Mathematics

DOI: 10.3934/math. 2023454
Received: 30 December 2022
Revised: 11 January 2023
Accepted: 29 January 2023
Published: 13 February 2023

Brief report

Finite groups all of whose proper subgroups have few character values

Shitian Liu ${ }^{1}$ and Runshi Zhang ${ }^{2, *}$

${ }^{1}$ School of Mathematics, Lianhu Campus, Sichuan Institute of Arts and Science Dazhou Sichuan 635000, China
${ }^{2}$ School of Mathematical Science and Statistics Sichuan University of Science and Engineering Zigong Sichuan 643000, China

* Correspondence: Email: stxyzhangrs@ 163.com; Tel: +8615756390565.

Abstract

In this paper, the structures of non-solvable groups whose all proper subgroups have at most seven character values are identified.

Keywords: simple group; character value; proper subgroup
Mathematics Subject Classification: 20C15, 20C33

1. Introduction

We always think that groups under consideration are all finite. Let G be a group and $\operatorname{Irr}(G)$ be the set of all complex irreducible characters of a group G. Let g be an element of a group G. Then denote by $\operatorname{cv}(G)=\{\chi(g): \chi \in \operatorname{Irr}(G), g \in G\}$, the set of character values of G, so $\operatorname{cd}(G) \subseteq \operatorname{cv}(G)$ where $\operatorname{cd}(G)=\{\chi(1): \chi \in \operatorname{Irr}(G)\}$ is the set of character degrees of a group G. We will use these symbols in this paper:
$E_{p^{n}}$: the elementary abelian p-group of order p^{n};
C_{n} : the cyclic group of order n;
Q_{8} : the quaternion group of order 8 ;
$D_{2 n}$: the dihedral group of order $2 n$.
Character values of finite groups have large influence on their structures; see [1,2,23,26]. Recently, Madanha [17] and Sakural [24] studied the influence of character values in a character table on the structure of a group respectively. In particular, Madanha in [17] showed that if a non-solvable group G with $|\operatorname{cv}(G)|=8$, then $G \cong \mathrm{PSL}_{2}(5)$ or $\mathrm{PGL}_{2}(5)$.

Some scholars are of interest in the set $\operatorname{cd}(G)$. For example, the structure of finite groups are determined if the degrees of finite groups are either prime powers [13, 19, 20] or divisible by two prime
divisors [21] or the direct product of at most two primes [9, 16] or square-free [12] or p^{\prime}-numbers [6] or are consecutive $[8,14,15,22]$.

In this paper, we go on the subgroup's character values and group structure, namely, we replace the condition "the number of character values of a group is small" with the condition "the number of character values of each proper subgroup of a group is small". For convenient arguments, we introduce the following definition.

Definition 1.1. Let $\sum G$ be the set of the proper subgroups of a group G, and n a positive integer. A group is called a $\mathbf{p c v}_{n}$-group if for each $H \in \sum G,|\operatorname{cv}(H)| \leq n$.

We mainly show the following.
Theorem 1.2. If G is a $\mathbf{p c v}_{n}$-group with $n \leq 5$, then G is solvable.
Theorem 1.2 is corresponding to [10, Theorem 12.15] or [17, Theorem 1.1] which says that a finite group with $|\operatorname{cv}(G)| \leq 7$ or $|\operatorname{cd}(G)| \leq 3$ is solvable. Here we use the structure of a minimal simple group to prove Theorem 1.2.

We also obtain the following result which is corresponding to [17, Theorem 1.2] or [18, Theorem 2.2].

Theorem 1.3. Let G be a non-solvable $\mathbf{p c v}_{n}$-group.
(1) If $n=6$, then G is isomorphic to A_{5}.
(2) If $n=7$, then G is isomorphic to $\operatorname{PSL}_{2}(q)$ with $q \in\{5,7\}$.

The structure of this short paper is as follows. In Section 2, some basic results are given, and in Section 3, the structures of non-solvable $\mathbf{p c v}_{6}-$ and $\mathbf{p c v}_{7}$-groups are identified respectively. For the other notions and symbols are standard, please see [5,10].

