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1. Introduction

One of the most important, and surely one of the most studied, nonlinear evolution partial
differential equations (PDEs) is the Korteweg-de Vries equation (KdV)

ut + λuux + µuxxx = 0, (1.1)

where u has the physical meaning of the wave amplitude and also the wave speed. The KdV equation
arises to model shallow water waves with weak nonlinearities and it has applications in a wide variety
of physical phenomena, such as surface gravity waves [1], propagation of nonlinear acoustic waves in
liquids with small volume concentrations of gas bubbles [2,3], magma flow and conduit waves [4] and
many other applications [5].

http://www.aimspress.com/journal/Math
http://dx.doi.org/ 10.3934/math.20231465


28629

Drinfeld and Sokolov [6, 7] obtained all the simplest generalized KdV equations corresponding to
the classical Kac-Moody algebras of ranks one and two. Among these generalizations is the system of
equations given as follows:

ut = uxxx + uux − vvx,

vt = −2vxxx − uvx.
(1.2)

This system from Eq (1.2) is an evolutionary system for two dependent variables that possesses
a Lax pair and, after linear changes and scale transformations, yields a Hamiltonian form with the
Hamiltonian given by

H = u2 + v2 − 6uv. (1.3)

In the present paper, we have considered a generalization of (1.2). It is called the generalized
Drinfeld-Sokolov (gDS) system

ut + α1uux + β1uxxx + γvδvx = 0,
vt + α2uvx + β2vxxx = 0,

(1.4)

where α1, β1, α2, β2, γ , 0 and δ , −1 are arbitrary constants.
There are several papers in which different kinds of generalizations of system (1.2) have been

studied. However, in many of these papers, the gDS system is named in different ways. We summarized
them, giving the background and the results obtained for some of these systems.

In [8], the so-called Drinfeld-Sokolov system was studied

ut + uxxx − 6uux − 6vx = 0,
vt − 2vxxx + 6uvx = 0.

(1.5)

The authors concluded that the Drinfeld-Sokolov system (1.5) admitted a compatible bi-Hamiltonian
structure and therefore, was an integrable system. This system can be obtained from (1.4) by
substituting α1 = −6, α2 = 6, β1 = 1, β2 = −2, δ = 0, and γ = −6.

Nevertheless, system (1.5) is known as the Satsuma-Hirota system [9]. In this paper, system (1.5)
was transformed into the scalar sixth-order Drinfeld-Sokolov-Satsuma-Hirota equation by using a
Miura-type transformation. Moreover, three different methods were applied to obtain solutions to
the equation.

The same pair of equations from (1.5) were called Bogoyavlenskii coupled KdV equations in [10–
12]. Soliton solutions were found by means of the standard and non-standard truncation Painlevé
expansion and a family of exact solutions was obtained by a Bäcklund transformation.

In [13], system (1.5) was considered but named as a Drinfeld-Sokolov-Satsuma-Hirota. Exact
solutions were obtained using the (G’/G)-expansion method and the generalized tanh-coth method.

System (1.5) was also studied in [14]. Their non-local symmetries were studied and exact solutions
like solitons, cnoidal waves and Painlevé waves were derived through similarity reductions.

Through the Weiss method of truncated singular expansions, authors of [15] constructed an explicit
Bäcklund transformation of the Drinfeld-Sokolov-Satsuma-Hirota system (1.5) into itself. They also
obtained special solutions generated by this transformation.

In [16], solitary wave, kink (anti-kink) and periodic wave solutions were obtained by using the
theory of planar dynamical systems for the so-called generalized Drinfeld-Sokolov equations

ut + uxxx − 6uux − 6 (vα)x = 0,
vt − 2vxxx + 6uvx = 0.

(1.6)
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The previous system (1.6) can be obtained from (1.4) by considering α1 = −6, α2 = 6, β1 = 6, β2 =

−2, δ = α − 1, and γ = −6α.
Some exact solutions of system (1.6) are obtained in [17]; first analytically by using the tanh

function method, and second, numerically through the Adomian decomposition method.
Moreover, in [18] traveling wave solutions for system (1.6) were studied. In particular, the authors

obtained solutions with physical interest like kink and anti-kink wave solutions and periodic wave
solutions.

Therefore, the gDS system presented in this paper embraces all the previous equations and unifies
all the cases under the study of the gDS system (1.4). Note that the named generalized Drinfeld-
Sokolov (1.4) does not have an infinite number of conservation laws, which will be shown in Section 2,
so this system is not completely integrable.

On the other hand, in order to simplify the number of arbitrary constants involved in Eq (1.4), we
have applied a scaling equivalence transformation. It is a change of variables that acts on independent
and dependent variables

t̃ = λ1t,
x̃ = λ2x,
ũ = λ3u,
ṽ = λ4v.

(1.7)

From (1.7), by taking β =
β1
β2

and α = α1
α2

, system (1.4) can be invertibly reduced into a system
involving four parameters instead of six given by

ut + uux + uxxx − γvδvx = 0,
vt + αuvx + βvxxx = 0,

(1.8)

where α, β , 0, γ2 = 1 and δ , −1. Hereafter, without loss of generality, we can restrict the study of
system (1.4) to system (1.8). Moreover, to avoid cases already studied, we consider the extra condition
δ , 0.

This paper has two main objectives. First, it seeks to investigate the conservation laws of the
gDS system (1.8) in order to determine physical properties that remain constant over time. These
conservation laws are crucial in demonstrating whether quantities such as charge, momentum, angular
momentum, and energy are conserved. Second, the paper aims to study the Lie point symmetries and
first-order generalized symmetries of system (1.8), which can be used to obtain reductions and exact
group-invariant solutions.

To achieve the first objective, we used the direct method of multipliers [19–21]. This method
updates the classical method in which Noether’s theorem was applied to the variational symmetries
of the equation [22]. For the second objective, we determined all symmetries by using the Lie
method [21, 23, 24], a widely used technique for deriving analytical solutions of nonlinear partial
differential equations [25, 26].

In a previous paper [27], Lie point symmetries were obtained for system (1.4) with different
parameters and conditions than those of system (1.8). However, the present paper extends this work by
updating the Lie point symmetry classification for the gDS system, studying the first-order generalized
symmetries, constructing the optimal systems of one-dimensional subalgebras, and presenting all the
reduced ordinary differential systems.
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The paper is organized as follows: Section 2 presents the classification of low-order local
conservation laws and interprets the associated conserved quantities. In Section 3, we update the Lie
point symmetry classification of the gDS system (1.8) and study the first-order generalized symmetries.
In Section 4, we construct the optimal systems of one-dimensional subalgebras using the Lie point
symmetries. Finally, in Section 5, we show all the reduced ordinary differential systems as an
application of the Lie point symmetries.

2. Conservation laws

For the generalized Drinfeld-Sokolov system (1.8), a local conservation law is a divergence
expression of the form

DtT (t, x, u, v, ut, vt, . . . ) + DxX(t, x, u, v, ut, vt, . . . ) = 0 (2.1)

that holds for the whole set of solutions (u(t, x), v(t, x)), where Dt and Dx denote the total derivative
operators with respect to t and x, respectively.

T and X are functions depending on t, x, u, v and a finite number of derivatives of u and v. T is
called conserved density, and X is called spatial flux. The expression (T, X) is the conserved current.

A conservation law is called locally trivial if there is a function Θ(t, x, u, v, ut, vt, . . . ) so that the
conserved current is

(T, X) = (Φ + DxΘ,Ψ − DtΘ) ,

where Φ = Ψ = 0 holds on all solutions (u(t, x), v(t, x)). Hence, conservation laws are considered to be
locally equivalent if they differ by a locally trivial conservation law.

Notice that the system is formed by a couple of evolution equations, so through use of the
system (1.8) and its differential consequences, it is possible to eliminate t-derivatives of u and v
in (T, X).

Every non-trivial local conservation law (2.1) for Eq (1.8) can be expressed in its characteristic form

DtT + DxX =
(
ut + uux + uxxx − γvδvx

)
Qu +

(
vt + αuvx + βvxxx

)
Qv, (2.2)

where the pair of functions

Q =
(
Qu,Qv

)
=

(
δT
δu
,
δT
δv

)
(2.3)

is called a multiplier and δ
δu and δ

δv are the Euler operators with respect to the variables u and v,
respectively [21, 23, 28].

