This paper is concerned with time decay rates of the strong solutions of an incompressible the coupled modified Navier-Stokes and Maxwell equations in a half space $ \mathbb{R}^3_+ $. With the use of the spectral decomposition of the Stokes operator and $ L^p-L^q $ estimates developed by Borchers and Miyakawa [
Citation: Jae-Myoung Kim. Time decay rates for the coupled modified Navier-Stokes and Maxwell equations on a half space[J]. AIMS Mathematics, 2021, 6(12): 13423-13431. doi: 10.3934/math.2021777
This paper is concerned with time decay rates of the strong solutions of an incompressible the coupled modified Navier-Stokes and Maxwell equations in a half space $ \mathbb{R}^3_+ $. With the use of the spectral decomposition of the Stokes operator and $ L^p-L^q $ estimates developed by Borchers and Miyakawa [
[1] | G. Astarita, G. Marrucci, Principles of non-Newtonian fluid mechanics, London: McGraw-Hill, 1974. |
[2] | W. Borchers, T. Miyakawa, $L^2$ decay rate for the Navier-Stokes flow in halfspaces, Math. Ann., 282 (1988), 139–155. doi: 10.1007/BF01457017 |
[3] | L. Diening, M. Růžička, J. Wolf, Existence of weak solutions for unsteady motions of generalized Newtonian fluids, Ann. Scuola Norm. Sci., 9 (2010) 1–46. |
[4] | B. Q. Dong, Z. M. Chen, Time decay rates of non-Newtonian flows in $R^n_+$, J. Math. Anal. Appl., 324 (2006), 820–833. doi: 10.1016/j.jmaa.2005.12.070 |
[5] | Š. Nečasová, P. Penel, $L^2$ decay for weak solution to equations of non-Newtionian incompressible fluids in the whole space, Nonlinear Anal., 47 (2001), 4181–4191. doi: 10.1016/S0362-546X(01)00535-1 |
[6] | M. D. Gunzburger, O. A. Ladyzhenskaya, J. S. Peterson, On the global unique solvability of initial-boundary value problems for the coupled modified Navier-Stokes and Maxwell equations, J. Math. Fluid Mech., 6 (2004), 462–482. doi: 10.1007/s00021-004-0107-9 |
[7] | B. Guo, P. Zhu, Algebraic $L^2$ decay for the solution to a class system of non-Newtonian fluid in $\mathbb{R}^n$, J. Math. Phys., 41 (2000), 349–356. doi: 10.1063/1.533135 |
[8] | K. Kang, J. M. Kim, Existence of solutions for non-Newtonian fluid flows of a power law type coupled to Maxwell equations, Nonlinear Differ. Equ. Appl., 26 (2019), 1–24. doi: 10.1007/s00030-018-0548-0 |
[9] | J. M. Kim, Temporal decay of strong solutions to the magnetohydrodynamics with power-law type nonlinear viscous fluid, J. Math. Phys., 61 (2020), 1–6. |
[10] | O. A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, 2 Eds., New York: Gordon and Breach, 1969. |
[11] | J. Málek, J. Nečas, M. Rokyta, M. Růžička, Weak and measure-valued solutions to evolutionary PDEs, London: Chapman and Hall, 1996. |
[12] | V. N. Samokhin, On a system of equations in the magnetohydrodynamics of nonlinearly viscous media, Differentsial'nye Uravneniya, 27 (1991), 886–896. |
[13] | M. E. Schonbek, Large time behaviour of solutions to the Navier-Stokes equations, Commun. Part. Differ. Equ., 11 (1986), 733–763. doi: 10.1080/03605308608820443 |
[14] | Y. Shibata, R. Shimada, On a generalized resolvent estimate for Stokes system with Robin boundary condition, J. Math. Soc. Japan, 59 (2007), 469–519. |
[15] | S. Ukai, A solution formula for the Stokes equations in $\mathbb{R}^n_+$, Commun. Pure Appl. Math., 40 (1987), 611–621. doi: 10.1002/cpa.3160400506 |
[16] | W. L. Wilkinson, Non-Newtonian fluids: Fluid mechanics, mixing and heat transfer, London: Pergamon Press, 1960. |