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Abstract: Fractional partial differential equations (PDEs) have key role in many physical, chemical,
biological and economic problems. Different numerical techniques have been adopted to deal the multi-
term FPDE:s. In this article, the meshfree numerical scheme, Radial basis function (RBF) is discussed
for some time-space fractional PDEs. The meshfree RBF method base on the Gaussian function and is
used to test the numerical results of the time-space fractional PDE problems. Riesz fractional derivative
and Griinwald-Letnikov fractional derivative techniques are used to deal the space fractional derivative
terms while the time-fractional derivatives are iterated by Caputo derivative method. The accuracy
of the suggested scheme is analyzed by using L.-norm. Stability and convergence analysis are also
discussed.

Keywords: multi-term fractional derivatives; Caputo and Griinwald-Letnikov derivatives; radial
basis function method
Mathematics Subject Classification: 35G31, 35G35, 65D12

1. Introduction

Fractional PDEs have key role in modeling anomalous diffusive process and describe the
viscoelastic damping materials. For example in mechanical models, the delivery of oxygen passing
through capillaries and anomalous relaxation in magnetic resonance imaging signal magnitude
(see [1-4]). However, sometimes it is quite difficult to get the analytical solutions of fractional
PDEs (see [5-8]). Therefore numerical methods have popular among the researchers to deal the
fractional order PDEs (see [9-13]). Gejji and Bhalekar [17] used the adomain decomposition method,
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Jafari and Aminataei [18] used the modified homotopy perturbation method and Liu et al. [19] used
some computationally effective numerical methods to deal the fractional order diffusion equations.
Further, Bhrawy and Zaky [20] discussed the jacobi tau approximation method, Ren and Sun [21]
used the compact difference method for 1D and 2D multi-term fractional order diffusion equations and
Dehghan et al. [22] used the meshless method to solve the fractional PDEs. Finite difference method,
interpolating element free galerkin method, spectral element method, galerkin spectral method and
finite element method (see [1, 22—-26]) are used to discuss the numerical solution of different kind
of diffusion equations. Similarly Chen et al. [27, 28] discussed the variable coefficient method and
compact dual reciprocity method with the meshless improved singular boundary method. Recently
Huang et al. [29] used the alternating direction implicit scheme for the numerical solution of wave
diffusion equations.
The multi-term time-space fractional diffusion wave equation (see [29]) is given by

i

K L 86
D5 oDi ) = D e+ 0x. ), (L.1)

k=1 =1

with the following initial and boundary conditions

(1.2)
V(aa t) = fl(t)’ V(L’ t) = fZ(t)’ = 0,

where 1 < 8, < 2, D = [a, L] is the domain and y = (x), ¥ = (x,¥), ¥ = (x,y,2) in 1D,2D and 3D
respectively. Morever V(y), V,(y) and g(x, t) are known functions. v,(y, f) is required when 1 < @ < 2.

To handle different types of PDEs, meshfree methods have got more attraction as compared to
the meshgrid methods. Unlike the meshgrid methods, the meshfree methods require a set of uniform
scattered points in domain. RBF method is one of the highly attractive meshfree method. The wide
application of RBF method can be seen in various practical problems (see [32-37]. RBF method
depends on the euclidean distance between two points of the spital domain which is implemented either
globally or locally. However, global meshfree RBF method has some problems while dealing high
dimensional PDEs. The main problem is that when there is a large number of collocation points, the
method tends to ill-conditioning coefficient matrix and the approximated solution becomes unstable.
But local RBF method avoids such kind of problems not only in regular domains but also in irregular
domains (see [30,31]). The main feature of local meshfree RBF method is that it is free from ill-
conditioning problems which come in large dense matrix systems because these methods use only
neighboring collocation points (see [32,38—42]). In such meshfree RBF methods shape parameter plays
an important role to bring best possible numerical solution. Multiquadric (MQ), Inverse multiquadric
(IMQ) and Gaussian are the most popular functions to implement RBF method. All three functions
give good results, but the main issue for these functions is the choice of shape parameter. However in
the Gaussian function, if the number of collocation points are increases, the value of shape parameter
also increases [43].

Current work base on the applications of meshfree RBF method for the numerical approximation
of multi-term fractional order diffusion equations. The fractional space derivatives are dealt by using
the definitions of Riesz fractional derivative, Riemann-Liouvelle fractional derivative and Griinwald-
Letnikov fractional derivative. The time fractional derivatives are approximated by the Caputo

?wm:wm,wmm:%m,
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fractional derivative and finite difference method. The stability and convergence are also discussed
in Section 4. The suggested scheme is applied on 1D, 2D and 3D multi-term diffusion equations to
investigate the numerical tests in Section 5.