Since the Euler operator has the property of annihilating total derivatives, all multipliers (Qu,Qv)
can be found by solving the system of determining equations that is given by

δ

δu

((
ut + uux + uxxx − γvδvx

)
Qu +

(
vt + αuvx + βvxxx

)
Qv

)
= 0,

δ

δv

((
ut + uux + uxxx − γvδvx

)
Qu +

(
vt + αuvx + βvxxx

)
Qv

)
= 0,

(2.4)

holding for the set of solutions of Eq (1.8).
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All non-trivial conservation laws arise from multipliers (2.3), and conservation laws of physical
importance come from low-order multipliers [29–31] of the form

Q = (Qu(t, x, u, v, ux, vx, uxx, vxx),Qv(t, x, u, v, ux, vx, uxx, vxx)) . (2.5)

The term low-order is related to the dependencies of the multiplier function (2.5). In general, a low-
order multiplier depends on the dependent variables u, v and those variables that can be differentiated
up to the leading derivatives of the system. The leading derivatives of system (1.8) are ut, uxxx, vt,

and vxxx. Hence, ut, vt can be obtained by differentiation of u, v respectively, uxxx by differentiation of
u, ux, uxx and vxxx by differentiation of v, vx, and vxx.

Similar to the determining equations for Lie symmetries, here the determining Eq (2.4) for low-
order multipliers split with respect to ut, vt, uxxx, vxxx and differential consequences.

We have obtained a general classification for low-order multipliers (2.5), depending on the
parameters that system (1.8) involves, by solving the determining Eq (2.4). For this purpose we have
used Maple, “rifsimp” and “pdsolve” commands.

Proposition 2.1. The general classification of low-order multipliers (2.5) for the generalized Drinfeld-
Sokolov system (1.8) is:

(i) For α, β , 0, γ2 = 1, and δ , 0,−1,
Q1 = (1, 0). (2.6)

(ii) There are additional multipliers for the following special α, β, δ:

a) For δ = 1,
Q2 = (αu, γv) . (2.7)

b) For δ = 1 and 2α = β,

Q3 =
(
(2β − 2)uxx + (β − 1)u2 + γv2, 2γ(uv + 6vxx)

)
. (2.8)

c) For δ = 1 and α = −1,
Q4 = (−tu + x, γtv) . (2.9)

d) For α = 1
2 and β = 1,

Q5a = (v, u) , (2.10a)

Q5b =
(
v2, 2uv + 12vxx

)
. (2.10b)

Proof. The multipliers determining system (2.4) leads to an overdetermined linear system of 57
equations. By solving the easiest equations, we obtain that

Qu = A(t, x) + B(t, v) + C(t, x)u + D(t, x)v + E(t, x)uv + F(t)u2

+
(
2∂I(t,x)

∂x −G(t, x)
)

vx + H(t)uxx + I(t, x)vxx,

Qv = K(t, x, v) +
(
∂B(t,v)
∂v + L(t, x)

)
u + 1

2 E(t, x)u2 + G(t, x)ux + I(t, x)uxx + J(t)vxx,
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related by the following conditions:

(1 − β) I = 0,
(1 − β) G − 3βIx = 0,
L − D −Gx + Ixx = 0,

(1 − β) G + (2β − 5) Ix = 0,
D − βL + ((1 − β)E + (1 − α)I) u + γvδH

+(1 − β)Bv + (1 − 3β)Gx − (1 + 3β)Ixx = 0,
D − βL + ((1 − β)E + (1 − α)I) u + γvδH

+(1 − β)Bv + (β − 3)Gx + (9 − β)Ixx = 0,
αv2

(
4uvxBv + 3u2vxE + 4(uvx)xIx + 2uvxIxx + 4(uxvx)xI
−2uvxGx − 2uvxxG + 2vxvxxJ + 2vxK + 4uvxL)

−2γvδvx

(
v2C + v3E + 2uv2F + (3δvvxx − δvx

2 + δ2vx
2)H

)
2uv2 (−Ax − vxBv −Ct −Cxxx − vxD − 3(vxEx)x + (vxGx)x

−(2vxIxx + 3vxxIx)) − uv3 (Dx + Et + Exxx)
−2u2v2 (Cx + F′ + (vE)x) − 2v3 (Dt + Dxxx + 3(uxEx)x)

