Research article

Final dynamics of systems of nonlinear parabolic equations on the circle

  • Received: 12 June 2021 Accepted: 18 August 2021 Published: 17 September 2021
  • MSC : 35B41, 35K57, 35K40, 35K90, 35K91

  • We consider the class of dissipative reaction-diffusion-convection systems on the circle and obtain conditions under which the final (at large times) phase dynamics of a system can be described by an ODE with Lipschitz vector field in $ \mathbb{R}^{N} $. Precisely in this class, the first example of a parabolic problem of mathematical physics without the indicated property was recently constructed.

    Citation: Aleksandr V. Romanov. Final dynamics of systems of nonlinear parabolic equations on the circle[J]. AIMS Mathematics, 2021, 6(12): 13407-13422. doi: 10.3934/math.2021776

    Related Papers:

  • We consider the class of dissipative reaction-diffusion-convection systems on the circle and obtain conditions under which the final (at large times) phase dynamics of a system can be described by an ODE with Lipschitz vector field in $ \mathbb{R}^{N} $. Precisely in this class, the first example of a parabolic problem of mathematical physics without the indicated property was recently constructed.



    加载中


    [1] D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981.
    [2] A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992.
    [3] J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001.
    [4] R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997.
    [5] S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, P. Roy. Soc. Edinb. A, 144 (2014), 1245-1327. doi: 10.1017/S0308210513000073
    [6] A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, Wiley, 1994.
    [7] J. C. Robinson, Global attractors: Topology and finite-dimensional dynamics, J. Dyn. Differ. Equ., 11 (1999), 557-581. doi: 10.1023/A:1021918004832
    [8] A. V. Romanov, Finite-dimensional limit dynamics of dissipative parabolic equations, Sb. Math., 191 (2000), 415-429. doi: 10.1070/SM2000v191n03ABEH000466
    [9] A. V. Romanov, Finite-dimensionality of dynamics on an attractor for non-linear parabolic equations, Izv. Math., 65 (2001), 977-1001. doi: 10.1070/IM2001v065n05ABEH000359
    [10] A. N. Carvalho, J. W. Cholewa, G. Lozada-Cruz, M. R. T. Primo, Reduction of infinite dimensional systems to finite dimensions: Compact convergence approach, SIAM J. Math. Anal., 45 (2013), 600-638. doi: 10.1137/10080734X
    [11] A. Kostianko, S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: Periodic boundary conditions, Comm. Pure Appl. Anal., 17 (2018), 285-317. doi: 10.3934/cpaa.2018017
    [12] A. Kostianko, S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions, Comm. Pure Appl. Anal., 16 (2017), 2357-2376.
    [13] A. Kostianko, Bi-Lipschitz Man$\acute{\mathrm{e}}$ projectors and finite-dimensional reduction for complex Ginzburg-Landau equation, Proc. Roy. Soc. A, 476 (2020), 20200144. doi: 10.1098/rspa.2020.0144
    [14] A. Kostianko, C. Sun, S. Zelik, Inertial manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions, 2021, arXiv: 2106.10538.
    [15] I. Kukavica, Fourier parametrization of attractors for dissipative equations in one space dimension, J. Dyn. Differ. Equ., 15 (2003), 473-484. doi: 10.1023/B:JODY.0000009744.13730.01
    [16] H. Triebel, Theory of Function Spaces, Birkhauser Verlag, 1983.
    [17] D. A. Kamaev, Families of stable manifolds of invariant sets of systems of parabolic equations, Russ. Math. Surv., 47 (1992), 185-186. doi: 10.1070/RM1992v047n05ABEH000950
    [18] J. L. Daleckii, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., 1974.
    [19] P. Lankaster, Theory of Matrices, Academic Press, 1969.
    [20] V. I. Yudovich, Periodic differential equations with self-adjoint monodromy operator, Sb. Math., 192 (2001), 455-478. doi: 10.1070/SM2001v192n03ABEH000554
    [21] A. Yu. Goritskii, V. V. Chepyzhov, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds, Sb. Math., 196 (2005), 485-511. doi: 10.1070/SM2005v196n04ABEH000889
    [22] M. Kwak, B. Lkhagvasuren, The cone property for a class of parabolic equations, J. Korean Soc. Ind. Appl. Math., 21 (2017), 81-87.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1664) PDF downloads(71) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog