We consider the class of dissipative reaction-diffusion-convection systems on the circle and obtain conditions under which the final (at large times) phase dynamics of a system can be described by an ODE with Lipschitz vector field in $ \mathbb{R}^{N} $. Precisely in this class, the first example of a parabolic problem of mathematical physics without the indicated property was recently constructed.
Citation: Aleksandr V. Romanov. Final dynamics of systems of nonlinear parabolic equations on the circle[J]. AIMS Mathematics, 2021, 6(12): 13407-13422. doi: 10.3934/math.2021776
We consider the class of dissipative reaction-diffusion-convection systems on the circle and obtain conditions under which the final (at large times) phase dynamics of a system can be described by an ODE with Lipschitz vector field in $ \mathbb{R}^{N} $. Precisely in this class, the first example of a parabolic problem of mathematical physics without the indicated property was recently constructed.
[1] | D. Henry, Geometric Theory of Semilinear Parabolic Equations, Springer, 1981. |
[2] | A. V. Babin, M. I. Vishik, Attractors of Evolution Equations, North-Holland, 1992. |
[3] | J. C. Robinson, Infinite-Dimensional Dynamical Systems, Cambridge University Press, 2001. |
[4] | R. Temam, Infinite-Dimensional Dynamical Systems in Mechanics and Physics, Springer, 1997. |
[5] | S. Zelik, Inertial manifolds and finite-dimensional reduction for dissipative PDEs, P. Roy. Soc. Edinb. A, 144 (2014), 1245-1327. doi: 10.1017/S0308210513000073 |
[6] | A. Eden, C. Foias, B. Nicolaenko, R. Temam, Exponential Attractors for Dissipative Evolution Equations, Wiley, 1994. |
[7] | J. C. Robinson, Global attractors: Topology and finite-dimensional dynamics, J. Dyn. Differ. Equ., 11 (1999), 557-581. doi: 10.1023/A:1021918004832 |
[8] | A. V. Romanov, Finite-dimensional limit dynamics of dissipative parabolic equations, Sb. Math., 191 (2000), 415-429. doi: 10.1070/SM2000v191n03ABEH000466 |
[9] | A. V. Romanov, Finite-dimensionality of dynamics on an attractor for non-linear parabolic equations, Izv. Math., 65 (2001), 977-1001. doi: 10.1070/IM2001v065n05ABEH000359 |
[10] | A. N. Carvalho, J. W. Cholewa, G. Lozada-Cruz, M. R. T. Primo, Reduction of infinite dimensional systems to finite dimensions: Compact convergence approach, SIAM J. Math. Anal., 45 (2013), 600-638. doi: 10.1137/10080734X |
[11] | A. Kostianko, S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part II: Periodic boundary conditions, Comm. Pure Appl. Anal., 17 (2018), 285-317. doi: 10.3934/cpaa.2018017 |
[12] | A. Kostianko, S. Zelik, Inertial manifolds for 1D reaction-diffusion-advection systems. Part I: Dirichlet and Neumann boundary conditions, Comm. Pure Appl. Anal., 16 (2017), 2357-2376. |
[13] | A. Kostianko, Bi-Lipschitz Man$\acute{\mathrm{e}}$ projectors and finite-dimensional reduction for complex Ginzburg-Landau equation, Proc. Roy. Soc. A, 476 (2020), 20200144. doi: 10.1098/rspa.2020.0144 |
[14] | A. Kostianko, C. Sun, S. Zelik, Inertial manifolds for 3D complex Ginzburg-Landau equations with periodic boundary conditions, 2021, arXiv: 2106.10538. |
[15] | I. Kukavica, Fourier parametrization of attractors for dissipative equations in one space dimension, J. Dyn. Differ. Equ., 15 (2003), 473-484. doi: 10.1023/B:JODY.0000009744.13730.01 |
[16] | H. Triebel, Theory of Function Spaces, Birkhauser Verlag, 1983. |
[17] | D. A. Kamaev, Families of stable manifolds of invariant sets of systems of parabolic equations, Russ. Math. Surv., 47 (1992), 185-186. doi: 10.1070/RM1992v047n05ABEH000950 |
[18] | J. L. Daleckii, M. G. Krein, Stability of Solutions of Differential Equations in Banach Space, Amer. Math. Soc., 1974. |
[19] | P. Lankaster, Theory of Matrices, Academic Press, 1969. |
[20] | V. I. Yudovich, Periodic differential equations with self-adjoint monodromy operator, Sb. Math., 192 (2001), 455-478. doi: 10.1070/SM2001v192n03ABEH000554 |
[21] | A. Yu. Goritskii, V. V. Chepyzhov, The dichotomy property of solutions of quasilinear equations in problems on inertial manifolds, Sb. Math., 196 (2005), 485-511. doi: 10.1070/SM2005v196n04ABEH000889 |
[22] | M. Kwak, B. Lkhagvasuren, The cone property for a class of parabolic equations, J. Korean Soc. Ind. Appl. Math., 21 (2017), 81-87. |