+2v2
(
−At − Axxx − Bt − 3vxvxxBvv − vx

3Bvvv − 3(uxCx)x − 3(vxDx)x

−3(uxvx)xE − 6uxvxEx − 6uxuxxF + vxGt + 3vxxGxx + vxGxxx

+3uxuxxH − uxxHt − 2vxItx − 7vxxIxxx − 2vxIxxxx − vxxIt) = 0,
−αv2

(
4uuxBv + 3u2uxE + u3Ex + 2uuxGx + 2(uux)xG

+2uxx(uI)x − 2(uxvx)xJ + 2(uK)x + 4uuxL + 2u2Lx

)
−βv2

(
6(uxvx)xBvv + 6vx(uvx)xBvvv + 2uvx

3Bvvvv + 6ux(uEx)x

+6uxx(uE)x + u2Exxx + 2uxGxxx + 6uxxGxx + 2uxxIxxx

+6(vxKxv)x + 6vx(vxKvv)x + 2Kxxx + 2vx
3Kvvv + 6(uxLx)x + 2uLxxx

)
+2γvδ

(
v2Ax + v2(uC)x + v3Dx + v3(uE)x + 2uv2uxF

−2v2(vxG)x − δvvx
2G + δ(1 − δ)vx

3I + 3v2(vxIx)x − 3δvvxvxxI
)

+2uv2 (−Bvt + uxBv + uxD + (uxG)x − uxIxx − Lt) + u2v2 (−Et + 2uxE)
+2v2

(
ux

2G − uxGt + 3uxuxxI − uxxIt − vxxJ′ − Kt + ut (D + Gx − Ixx − L)
)

= 0.

(2.11)

The solutions of system (2.11) lead to the different cases listed in Proposition 2.1. �

Once the multipliers are found, the corresponding non-trivial conserved currents can be obtained by
integrating the characteristic equation (2.2).

Theorem 2.2. All non-trivial low-order local conservation laws of the generalized Drinfeld-Sokolov
system (1.8) are:

(i) For α, β , 0, γ2 = 1, and δ , 0,−1,

T1 = u,

X1 = uxx +
1
2

u2 −
γ

δ + 1
vδ+1.

(2.12)

(ii) For special values of the parameters α, β, δ:
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a) For δ = 1,

T2 =
1

2γ

(
αu2 + γv2

)
,

X2 =
1

6γ

(
2αu3 + 6αuuxx − 3αu2

x + 6βγvvxx − 3βγv2
x

)
.

(2.13)

b) For δ = 1 and 2α = β,

T3 =
1

36γ

[
(β − 1)

(
u3 − 3u2

x

)
+ 3γuv2 − 18γv2

x

]
,

X3 =
1

48γ

[
(β − 1)

(
u4 + 4u2uxx + 8utux + 4u2

xx

)
+ 2γ

(
u2v2 + 2uxxv2 + 24vtvx

)
− γ2v4

+8βγ
(
uvvxx + uv2

x − uxvvx + 3v2
xx

)]
.

(2.14)
c) For δ = 1 and α = −1,

T4 =
1

2γ

(
γtv2 − tu2 + 2xu

)
,

X4 =
1

6γ

(
−2tu3 + 3xu2 − 6tuuxx + 3tu2

x − 6ux + 6xuxx − 3γxv2 − 3βγtv2
x + 6βγtvvxx

)
.

(2.15)
d) For α = 1

2 and β = 1,

T5a = uv,

X5a =
1
2

u2v + uxxv + uvxx − uxvx −
γ

δ + 2
vδ+2; (2.16)

T5b7 =
1
12

uv2 −
1
2

6v2
x,

X5b =
1
24

(
u2v2 + 2uxxv2 + 4uvvxx − 4uxvvx + 4uv2

x + 24vtvx + 12v2
xx

)
−

γ

12(δ + 3)
vδ+3.