2. Minimal simple groups

In this section, we assemble some results needed. First result is due to Madanha.
Lemma 2.1. [17, Theorem 1.1] If $|\operatorname{cv}(G)| \leq 7$, then G is solvable.
A minimal simple group is a simple group of composite order all of whose proper subgroups are solvable.

Lemma 2.2. [25, Corollary 1] Every minimal simple group is isomorphic to one of the following minimal simple groups:
(1) $\operatorname{PSL}_{2}\left(2^{p}\right)$ for p a prime;
(2) $\mathrm{PSL}_{2}\left(3^{p}\right)$ for p an odd prime;
(3) $\operatorname{PSL}_{2}(p)$, for p any prime exceeding 3 such that $p^{2}+1 \equiv 0(\bmod 5)$;
(4) $S z\left(2^{p}\right)$ for p an odd prime;
(5) $\mathrm{PSL}_{3}(3)$.

Let A be a group, and let $\exp A$ be a number which is minimal such that the order of all elements from A divides $\exp A$. The following two lemmas are given because the subgroups of a group can control the structure of a group.

Lemma 2.3. Let G be a dihedral group $D_{2 n}$ of order $2 n$. Then $|\operatorname{cv}(G)| \leq n+1$.
Proof. Obviously $\exp A \leq n$ with equality when A is cyclic and so by [17, Lemma 2.2], $|\operatorname{cv}(A)| \leq n$, and so $|\operatorname{cv}(G)| \leq n+1$.

Remark 2.4. In Lemma 2.3 we cannot replace \leq with $=$. For instance, Let $n=16$, then by [4], $\operatorname{cv}\left(D_{32}\right)=\{1,2,-1,-2,0, A,-A, B,-B, C,-C\} . \operatorname{Now}\left|\operatorname{cv}\left(D_{32}\right)\right|=11<16$.

Remark 2.5. The result of Lemma 2.3 is mostly possible. For example, let $n=5$. Then by [4], $\operatorname{cv}\left(D_{10}\right)=\left\{1,0,-1,2, A, A^{*}\right\} . \operatorname{Now}\left|\operatorname{cv}\left(D_{10}\right)\right|=6=5+1$.

Lemma 2.6. Let G be a Frobenius group with the form $E_{p^{n}}: C_{p^{n}-1}$ where $n \geq 1$ is a positive integer. Then $|\operatorname{cv}(G)|=p+1$. In particular, if $E_{p^{n}}: C_{k}$ is a Frobenius subgroup of $E_{p^{n}}: C_{p^{n}-1}$, then $\mid \operatorname{cv}\left(E_{p^{n}}:\right.$ $\left.C_{k}\right) \mid \leq p+1$.

Proof. We see $\exp E_{p^{n}}=p$, so Lemma 2.2 of [17] forces $\operatorname{cv}\left(E_{p^{n}}\right)=p$. We know that $C_{p^{n}-1}$, acts fixed-point-freely on $E_{p^{n}}$ so by Theorem 18.7 of [8], $|\operatorname{cv}(G)|=p+1$.

Lemma 2.7. (1) G is a $\mathbf{p c v}_{n}$-group G if and only if for $H \in \sum G$, $|\operatorname{cv}(H)| \leq n$.
(2) Let N be a normal subgroup of a $\mathbf{p c v}_{n}$-group G, then, both N and G / N are $\mathbf{p c v}_{n}$-groups.

Proof. We conclude the two results from the definition of a $\mathbf{p c v}_{n}$-group.

3. Simple pcv ${ }_{n}$-groups and Solvable pcv ${ }_{5}$-groups

In this section we will first determine the structure of simple $\mathbf{p c v}_{n}$-groups for $n=6,7$ by using Lemma 2.2 and then show the solvability of $\mathbf{p c v}_{n}$-groups when $n \leq 5$. For easy reading, we rewrite Theorem 1.3 here.

Theorem 3.1. Let G be a non-abelian simple $\mathbf{p c v}_{n}$-group with $n \leq 7$. Then
(1) if $n=6, G$ is isomorphic to A_{5};
(2) if $n=7, G$ is isomorphic to A_{5} or $\mathrm{PSL}_{2}(7)$.

