In this paper, the structures of non-solvable groups whose all proper subgroups have at most seven character values are identified.
Citation: Shitian Liu, Runshi Zhang. Finite groups all of whose proper subgroups have few character values[J]. AIMS Mathematics, 2023, 8(4): 9074-9081. doi: 10.3934/math.2023454
In this paper, the structures of non-solvable groups whose all proper subgroups have at most seven character values are identified.
[1] | Y. Berkovich, D. Chillag, E. Zhmud, Finite groups in which all nonlinear irreducible characters have three distinct values, Houston J. Math., 21 (1995), 17–28. |
[2] | M. Bianchi, D. Chillag, A. Gillio, Finite groups with many values in a column or a row of the character table, Publ. Math. Debrecen, 693 (2006), 281–290. https://doi.org/10.5486/PMD.2006.3523 doi: 10.5486/PMD.2006.3523 |
[3] | J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the low-dimensional finite classical groups, Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139192576 |
[4] | T. Breuer, The GAP character table library, Version 1.2.1, 2012. Available from: http://www.math.rwth-aachen.de/Thomas.Breuer/ctbllib. |
[5] | J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Eynsham: Oxford University Press, 1985. |
[6] | E. Giannelli, Characters of odd degree of symmetric groups, J. Lond. Math. Soc., 96 (2017), 1–14. https://doi.org/10.1112/jlms.12048 doi: 10.1112/jlms.12048 |
[7] | B. Huppert, Endliche gruppen I, Berlin: Springer-Verlag, 2013. |
[8] | B. Huppert, Character theory of finite groups, Providence: American Mathematical Society, 2006. https://doi.org/10.1515/9783110809237 |
[9] | B. Huppert, O. Manz, Nonsolvable groups, whose character degrees are products of at most two prime numbers, Osaka J. Math., 23 (1986), 491–502. http://projecteuclid.org/euclid.ojm/1200779340 |
[10] | I. M. Isaacs, Character theory of finite groups, New York: Dover Publications, Inc., 1994. |
[11] | P. B. Kleidman, The subgroup structure of some finite simple groups, Ph.D thesis, Trinity College, Cambridge, 1987. |
[12] | M. L. Lewis, D. L. White, Nonsolvable groups all of whose character degrees are odd-square-free, Comm. Algebra, 39 (2011), 1273–1292. https://doi.org/10.1080/00927871003652652 doi: 10.1080/00927871003652652 |
[13] | S. Liu, On groups whose irreducible character degrees of all proper subgroups are all prime powers, J. Math., 2021 (2021), 6345386. https://doi.org/10.1155/2021/6345386 doi: 10.1155/2021/6345386 |
[14] | S. Liu, Finite groups for which all proper subgroups have consecutive character degrees, AIMS Math., 8 (2023), 5745–5762. https://doi.org/10.3934/math.2023289 doi: 10.3934/math.2023289 |
[15] | S. Liu, D. Lei, X. Li, On groups with consecutive three smallest character degrees, ScienceAsia, 45 (2019), 474–481. https://doi.org/10.2306/scienceasia1513-1874.2019.45.474 doi: 10.2306/scienceasia1513-1874.2019.45.474 |
[16] | S. Liu, X. Tang, Nonsolvable groups whose degrees of all proper subgroups are the direct products of at most two prime numbers, J. Math., 2022 (2022), 1455299. https://doi.org/10.1155/2022/1455299 doi: 10.1155/2022/1455299 |
[17] | S. Y. Madanha, Finite groups with few character values, Comm. Algebra, 50 (2022), 308–312. https://doi.org/10.1080/00927872.2021.1957107 doi: 10.1080/00927872.2021.1957107 |
[18] | G. Malle, A. Moretó, Nonsolvable groups with few character degrees, J. Algebra, 294 (2005), 117–126. https://doi.org/10.1016/j.jalgebra.2005.01.006 doi: 10.1016/j.jalgebra.2005.01.006 |
[19] | O. Manz, Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Algebra, 94 (1985), 211–255. https://doi.org/10.1016/0021-8693(85)90210-8 doi: 10.1016/0021-8693(85)90210-8 |
[20] | O. Manz, Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Algebra, 96 (1985), 114–119. https://doi.org/10.1016/0021-8693(85)90042-0 doi: 10.1016/0021-8693(85)90042-0 |
[21] | B. Miraali, S. M. Robati, Non-solvable groups each of whose character degrees has at most two prime divisors, J. Algebra Appl., 20 (2021), 2150030. https://doi.org/10.1142/S0219498821500304 doi: 10.1142/S0219498821500304 |
[22] | G. Qian, Finite groups with consecutive nonlinear character degrees, J. Algebra, 285 (2005), 372–382. https://doi.org/10.1016/j.jalgebra.2004.11.021 doi: 10.1016/j.jalgebra.2004.11.021 |
[23] | G. H. Qian, Y. X. Zhu, Solvable groups admitting an element on which distinct irreducible characters take distinct values, Chinese Ann. Math. Ser. A, 26 (2005), 1–6. |
[24] | T. Sakurai, Finite groups with very few character values, Comm. Algebra, 49 (2021), 658–661. https://doi.org/10.1080/00927872.2020.1813747 doi: 10.1080/00927872.2020.1813747 |
[25] | J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc., 74 (1968), 383–437. https://doi.org/10.1090/S0002-9904-1968-11953-6 doi: 10.1090/S0002-9904-1968-11953-6 |
[26] | P. H. Tiep, H. P. Tong-Viet. Finite groups with many values in a column of the character table, J. Algebra Appl., 17 (2018), 1850196. https://doi.org/10.1142/S0219498818501967 doi: 10.1142/S0219498818501967 |
[27] | H. Xu, G. Chen, Y. Yan, A new characterization of simple $K_3$-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 (2014), 5374–5380. https://doi.org/10.1080/00927872.2013.842242 doi: 10.1080/00927872.2013.842242 |