(2.17)

With regards to the physical meaning of these conservation laws, every conservation law has
associated a conserved quantity of the form

C[u, v] =

∫
Ω

T dx, (2.18)

where Ω is the domain of solutions u(t, x), v(t, x).
In the general case, where α, β , 0, γ2 = 1 and δ , 0,−1, the admitted conservation law (2.12)

yields the conserved quantity

M[u, v] =

∫
Ω

u dx (2.19)

that is the mass density.
Conservation law (2.13), in the case δ = 1, leads to the conserved quantity

P[u, v] =

∫
Ω

1
2γ

(
αu2 + γv2

)
dx, (2.20)
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which is the momentum density.
In the case where δ = 1 and 2α = β, the conservation law (2.14) yields the conserved quantity

E[u, v] =

∫
Ω

1
36γ

[
(β − 1)

(
u3 − 3u2

x

)
+ 3γuv2 − 18γv2

x

]
dx, (2.21)

which represents the total energy for solutions u(t, x), v(t, x).
For δ = 1 and α = −1, the conserved quantity associated to conservation law (2.15) is

G[u, v] =

∫
Ω

1
2γ

(
γtv2 − tu2 + 2xu

)
dx, (2.22)

which is the Galilean momentum.
In the case where α = 1

2 and β = 1, the two admitted conservation laws (2.16) and (2.17) yield the
conserved quantities

A[u, v] =

∫
Ω

uv dx, (2.23)

T [u, v] =

∫
Ω

1
12

uv2 −
1
2

6v2
x dx. (2.24)

The first one represents the angular momentum, and the second one the energy-momentum.

3. Symmetries

3.1. Lie point symmetries

Now, we consider a one-parameter Lie group of point transformations acting on independent and
dependent variables

t̃ = t + ετ(t, x, u, v) + O(ε2),
x̃ = x + εξ(t, x, u, v) + O(ε2),
ũ = u + εηu(t, x, u, v) + O(ε2),
ṽ = v + εηv(t, x, u, v) + O(ε2),

(3.1)

where ε is the group parameter. The associated vector field has the form

X = τ(t, x, u, v)∂t + ξ(t, x, u, v)∂x + ηu(t, x, u, v)∂u + ηv(t, x, u, v)∂v. (3.2)

The Lie group of transformations (3.1) are the point symmetries admitted by the system if and only
if it leaves invariant the solution space of system (1.8) . It is known as the infinitesimal criterion of
invariance:

X(3)
(
ut + uux + uxxx − γvδvx

)
= 0,

X(3)
(
vt + αuvx + βvxxx

)
= 0,

(3.3)

when the gDS system (1.8) holds, where X(3) is the third-order prolongation of the vector field (3.2).
Equation (3.3) is known as the determining equation. These equations can be split by considering

u, v and its derivatives as independent variables. Consequently, it leads to an overdetermined linear
system of equations for the infinitesimals τ, ξ, ηu, ηv together with the arbitrary parameters, α, β, γ, δ
subject to the classification conditions α, β , 0, γ2 = 1, δ , 0,−1. We obtain the following result.
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Theorem 3.1. The classification of point symmetries admitted by the generalized Drinfeld-Sokolov
system (1.8) is given by:

(i) For the non-zero arbitrary parameters α, β, γ, δ, there are three infinitesimal generators

X1 =∂t, (3.4a)
X2 =∂x, (3.4b)

X3 =3t∂t + x∂x − 2u∂u −
4v
δ + 1

∂v. (3.4c)

(ii) For α = 1, an additional point symmetry is admitted

X4 = t∂x + ∂u. (3.5)

Proof. The symmetry determining system (3.3) leads to an overdetermined linear system of 33
equations. By solving the easiest equations for the infinitesimals, we obtain that τ = τ(t), ξ = ξ(t, x),
ηu = A(t)v + B(t, x, u) and ηv = C(t)u + D(t, x, v), which must verify

−ξxx + uxBuu + Bxu = 0,

−ξxx + vxDvv + Dxv = 0,

−vtτ
′ − βvxξxxx + (2αuvx + 3vt) ξx − vxξt + αvvxA + αvxB

+
(
βγvδvx − β(ut + uux) + ut + αuux

)
C + uC′

+Dt + αuDx + 3βv2
xDvv + βv3

xDvvv + 3βvxDxxv + βDxxx = 0,

−βutvτ′ + βv
(
−uxξt + (2uux + 3ut − 2γvδvx)ξx − uxξxxx

)
+ ((β − α)uvx + βuxv + (β − 1)vt) vA + βv2A′

+βv
(
uxB + Bt + uBx + Bxxx + u3

xBuuu + 3u2
xBxuu + 3u2

xBxxu

)
−βγvδ (δuvxC + uxvC + δvxD + vDx − vvxDu + vvxDv) = 0.