Proof. We know that for each $H \in \sum G,|\operatorname{cv}(H)| \leq 7, H$ is solvable by Lemma 2.1. It follows that G is a group whose proper subgroups are all solvable, so we can assume that G is a minimal simple group. Thus G is isomorphic to $\operatorname{PSL}_{2}\left(2^{p}\right)$ for p a prime; $\mathrm{PSL}_{2}\left(3^{p}\right)$ for p an odd prime; $\mathrm{PSL}_{2}(p)$, for p any prime exceeding 3 such that $p^{2}+1 \equiv 0(\bmod 5) ; S z\left(2^{p}\right)$ for p an odd prime; $\operatorname{PSL}_{3}(3)$; see Lemma 2.2. So in what follows, these cases are considered.

Case 1: $\mathrm{PSL}_{2}(q)$ for certain q.
By Table $1, D_{2(q+1) / k} \in \max \operatorname{PSL}_{2}(q)$ and so by Lemma $2.3, \frac{q+1}{2} \leq 7$ when q is odd or $q+1 \leq 7$ when q is even. It follows that q is equal to $4,5,7,9,11$ or 13 . Note that $\operatorname{PSL}_{2}(4) \cong \operatorname{PSL}_{2}(5) \cong A_{5}$, so two subcases are dealt with.

Subcase 1: $q \in\{5,7\}$.
Let $q=5$. Then by [5, p. 2], $\max A_{5}=\left\{A_{4}, D_{10}, S_{3}\right\}$ and by [4], $\operatorname{cv}\left(A_{4}\right)=\left\{-1,0,1, A, A^{*}\right\}, \operatorname{cv}\left(D_{10}\right)=$ $\left\{-1,0,1,2, A, A^{*}\right\}$ and $\operatorname{cv}\left(S_{3}\right)=\{-1,0,1,2\}$. It follows that for each $H \in \max A_{5},|\operatorname{cv}(H)| \leq 6$, so G is isomorphic to A_{5}.

If $q=7$, then $\max \operatorname{PSL}_{2}(7)=\left\{S_{4}, 7: 3\right\}$ and by $[4], \operatorname{cv}(7: 3)=\left\{1,3, A, A^{*}, B, B^{*}, 0\right\}, \operatorname{cv}\left(S_{4}\right)=$ $\{1,2,3,-1,0\}$, so $|\operatorname{cv}(7: 3)|=7$ and $\left|\operatorname{cv}\left(S_{4}\right)\right|=5$. Assumption shows that G is isomorphic to $\operatorname{PSL}_{2}(7)$ as desired.

Subcase 2: $q \in\{9,11,13\}$.
By Table $1, A_{5} \in \max \operatorname{PSL}_{2}(q)$ when $q=9$ or 11 and $\left|\operatorname{cv}\left(A_{5}\right)\right|=8$ by [17, Theorem 1.2] or [5, p. 2].
If $q=13$, then $13: 6 \in \max \operatorname{PSL}_{2}(13)$ and $\operatorname{cv}(13: 6)=\left\{1,6, A, A^{*}, B,-B, B^{*},-B^{*},-1,0\right\}$ by [4], so $|\operatorname{cv}(13: 6)|=10$, a contradiction.

It follows that $\mathrm{PSL}_{2}(q)$ for $q \in\{9,11,13\}$ is not a $\mathbf{p e v}_{n}$-group with $n \leq 7$.
Table 1. $\mathrm{PSL}_{2}(q), q \geq 5$ [11, p. 191].

	$\max \left(\mathrm{PSL}_{2}(q)\right)$	Condition
C_{1}	$E_{q}: C_{(q-1) / k}$	$k=\operatorname{gcd}(q-1,2)$
C_{2}	$D_{2(q-1) / k}$	$q \notin\{5,7,9,11\}$
C_{3}	$D_{2(q+1) / k}$	$q \notin\{7,9\}$
C_{5}	$\operatorname{PSL}_{2}\left(q_{0}\right) \cdot(k, b)$	$q=q_{0}^{b}, b$ a prime,$q_{0} \neq 2$
C_{6}	S_{4}	$q=p \equiv \pm 1(\bmod 8)$
	A_{4}	$q=p \equiv 3,5,13,27,37(\bmod 40)$
\mathcal{S}	A_{5}	$q \equiv \pm 1(\bmod 10), F_{q}=F_{p}[\sqrt{5}]$

