs
with p-Laplacian by means of the Leray-Schauder nonlinear alternative and some standard fixed point
theorems. The results are novel, enrich the theories for g-difference equations with p-Laplacian, and
provide the theoretical guarantee for the application of fractional g-difference equations in every field.
In the future, we will use bifurcation theory, critical point theory, variational method, and other methods
to continue our works in this area.
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