2. Preliminary knowledge

The following definitions are useful which are related to fractional derivatives.
Definition 2.1. Let v be defined in the interval a < y < L. Then Riesz a-order fractional derivative
operator D is given by [47]

. gl)c;; ) . Ro(£1DY + £1DF v(x. 1), 2.1)

Dfv(x, 1) =

where R, = —ﬁ(%ﬂ), a# lor2.

Definition 2.2. For +ve-integer m, the fractional differential operator D of order a for Rieman Liouville
function is defined by [44,45]

m Y
RLT~a _ _ a1 —
D) = s | D60 m=T<asm, 22)
RL1~a _ (_1)m dm - _ m—a—1
B0 = o | w0,

Definition 2.3. The Caputo a-order fractional derivative for +ve-integer m is given by [46]

USRS S AL ) P )
O]D,v(,\(,t)—r(m_a)fo U -y dy, m-1<a<m. (2.3)

Definition 2.4. The Griinwald-Letnikov a-order fractional derivative for f(y) is given by [49]

%]
GL~a 1 1 j @ _
DY) = lim o ;(—D'(j)fcv J&X), (2.4)

a\ _ I'a+1)
where (;) = TG+DIa—j+D)"

3. Materials and methods

3.1. Spital discretization via RBF method

In this section the meshfree numerical scheme for Eq (1.1) is discussed. Let{y; € D,i = 1,2,--- , N}
be the collocation points in domain D ¢ Z#. Then the approximate solution at s-time level is

N

V) = D ETW)), (3.1)

J=1
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here y; = ||y — x/ll, where ||.|| is the euclidean distance between x and the centers y;. For each {y; €
D,i=1,2,---,N} the respective approximate solution at s-time level is given by.

N
VOt = ) ET (), (3.2)
=1
where y;; = |lxyi —xjll, 1 <i,j < N.
Let A = Y(y;), v = {v(&),v(&), -+ ,v(én)y and & = {&),&, -+ ,én)T, then Eq (3.2) becomes

Vo= A, (3.3)

the coefficient matrix A can further be split into A, (interior nodes) and A, (boundry nodes).

Where, A; = {T1(y;),2<i<N-1,1<j<N}and

Ay ={T(y;j),i=1,N,1 < j< N}

Here T(y;j) = exp(-wlly; — x j||2) is called Gaussian radial basis function (GA-RBF), w is the shape
parameter. The choice of w is arbitrary. For Gaussian, it is clear that w = ﬁ, where o is variance
between y and the centers y; (see [43]).

Lemma 3.1.1. If v(y, 1) € L([a, L] x[0, T]) and RLDﬁv(x, f) € C([a, L1x[0,T]). Thenform—1 <8 < m,
where m is positive integer and i = 1,2,3,--- ,N. Using Riesz fractional derivative and Riemann-
Liouvelle fractional derivative the Griiwald-Letnikov [47] approximation can be obtained

i-1

D00 = @0 ) @ 1) + 060, (3.4)
j=0
N=i

SO0 = 007 ) vl 0 + 0@x), (3.5)
j=0

where @'} = (—1) gt for j = 0,1,2, -, 6y = &¢
Lemma 3.1.2. The coeflicients wf of Griiwald-Letnikov approximation have the following properties.
@ @=p @20 (#):

b) Y@ =0

© X w’lj < 0, where m is any positive integer.

Proof. See [50].

3.2. Time discretization

In this section, the time derivatives of Eq (1.1) will be discretized by Caputo fractional derivative
and finite difference method. Let ¢, € [0, T'], 6t = %, then for s = 0,1,2,---,S, we have ¢, = s - 6t are
the total time discretiztion nodes. From Eq (2.3), for m = 1 or 2, let us rewrite the Caputo fractional
derivative of order « as

g w) —y)dy, O<a<l,

l“(1 a) JO
D{v(x, 1) avgtt)’ a=1, 56
oE VLD = P (- .
r(z o Jo a2 ) Ydy, 1 <a<?2,
(')v()(t) —

o
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Case I. When 0 < @ < 1, using the finite difference method to approximate the time fractional term of
Eq (3.6), we have

Is+1 a
OD V(X ty+1) F(l — a) f V(X l//)(twl - w)_adl//

B ‘1 vy, t) dy
B r(l py Z f W (tger — )"
v(x, tq+1) v(x, 1g) ftq” s+
r(l @) Z (fger — w * Par

Iq

3 Z V(X tge1) — V(X ty) ftm_q do + ps+1
= “a ot
F(l —a) pory ot tny O

_ 1 3 V(Xa ts—q+l) - V(X’ ts—q) l-a _ l-a s+1
_m_a); [(g+ D™ = (@1 +p5".