(3.6)

From the first two equations of system (3.6), we obtain that B(t, x, u) = E(t, x)u+F(t, x) and D(t, x, v) =

G(t, x)v + H(t, x). Substituting the functions in the previous system, we get

−ξxx + Ex = 0,

−ξxx + Gx = 0,

−vtτ
′ − vxξt + (3vt + 2αuvx) ξx − βvxξxxx + αvvxA

+
(
(1 − β)ut + (α − β)uux + βγvδvx

)
C + uC′ + αuvxE + αvxF

+vGt + αuvGx + 3βvxGxx + βvGxxx + Ht + αuHx + βHxxx = 0,

−βutvτ′ + βv
(
−uxξt + 2uuxξx + 3utξx − 2γvδvxξx − uxξxxx

)
+ ((β − α)uvx + βuxv + (β − 1)vt) vA + βv2A′ − βγvδ (δuvxC + uxvC)

+βv
(
uuxE + γvδvxE + uEt + u2Ex + 3uxExx + uExxx

)
+βv (uxF + Ft + uFx + Fxxx)

−βγvδ+1 ((δ + 1)vxG + vGx) − βγvδ (vxH + vHx) = 0.

(3.7)
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Now the functions involved in system (3.7) do not depend on u or v, so these equations split with
respect to u, v and their derivatives. We derive and solve this overdetermined system with the help
of Maple software. Using the commands “rifsimp” and “pdsolve”, we split the system and solve the
equations with results leading to the different cases listed in Theorem 3.1. �

The transformation generated by a point symmetry is obtained by solving the initial value problem:

∂t̃
∂ε

= τ(t̃, x̃, ũ, ṽ), t̃|ε=0 = t,

∂x̃
∂ε

= ξ(t̃, x̃, ũ, ṽ), x̃|ε=0 = x,

∂ũ
∂ε

= ηu(t̃, x̃, ũ, ṽ), ũ|ε=0 = u,

∂ṽ
∂ε

= ηv(t̃, x̃, ũ, ṽ), ṽ|ε=0 = v.

Hence, for the symmetry generators (3.4a)–(3.4c) and (3.5) of the generalized Drinfeld-Sokolov
system (1.8), the corresponding transformations are respectively given by:

(t̃, x̃, ũ, ṽ)1 = (t + ε, x, u, v) , (3.8a)
(t̃, x̃, ũ, ṽ)2 = (t, x + ε, u, v) , (3.8b)

(t̃, x̃, ũ, ṽ)3 =
(
te3ε, xeε, ue−2ε, ve−

4ε
δ+1

)
, (3.8c)

(t̃, x̃, ũ, ṽ)4 = (t, x + tε, u + ε, v) . (3.8d)

We interpret the symmetries by looking at the forms of the transformations. In case 1,
transformation (3.8a) represents a time-translation, transformation (3.8b) represents a space-translation
and transformation (3.8c) represents a scaling. For case 2, the additional symmetry (3.8d) is a Galilean
boost.

3.2. First-order generalized symmetries

A first-order symmetry corresponds to a one-parameter Lie group of transformations in which
the transformation of (t, x, u, v) necessarily depends on first-order derivatives of u and v. Hence, its
transformations are given by

t̃ = t + ετ(t, x, u, v, ut, ux, vt, vx) + O(ε2),
x̃ = x + εξ(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ũ = u + εηu(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ṽ = v + εηv(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ũt = ut + εζ t(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ũx = ux + εζ x(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ṽt = vt + εσt(t, x, u, v, ut, ux, vt, vx) + O(ε2),
ṽx = vx + εσx(t, x, u, v, ut, ux, vt, vx) + O(ε2),

(3.9)
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where ε is the group parameter. Thus, the infinitesimal generator takes the form

X = τ∂t + ξ∂x + ηu∂u + ηv∂v + ζ t∂ut + ζ x∂ux + σt∂vt + σx∂vx . (3.10)

Following a similar procedure to the one shown before for the point symmetries, applying the
criterion of invariance and considering that ζ t, ζ x, σt, σx do not cancel at the same time, we have
obtained the following result.