Case 2: $S z\left(2^{p}\right)$ for p an odd prime.
In this case, by Table $2, D_{2(q-1)} \in \max S z(q)$, so by Lemma $2.3, q-1 \leq 7$, so $q=8$. Now $2^{3+3}: 7 \in \max S z(8)$ and by $[4], \operatorname{cv}\left(2^{3+3}: 7\right)=\left\{1,7,14,-2,-1, A,-A, B, B^{*}, C, C^{*}, D, D^{*}, 0\right\}$. Thus $\left|\operatorname{cv}\left(2^{3+3}: 7\right)\right|=14$, a contradiction.

Table 2. $S z(q), q=2^{2 m+1} \geq 8[3$, p. 385].

$\max \left({ }^{2} B_{2}(q)\right)$	Condition
$E_{q}^{1+1}: C_{q-1}$	
$D_{2(q-1)}$	
$C_{q+} \sqrt{2 q+1} \cdot C_{4}$	
$C_{q-} \sqrt{2 q+1} \cdot C_{4}$	
${ }^{2} B_{2}\left(q_{0}\right)$	$q=q_{0}^{a}, a$ prime,$q_{0} \geq 8$

Case 3: $\mathrm{PSL}_{3}(3)$.
By [5, pp. 13], $13: 3 \in \operatorname{PSL}_{3}(3)$ and so by [4], $\operatorname{cv}(13: 3)=\left\{0,1,3, A, A^{*}, B, B^{*}, C, C^{*}\right\}$. Now $|\operatorname{cv}(13: 3)|=9 \not \approx 7$, a contradiction.

Now we can prove Theorem 1.2. For reader's convenience, we rewrite it here.
Theorem 3.2. If G is a $\mathbf{p c v}_{n}$-group with $n \leq 5$, then G is solvable.
Proof. By hypothesis, we know that every proper subgroup of G is solvable. If G is non-solvable, then we can assume that G is simple. Now as the proof of Theorem 3.1 we obtain a contradiction. Thus G is solvable.

4. Non-solvable pcv_{n}-groups

In this section, we first show the structure of non-solvable $\mathbf{p c v}_{6}$-groups and then the structures of non-solvable $\mathbf{p c v}_{7}$-groups are determined. For convenient reading, we rewrite Theorem 1.3 here.

Theorem 4.1. Let G be a non-solvable pcv $_{n}$-group.
(1) If $n=6$, then G is isomorphic to A_{5}
(2) If $n=7$, then G is isomorphic to $\operatorname{PSL}_{2}(q)$ with $q \in\{5,7\}$.

Proof. The non-solvability of G shows that G has a normal sequel $1 \leq H \leq K \leq G$ such that K / H is isomorphic to a direct product of isomorphic simple groups and that $|G / K|$ divides $|\operatorname{Out}(K / H)|$, where $\operatorname{Out}(A)$ denotes the outer-automorphism group of a group A; see [27].

Now we have that

$$
K / H \text { is isomorphic to } \underbrace{S \times S \times \cdots \times S}_{m \text { times }}
$$

where $S \cong A_{5}$ when $n=6$ and $S \cong A_{5}$ or $\operatorname{PSL}_{2}(7)$ when $n=7$; see Theorem 3.1. By Lemma 2.7, K / H is a $\mathbf{p c v}_{n}$-group, so let $H \in \max S$, now

$$
H \times \underbrace{S \times \cdots \times S}_{m-1 \text { times }} \text { is a maximal subgroup of } \underbrace{S \times S \times \cdots \times S}_{m \text { times }} .
$$