(61)”
Thus the time discretization for 0 < @ < 1, becomes

a s+1 _ 4,8 +7, 55® s+l—-q _ {,5—q + s+1, > 1
oDV, Esr1) = relv VD e B OV R A (3.7)
ra,(Vl — VO), s = ()’

where r, = r(fztf(j), 60 =(@+D"" =@ o =tu -y, forg =0.1,---,5and p5i' is the

truncation error.
Case II. When 1 < a < 2, the time discretization is

N _ 1 S lg+1 52‘}()(’ w) -
oDy v(x, fsr1) = re—a ;L a—wz(fm =) dy. (3.8)

Now
Oy, te) V=205 4571

or 51
insert in Eq (3.8) and using the finite difference method, we get

+ 0(61)°, (3.9)

oDV, tei1) = Fa( =20 + 5 ) 4, Z 5Z(vs_q+1 — 209 Ty pf(;)lz, s>0, (3.10)

g=1

where 7, = r(g)_z) and 67 = (¢ + 1) —¢* " forqg=0,1,2,--- s

Since for s = 0 and g = s there exists an unknown v(y,?_;). To eliminate the unknown term, using
vi(x, o) by central difference method, we have

Vs to) = v(x, fl)z—(;()(, t—l)’

V(X’ t—l) = V(X9 z‘1) - 26tV;(X, t0)~
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Thus for 1 < a < 2 the time discretization becomes

P =205 + v 4+, Z;;ll 53(\/5‘4“ — 2579 4 sl
oDIV(y, tsy1) = +2r, 870" =0 = 6n0), s>1 (3.11)
2r, (v =10 = onY), s=0.

Lemma 3.2.1. If 0 < a < 1, ¢(¢) is a function defined in C2[0, T'], then for 0 < s < N, the following
properties are true

lg+1

s fv1) —
§ Wt~y =y L f (v =)y + 3,
9=0 la

Is+1

and
1 1
s+1 2 1% ’”
Proof. See [48].
Lemma 3.2.2. Let 0 < @ < 1, 7, = 5= and 62 = ¥—"[(q + 1)! ™ — '], then

1 B g () . N s .,
‘m_a) fo (tm_w)adt/r—ra[éoﬂtsﬂ) ;(a‘. 0% )Pty — 5¢(0)]|

1 1
< + 1)6;2 @ (¢
(1 —a/)((l P oiax 1670l

Proof. Follows from Lemma 3.2.1.

Lemma 3.2.3. Let 0y = (1 = [(q + D)= —(¢)'"*], where ¢ = 1,2, .....,and 0 < & < 1, then

0y > 0f > 05 > ... 5“—>Oasq—>00.

Proof For proof (see [48]).

Lemma 3.2.4. If 1 < @ < 2, ¢(¢) is a function defined in C?[0, T'], then for 0 < s < N, the following
properties are true

Ts+1

tyy t fg+1
¢ W)ty =)' dy = Z M f (te1 =)' Y + p3; ",

0 4=0

and

s+1 1 3—a ”
los: | < 2 21 = )5l max |¢”(1)].

0<t<tgi1

Proof. See [48].

Lemma 3.2.5. Let | < @ <2, 7, = 55— and 6 = ¥—[(q + 1)>™* — "], then

fﬁ . AT P [53¢(t3+1) = 6, = 5 () - 5§¢(0)]‘
g=1

s+l_ )a !

‘r(z )
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| 1
< 1 513 @ 2 ¢
S ra- a/)((2 e ) oTiax #7 (D).

Proof. Follows from Lemma 3.2.5.

Lemma 3.2.6. Let 67 = (2 5 [(q +1)>% — (¢)*™], where ¢ = 1,2, .....,and 1 < & < 2, then
0y > 07 > 85 > ... 6“—>Oasq—>oo

Proof. For proof (see [48]).