Proposition 3.2. The generalized Drinfeld-Sokolov system (1.8) does not admit first-order generalized
symmetries.

Proof. By splitting and solving the system of determining equations

X(3)
(
ut + uux + uxxx − γvδvx

)
= 0,

X(3)
(
vt + αuvx + βvxxx

)
= 0,

it is straightforward to prove that the solutions do not depend on first-order derivatives of the
dependent variables. Therefore, all the first-order symmetries reduce to prolonged point symmetries of
system (1.8). �

4. Optimal systems

The construction of the optimal system is an efficient way of classifying all possible group-invariant
solutions. From these group-invariant solutions, every other solution can be derived.

For one-dimensional subalgebras, finding an optimal system is the same as classifying the orbits of
the adjoint representation. Essentially this problem is attacked by taking a general element X in the
symmetry algebra and subjecting it to various adjoint transformations so as to simplify it as much as
possible.

For further details on determining optimal systems, see [21, 32, 33].
Let us consider a general element from the Lie algebra and reduce it to its simplest equivalent form

by using the chosen adjoint transformations

Ad
(
exp (εXi)

)
X j = X j − ε

[
Xi,X j

]
+
ε2

2!

[
Xi,

[
Xi,X j

]]
− · · · ,

where ε is a real number, and
[
Xi,X j

]
denotes the commutator operator defined by[

Xi,X j

]
= XiX j − X jXi.

The commutator and adjoint tables of the generalized Drinfeld-Sokolov system (1.8) are given in
Tables 1 and 2, corresponding to the general case and the α = 1 case, respectively. By using these
tables, we simplify as much as possible the maximal Lie algebra (made up from a linear combination
of all its infinitesimal generators) through the adjoint table in order to get the optimal systems. It
is important to point out paper [34], where all three and four-dimensional indecomposable real Lie
algebras are classified.
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Table 1. Commutator table.[
Xi,X j

]
X1 X2 X3 X4

X1 0 0 3X1 X2

X2 0 0 X2 0

X3 −3X1 −X2 0 2X4

X4 −X2 0 −2X4 0

Table 2. Adjoint table.

Ad X1 X2 X3 X4

X1 X1 X2 X3 − 3εX1 X4 − εX2

X2 X1 X2 X3 − εX2 X4

X3 e3εX1 eεX2 X3 e−2εX4

X4 X1 + εX2 X2 X3 + 2εX4 X4

Theorem 4.1. For the generalized Drinfeld-Sokolov system (1.8), an optimal system of one-
dimensional subalgebras in each case is given by:

(i) Case α, β, γ, δ non-zero arbitrary constants with α , 1. An optimal system of one-dimensional
subalgebras is given by

{X1 + c1X2,X2,X3} . (4.1)

(ii) Case α = 1 and β, γ, δ non-zero arbitrary constants. An optimal system of one-dimensional
subalgebras is given by

{X1 + c1X2,X1 + c2X4,X2,X3,X4} . (4.2)

Proof. Consider a general element in the symmetry algebra X = a1X1 + a2X2 + a3X3 + a4X4. The goal
is to simplify as many of the ai coefficients as possible through the application of adjoint maps to X.
Without loss of generality, suppose first that a1 , 0. We can assume that a1 = 1. Referring to Table 2, if
we act on X by X1 we can make the coefficient of X2 vanish, obtaining a new X′ = X1+a′3X3+a′4X4. We
continue acting on X′ to cancel the remaining coefficients until no further simplifications are possible.
Following a similar procedure for the rest of cases, we get the results of Theorem 4.1. �

5. Symmetry reductions

We reduce the generalized Drinfeld-Sokolov system (1.8) of PDEs to a system of two ordinary
differential equations (ODEs) by using the symmetries shown in Theorem 3.1 and the optimal systems
of one-dimensional subalgebras in Theorem 4.1.
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These reductions are obtained by doing a change of variables with the solutions of the characteristic
system

dt
τ

=
dx
ξ

=
du
ηu

=
dv
ηv
. (5.1)

From (5.1), we obtain the similarity variable z and the similarity solutions U(z), V(z), which are
substituted into system (1.8) to get the reduced one.