3.3. Numerical scheme
In this part the numerical scheme for Eq (1.1) will be computed by using 8-weighted method. For

this let ZPv = ;Lilvﬂ, g(x,t) = g, then Eq (1.1) can be written as

ZK:OD“"V = Zgﬂlwg (3.12)

k=1

Now at time s and s + 1 level, applying #-weighted method to Eq (3.12), where 0 < 6 < 1, we get

K L L
Z OD;Y/«VSH — HZ gﬁlvsﬂ + (1 _ 9) Z gﬁlvs + gs+1’ 5> O, (313)
k=1 =1 =1

Case L. For 0 < a; < 1 using Eq (3.11) and for space derivative using Eqgs (2.1), (3.4) and (3.5) we get

K
) s - (&)™ s
Z (rak(V 1, 5) + Fag Z 5 k(v +l-gq _ 4)) QZ —nﬂ[)(Gﬂ’ + G,l];l)v +1
=1 =1

) -2 cos(
L
(x)7” T 1
+(1-0) ) —=——(Gg +Gz V' +¢°", (3.14)
lz; -2 cos(%ﬁ’)( g ﬁl) b
a0 -0
@ o -0 .
where Gg, = :1 :O 0 ,andw‘?’ =(-1) %,forj:&l,lm
TNy Ty o T
Thus Eq (3.14) can be written as
K L
(9 T\os+1 @) T
ro V" + G, V' = ro, V' + (1 —0) + G, v*
kz_:‘ ‘ Z —2003(”ﬁ’) ﬁl) Z ‘ Z —2cos(”ﬂ’) ﬁl)

K

Z Zsléak(vsﬂ 4 _ say +gs+1
g=1

k=1

(3.15)
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Insert Eq (3.3) into Eq (3.15), we get

K

Z Fo AET - 92 —2(?2 )s;”ﬁ’) +Gh)Ae! = kZ‘ ra AE + (1 = )x
S r k(510 sy 4 ot
;m( 5+ Gl A" — ZMZW(V sy 4 gt (3.16)
Let
M = Z FagA — HZ _2(?(() )S(l:ﬁ,) +GhA,
N = Z reA +(1-6) Z —;i)g)s(”lﬁf) +GhA,

yfwl — Z Fa Z 6Zk(vs+1—q _ vs—q) + gs+1
k=1 g=1
F3 = v (@),0,---,0, VD))"
and 7! = 731 — Z ! then Eq (3.16) can be written as
%fﬁ—l — </V€‘4 + g\wl, (317)
Thus the required numerical scheme for 0 < a; < 1 and 1 < 8, < 2, is obtained
=AM NANV + AT T, s> 0. (3.18)

Case II. When 1 < a; < 2, use Eq (3.11) into Eq (3.14), we have

K K s-1 K
Z o " =20 + 157 + Z Fay 6;”'(\/“_‘1“ — 2y 4 ypsaThy 4 Z 27y, 0% =10 — an)
k=1 =1 =1 k=1
L
(O g (&)™
=60 — |G +G v -0) + G, V' + (3.19)
IZ:‘ -2 cos(%ﬁ’)( p ﬁ' Z -2 cos(”ﬁ’) G ﬁ’) e
For s = 0, Eq (3.19) becomes
(6x) & T 6x) & T\. 0 1
27 (W' =10 =61")—0 +G v =(1-60) Gp+Gy V' +g -, (3.20)
Z ‘ ' Z —2005(”5’) Z —ZCos("ﬁ’) ) 4
here
67" T
Mo = 2r, A —0 + G, A,
0 Z k Z ) COS(”’BI) '31)
()™ T
N = 2r, A+ (1 —-0) + G, )A,
0 Z k Z ) COS(”BI) ﬁl)
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F, =1V'),0,---,0,V(D)],
F=F) =250,
Thus for s = 0 the numerical scheme is

v = Ao NAT! F. (3.21)

For s > 1, Eq (3.19) implies

K L

oy) P
Z rakAév_-S+1 _ 0 ( X)

A (x)”
k=1 =1 —2cos (”—ﬂ’) =T —2cos (%ﬂ/)
s—1

K
— Z Far Z 6(lk(v§ g+l _ 0,574 4 50— 1) _ Z 2’,(”511(‘}1 0 6“)?) + Q_SH

L

K
(Gp, + GJ, ag™! = Z 2rf AL + (1 = 6)

k=1
(3.22)
again let
(x)* T
M = Z FoyA — 92 YT (G, + G} A,
I=1
(%) B
N = Z 2y A+ (1 - G)Z ad ) (Gs + Gh)A,
- —2 cos -
K
‘gZ = r(lkI’
k=1
K s—1
Fil = Z (rak Z (SZk(vs_qJ'1 2057+ 4 2r, 6% (0 =0 - &V?)),
k=1 g=1
F = [V a),0,---,0, V(D"
and
ﬁs+l — ﬁ;“ _g\lﬁl +Qs+l
Thus for 1 < @, <2 and s > 1 the numerical scheme for Eq (3.19) is
=AM NAN + AT PV + Al T (3.23)

4. Stability and convergence analysis

In this section, the stability and convergence analysis for Egs (3.18) and (3.23) are discussed. Let
v and v* be the respective exact and numerical solutions of Eq (1.1) at time s level. The amplification
matrix J = A.# ./ A~! depends on % = %, which is a constant number. [a, 8] =max[ay, 5] are the
fractional orders of time and space derivatives and ot , 9y are the time step and space step respectively.

In order to check the stability and convergence, we need to know some important results (see [43] for

AIMS Mathematics Volume 7, Issue 8, 14249-14269.
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proof see [32]) which are given by
Theorem 4.1.

Dg(x) - D" Py(r)| < €ox' " Vo002, (D)
provided that (6x),r < (0x),, Where

%o(y) = max max D' DS*O(w, )()‘.
ay,ar EN{)W,,\/GFQB()(,CQ(SXX,F)
lory [+l =2k

Theorem 4.2. Let an open and bounded set A € Z* that satisfies the condition of interior cone and let
® € C?*(A x A) is symmetric and strictly conditionally positive definite of order n on Z°. Assign the
interpolant to g € 84(A) on the (n — 1) unisolvent set x by P,. Fix a € N, taking |a| < k. Then there
exist positive constants dy, and C (independent of y, g, ®) such that

)

Dg(x) — D*Py(10)| < Ce@x) ™o cn

where 84(A) represents the native space of RBF and also g € N,(A). Since Gaussian is infinitely
smooth function so therefore above theorem is applicable and yield high algebraic convergence rates.
Hence the conclusion is that for all £ € N and |a| < k, we have

D) ~ D700)| < Co@) ! oon |

where v and v are the respective numerical and exact solutions. Assume that Eq (3.18) of space order
B where 1 < 8; < 2 is accurate, then

v =Tt AT T 4 o607 + (0x)). 6.6y — 0. 4.1
Let us define the residual by e* = v* — u*, then
e =Je' +o((61)™ + (6y)). o6y — 0. 4.2)
Using Lax-Richtmyer definition of stability, the numerical scheme Eq (3.18) is stable if
<1, (4.3)

|7l = o), when I is normal otherwise p(J) < ||J|| is always satisfied. Let us suppose that 9y is small
such that the solution and initial condition of the source problem must be sufficiently smooth then we
necessarily have 6t — 0 such that it keeps the value of & = ; 5;51 constant. Therefore there exist ¢
such that

e 1l < Ml + (@07 + @xF). s 2 0. ()

Since e* obeys the initial and boundary conditions, so ¢® = 0. Hence it follows from mathematical
induction
eIl < (1 + T+ W + - + (08 + (6x)F), s 2 0. (4.5)
Using Eq (4.3), we have
lle™*!ll < sp((@0*™ + 6y ). (4.6)
Hence the numerical scheme in Eq (3.18) is convergent. Similarly the convergence for the numerical
scheme in Eq (3.23) can be shown

le™™!|l < sp((60* + (Gx)’). (4.7)

AIMS Mathematics Volume 7, Issue 8, 14249-14269.
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5. Numerical results and siscussion

In this part the numerical results of multi-term diffusion-wave equations are discussed. The accuracy
of the scheme at time level s is measured by

L., = max|[vS -8
« = maxio; Vil

where v and v are the exact and numerical solutions respectively. The following equations are used to
test the convergence rate w.r.t space and time

log,o(Ilv = vey, I/ = vy, D
log,((Sxi/Oxis1)

S pital order =

b

log, (Il = vell/ Il = Ve, D
loglo(dti/(”iﬂ)

Time order =

Test Problem 1. Consider the following one-dimensional, three terms fractional PDE

3 o
(0] (0%) a3 — —
(OD, +0D;? + oDy )v()(, 1) = lél —8Ls(|ﬁl viy,t) +g(x,1), t=0, 2<xy <2,

with the initial and boundary conditions v(y,0) = 0, v(=2,f)=e2-t, v(2,t)=é*-t,
where 0 < a1, q, @3 < land 1 <ﬁ1,ﬂ2,ﬁ3 <2.