5.1. Reduced system associated to X1 + c1X2

Considering α, β non-zero arbitrary parameters and by taking into account the generator X1 + c1X2,
we reduce the gDS system (1.8) into a nonlinear ODE system.

From (5.1), we obtain the invariants

z = x − c1t,
{

u(t, x) = U(z),
v(t, x) = V(z).

(5.2)

The previous transformation (5.2) is called a traveling wave, where c is the wave speed. The group-
invariant solution (5.2) reduces Eq (1.8) to the following third-order ODE system:{

(U − c1) U′ + U′′′ − γVδV ′ = 0,
(αU − c1) V ′ + βV ′′′ = 0.

(5.3)

Let us assume that system (5.3) has a solution of the form

U(z) = H(z), (5.4a)
V(z) = U(z)n, (5.4b)

where n is a parameter and H(z) is a solution of Jacobi equation: (H′)2 = r + pH2 + qH4, where r, p
and q are constants.

Substituting the Jacobi elliptic sine function, U(z) = sn(z, k)m and (5.4b) in the reduced system (5.3),
we have concluded that for m = 2, n = −2, 1, c1 = −(k + 1)m2 and k as an arbitrary parameter, an exact
solution of the gDS system (1.8) is

u(t, x) = sn(x − c1t, k)m,

v(t, x) = sn(x − c1t, k)nm.
(5.5)

For example, considering n = 1, k = 1 and taking into account that sn(z, 1) = tanh(z), a special solution
of the gDS system (1.8) is

u(t, x) = v(t, x) = tanh2(x + 8t), (5.6)

a dark soliton represented in Figure 1.
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Figure 1. Dark soliton solution (5.6) of the gDS system (1.8).

5.2. Reduced system associated to X3

In the case of α, β non-zero arbitrary parameters and by using the generator X3, we obtain the
similarity variable and solutions

z = xt
−1
3 ,

 u(t, x) = U(z)t
−2
3 ,

v(t, x) = V(z)t
−4

3(δ+1) .
(5.7)

Hence, the invariants (5.7) reduce system (1.8) to the third-order ODE system:

{
(3U − z) U′ − 2U + 3U′′′ − 3γVδV ′ = 0,
(δ + 1) (−3αU + z) V ′ + 4V − 3β (δ + 1) V ′′′ = 0.

(5.8)

5.3. Reduced system associated to X1 + c2X4

In the case of α = 1, β a non-zero arbitrary parameter, and considering the generator X1 + c2X4, we
obtain the similarity variable and solutions

z =
2x − c2t2

2
,

 u(t, x) = c2t + U(z),

v(t, x) = V(z).
(5.9)

By substituting (5.9) into system (1.8), we reduce it to the third-order ODE system:

{
c2 + UU′ + U′′′ − γVδV ′ = 0,
UV ′ − 3βV ′′′ = 0.

(5.10)
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5.4. Reduced system associated to X4

In the case of α = 1, β a non-zero arbitrary parameter, and considering the generator X4, we obtain
the similarity variable and solutions

z = t,

 u(t, x) =
x
t

+ U(z),

v(t, x) = V(z).
(5.11)

By substituting (5.11) into system (1.8), we reduce it to the ODE system:

{
U + zU′ = 0,
V ′ = 0.

(5.12)

The trivial solution of the previous ODE system is U(z) = k1
z ,V(z) = k0, where k0, k1 are arbitrary

constants.

6. Conclusions

We have exhaustively classified all low-order local conservation laws that are admitted by the
generalized Drinfeld-Sokolov system (1.8). This involved identifying all multipliers with a general
low-order form (2.5) and determining their corresponding conserved densities and fluxes. Furthermore,
we have associated each conserved quantity with its physical property, such as mass density,
momentum density, total energy, Galilean momentum, angular momentum, and energy-momentum,
which are all relevant to system (1.8).

Our analysis has revealed that first-order generalized symmetries can be reduced to Lie symmetries,
and we have presented a classification of the Lie point symmetries. These symmetry transformations
have been interpreted as translations, scalings, and Galilean boosts. Additionally, we have constructed
optimal systems of one-dimensional subalgebras and used them to reduce the PDE system to ODE
systems.

Finally, we have obtained new solutions for the traveling wave case using Jacobi elliptic functions.
In particular, for special values of the parameters, we have shown a solution of physical interest: a dark
soliton.
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