3 1—
A 3te
The exact solution is v(y, 1) = e¥t and g(y, 1) = ( e¥ + )
kzz; 2 - ) 2 cos %
The calculations in Table 1 is computed by taking @y = 0.2, @, = 0.3, 23 =0.5,6, = 15,6, = 1.6 and

B3 = 1.8 respectively, and the graphical results are shown in Figure 1.

Table 1. Numerical results of Problem 1.

L.,-norm Convergence
ot=0.1 6r=0.01 6r=0.001| Oy; Lo order ot; Lo order
N =50 3.1531e™® 2.7480e™® 2.3322¢73 | 0.08 2.3322¢73 — | 0.1 920767 —

N =100 2011le™ 1.4786e™ 9.9889¢* | 0.04 9.9889¢* —-0.6559 | 0.05 7.8025¢7>  0.2389
6=05| N=500 6.1112¢™* 5.8443¢™* 5.1733¢7* | 0.008 5.1733¢™*  0.4088 | 0.01 1.7136¢™>  0.9418
N =1000 1.5128¢* 1.2021e™* 1.0064e~* | 0.004 1.0064e~* 23619 | 0.005 1.5307¢>  0.1628
N =2000 9.2076e7> 1.7136e™> 1.4994¢7> | 0.002 1.4994¢™>  0.8675 | 0.001 1.4994¢75  0.0128
N =50 2.2231e™ 147747 1.2021e? | 0.08 1.2021¢7° — | 0.1 7.8162¢7 —
N =100 1.8143¢2 1.2663¢> 9.6978¢7* | 0.04 9.6978¢* -1.5694 | 0.05 5.1026e>  0.6152
=1 | N=500 5.9321e™* 4.9506e* 5.7903¢™* | 0.008 5.7903¢*  0.3204 | 0.01 1.0061e>  1.0088
N =1000 1.3412¢™* 1.0211e™* 9.9978¢7 | 0.004 9.9978¢™>  0.6547 | 0.005 9.5492¢° —1.8039
N =2000 7.8162¢ 1.0061e™> 7.8898¢7° | 0.002 7.8898¢7¢  1.7843 | 0.001 7.8898¢¢  0.1186
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=1 =]
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Numerical v({x,
o
j=]
L

[=]
¥

40

351

W)
E]
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o

vy, t) vs Exact v(y
& B

-
o
T

o
T

=
o

Test Problem 2. Consider two dimensional, two term fractional PDE

(0D1+0D"2 v(Xt)—Z v()(,t)+g()(,t), 0<xy<1, t=0,

herel<ak32,1<ﬁks2,
[0, 1]? and

(¢) Numerical v(y, 1)

= (x,y), Domain D =
_ ( L
P \alxp - olyp
VY, O) = 07
v(0,)=0, v(l,1) =

vi(x,0) =0

AIMS Mathematics

g(x,y, 1) = T2 + a)t(x® — xH(* —yh)

+t1+al [Q(x, y’ﬂk) + Q(y’ xaﬂk)]a

Space-order

Time-crder

o 0.0z 004 008 ] 0oz 0.04 0.06 008
ax; x;
#=0.5 =1
0.06 0.06
0.04 Zoos 7
3
£
0.02 Eooz}
| I'u‘
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(d) Time and Space convergence graph

I'+a))

F(2 -y + a/l)

Figure 1. Numerical results of Problem 1.

) with the following initial and boundary conditions;

tl—a/2+(11 (x2 _ x4)(y2 _ y4)
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where
22—
Q(x . B) = —— (12047 + (1 = )" ~ 64 ~ By
cos (7")1"(5 - B)
O A=) + (B - B - BOGTT + (1 - )P,
and
yz _ y4

O, x,B) =

(1264 + (1 = 0)* P~ 6(4 - Bo)x
cos (ZL)I(5 - Bi)

P+ (1= 07 + (3= B = BT + (1 = 7)),

The exact solution for the Problem 2 is v(x,y,?) = t'*4(x* — x*)(y*> — y*), taking @} = 1.8, a, =
1.5, B1 = 1.8, B, = 1.6 and oy = dx = Oy, the numerical computations are shown in Table 2, while
the graphical results are shown in Figure 2.

Table 2. Numerical results of Problem 2.

Le,-norm Convergence
ot=0.1 o6r=0.01 6r=0.0011 oy; Lo order ot; Lo order
N =50 8.2070¢™> 5.9763¢™> 5.7763¢™ | X 5.7763¢7° — | 0.1 1.5185¢77 —_

N=100 25024¢> 1.8192¢ 1.7583¢ | L. 1.7583¢> -0.3531| 0.05 1.2771e”’ -0.0157
0=0.5| N=500 3.4233¢® 24844e® 24013¢7° | L 2.4013¢° 0.8387 | 0.01 1.1017¢”7 -0.0055
N =1000 1.8707¢™% 1.3574¢® 13120 | - 1.3120e®  1.1187 | 0.005 1.0810e~7 -0.0016

N =2000 1.5185¢77 1.1017¢77 1.0648¢77 201W 1.0648¢77 09315 | 0.001 1.0648¢~7  —0.0002
N =50 7.3450e™>  5.9020e™>  5.7690e73 % 5.7690e7° — | 0.1  1.3534¢77 —
N =100 2.235le 1.7964¢™> 1.7560e7° L 1.7560e -0.2885 | 0.05 1.2012¢~7 -0.0158

=1 | N=500 1.3663¢° 1.0982¢% 1.0735¢° L 1.0735¢°  0.8521 | 0.01 1.0879¢~7 —0.0056
N =1000 4.0554¢77 3.2597¢77 3.1863¢7’ L 3.1863¢7  1.1199 | 0.005 1.0742¢7 -0.0016
N =2000 1.3534¢77 1.0879¢77 1.0634¢7’ 1.0634¢77  —0.9471 | 0.001 1.0634¢™7  —0.0004
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Figure 2. Numerical results of Problem 2.

Test Problem 3. Consider the three dimensional, three term fractional PDE

(e3] (0%) 113
(oD + oD + oD vy, 1) = Zal/\/lﬂv(,\/t)+gc\/t) 0<y<l1,t>0,

here 0 < a; <
= (x,y,z), Domain D =
53 B ( i N lid

ol \alxP  aly¥

v(y,0) =0,

v(0,H=0, v(1,0))=0

v(x,y,2,1) = £2(x — x*)(y — y*)(z — Z%) is the exact solution and

1,1 <ﬁk <2,
[0,1]° and

i
+ ) with the following conditions,
lzff

22 %

g(x,y,2,0) = (x=)y—y")(z- Z)ZF ™

AIMS Mathematics

+2| (=3 e= )+ (=) x—xDhy+ (x=22)(y—yDh |
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where h 3 ! ( e - 27
x ~ ) cos (nﬁk) re-pgo T'G-pB
B 3 yl—ﬁk 2y2—ﬂk
B ; —2cos ”ﬂ")(r(z —B0) TG-B )’
~ 3 1 7P 272 Pr
" kz; —2cos (”ﬁ")(r(z —By TG-By )’

)

The numerical results are shown in Table 3, where @y = 0.8, @, = 0.5,a3 = 0.3,8, = 1.8,8, = 1.6,3; =
1.5 and 6y = dx = 0y = 0z, and the graphical results are shown in Figure 3.
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Figure 3. Numerical results of Problem 3.
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Table 3. Numerical results of Problem 3.

Lo,-norm Convergence
or=0.1 ot =0.01 o6r=0.001 | oy; Lo order ot; Lo order

N =50 3.1498¢>  3.1499¢7  2.8200e7> % 2.8200e™ — | 0.1 1.6310e77 —

N =100 1.0020e™> 1.0148¢7> 9.7910e7° % 9.7910e® -0.3531 | 0.05 1.6489¢77 -0.0157
6=05|N=500 6.7709¢7 6.904le”’ 6.9002¢77 ﬁ 6.9002¢”7  0.8387 | 0.01 1.6636¢~7 —0.0055
=1000 3.1128¢77 3.1749¢~7 3.1776e”’ m 3.1776¢77 1.1187 | 0.005 1.6654¢~7 —0.0016

N =2000 1.6310e”7 1.6636e”7 1.6660e~’ 201% 1.6660e~7  0.9315 | 0.001 1.6660e¢~7 —0.0002

N =50 1.5797¢> 1.5968¢™ 1.5089¢7> % 1.5089¢™ — | 0.1 8.1549¢7% —

N =100 5.0150e% 5.0962¢% 5.0095¢7° 1lﬁ 5.0095¢% -0.2885| 0.05 8.2445¢7% -0.0158

=1 | N=500 3.3857¢7 3.4531e77 3.4556¢77 ﬁ 3.4556e7  0.8521 | 0.01 8.3187¢® -0.0056
N =1000 1.5565¢77 1.5876¢~7 1.5900e~’ m 1.5900e7 1.1199 | 0.005 8.3278¢% —-0.0016

N =2000 8.1549¢7% 8.3187¢% 8.3332¢78 zolﬁ 8.3332¢%  -0.9471 | 0.001 8.3332¢7%  —0.0004

Test Problem 4. Consider the following three-dimensional, three term fractional PDE

(OD + oDaz + oD“3)v(/\/ 1) = Z 6(3;5 viy,t) +g(x,1), t=>20, 0<y<

here ( )andﬁB (56+3B+5B
= .X, ,Z =
A=A onE T o T apE T alp
boundary conditions
v(x,0)=0, v(yx,0)=0
v(0,0)=0, v(Z,1)=1r
v(x,y,2,t) = ? sinxsinysinz
t2—ak
g(x,y,z,t) =2sinxsinysinz kZ::‘ (m
3 . T 3 . T
sin(x + 2 sin(y + 5
Wherehx:ZM h”:ZM
pn 2cos("ﬁ") =7 2cos (”’8")

and h, = i

k=1

2cos(

NN

), Domain D = [0, Z]® with the following initial and

) — t2(hx sinysinz + hy sinzsin x + A, sin x sin y),

sin(z + ’%,Bk)

Bk

The numerical approximation are shown in Table 4, where a; = 1.4,a, = 1.5,a3 = 1.8,6, = 1.5, B, =
1.6, B3 = 1.8 and oy = dx = oy = 6z while the graphical results are highlighted in Figure 4.

Table 4. Numerical results of Problem 4.

L.-norm Convergence

ot=0.1 06r=0.01 6r=0.001 | oy; L order ot; L order

N =50 4.7032¢™*  4.5890e 4.5813¢™ 00 4.5813¢7 — | 0.1 9.6855¢7° —_

N =100 1.5833¢™° 1.4792¢>> 1.4768¢> 300 1.4768¢> 1.6333 | 0.05 4.7800e7° 1.0188
0=05|N=500 1.3343¢ 8.7953¢° 4.9924¢° 000 1.7924¢7° 0.5010 | 0.01 9.4229¢77  0.1996
N =1000 1.1123¢™° 3.7645¢° 9.7489¢77 3000 9.7489¢~7 —1.0007 | 0.005 4.7073¢~7 1.0013

N =2000 9.6855¢™° 9.4229¢77 9.4078¢78 4&)0 9.4078¢8 1.4941 | 0.001 9.4078¢~% 0.1911

N =50 2.2231e™* 4.5849¢7  4.5809¢73 T 4.5809¢7 — | 01 9.4902¢7° —_

N =100 1.5403¢™3 1.4779¢>> 1.4767¢7 300 1.4767¢7 1.6333 | 0.05 4.7241¢7% 1.0064

=1 | N=500 3.0656¢ 9.9460e® 9.9381¢°° 000 9.9381¢ % —-0.5633 | 0.01 9.4145¢77 0.1929
N =1000 1.0026¢> 3.0412¢° 3.0387¢’ 3000 3.0387¢77 3.1522 | 0.005 4.7052¢~7 1.0006

N =2000 9.4902¢7° 9.4145¢77 9.3589¢78 000 9.3589¢7%  —0.1802 | 0.001 9.3589¢% 0.1941
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Figure 4. Numerical results of Problem 4.

6. Conclusions

(d) Time and Space convergence graph

In this work, meshfree numerical scheme for some multi terms diffusion equations is discussed.
The method is tested on some numerical examples. The space derivatives are dealt by Riesz,
Rieman-Liouville, Griinwald-Letnikov fractional derivatives while time derivatives are dealt by Caputo
fractional derivative method. Further RBF method is used for space discretization, while time iterations
are performed by finite difference method. The accuracy of the numerical scheme is assessed by L.-
norm. The space and time convergence rates for all problems are computed numerically as well as
graphically. The stability of the scheme is also discussed after formation of numerical scheme and
numerical results confirm that the accuracy increases as the number of collocation points increase.

AIMS Mathematics
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