If $m \geq 2$, then $\left|\operatorname{cv}\left(A_{5}\right)\right|=8$ and $\left|\operatorname{cv}\left(\operatorname{PSL}_{2}(7)\right)\right|=10$ as $\operatorname{cv}\left(A_{5}\right)=\left\{1,3,4,5,-1,0, A, A^{*}\right\}$ and $\operatorname{cv}\left(\operatorname{PSL}_{2}(7)\right)=\left\{1,3,6,7,8,-1,2,0, A, A^{*}\right\}$ by $[5, \mathrm{p} .2-3]$, so $|\operatorname{cv}(H \times S \times \cdots \times S)| \geq 8$, a contradiction.
 see [17, Theorem 1.2]. Now $G / H \cong A_{5}$ or $\mathrm{PSL}_{2}(7)$ and G is not an almost simple group. It follows that

$$
G^{\prime} / H \cong \operatorname{PSL}_{2}(q) \text { or } \mathrm{SL}_{2}(q) \text { with } q \in\{5,7\} ;
$$

see [7, Chap 2, Theorem 6.10].
So in the following two cases are done with.
Where N 1 maximal under $\langle\delta\rangle$ with $|\delta|=(q-1,2)$; N2 maximal under subgroups not contained in $\langle\varphi\rangle$ with $|\varphi|=e, q=p^{e}, p$ a prime.

Case 1: $G^{\prime} / H \cong A_{5}$ or $\mathrm{SL}_{2}(5)$.
By Table 3, 2. $A_{4} \in \operatorname{max~} \mathrm{SL}_{2}(5)$ and by [4], $\mathrm{cv}\left(2 . A_{4}\right)=\left\{1,3,2,-2,0, A, A^{*},-A^{*},-A\right\}$. It follows that $\left|\operatorname{cv}\left(2 . A_{4}\right)\right|=9>7$, so $\mathrm{SL}_{2}(5)$ is not a $\mathbf{p c v}_{n}$-group with $n=6,7$. Thus $G^{\prime} / H \cong \mathrm{SL}_{2}(5)$ is impossible. Now $G^{\prime} / H \cong A_{5}$ and $G^{\prime} \cap H=1$, so $\left[G^{\prime}, H\right] \leq G^{\prime} \cap H=1$. Thus,

$$
G^{\prime} \cong \frac{G^{\prime}}{G^{\prime} \cap H} \cong \frac{G^{\prime}}{H} \cong A_{5} .
$$

It follows that $G \cong H \times A_{5}$. If $H \neq 1$, then $A_{5} \in \sum G$. Observe that $\left|\operatorname{cv}\left(A_{5}\right)\right|=8$, so in this case G is a non- $\mathbf{p c v}_{n}$-group with $n=6,7$. Therefore G is isomorphic to A_{5}, the desired result.

Table 3. $\mathrm{SL}_{2}(q), q \geq 4$ ([3, p. 377]).

$\operatorname{max~SL}_{2}(q)$	Condition
$E_{q}: C_{q-1}$	$q \neq 5,7,9,11 ; q$ odd
$Q_{2(q-1)}$	N 1 if $q=7,11 ; \mathrm{N} 2$ if $q=9$
$D_{2(q-1)}$	q even
$Q_{2(q+1)}$	$q \neq 7,9 ; q$ odd
$D_{2(q+1)}$	N 1 if $q=7 ; \mathrm{N} 2$ if $q=9$
$\mathrm{SL}_{2}\left(q_{0}\right) .2$	q even
$\mathrm{SL}_{2}\left(q_{0}\right)$	$q=q_{0}^{2}, q$ odd
$\mathrm{PSL}_{2}\left(q_{0}\right)$	$q=q_{0}^{r}, q$ odd,r odd prime
$2 . S_{4}$	$q=q_{0}^{r}, q$ even, $q_{0} \neq 2, r$ prime
$2 . A_{4}$	$q=p \equiv \pm 1(\bmod 8)$
	$q=p \equiv \pm 3,5, \pm 13(\bmod 40)$
$2 . A_{5}$	N 1 if $q=p \equiv \pm 11, \pm 19(\bmod 40)$
	$q=p \equiv \pm 1(\bmod 10)$
	$q=p^{2}, p \equiv \pm 3(\bmod 10)$

Case 2: $G^{\prime} / H \cong \mathrm{PSL}_{2}(7)$ or $\mathrm{SL}_{2}(7)$.
In this case $n=7$. Table 3 gives that $E_{7}: C_{6} \in \operatorname{max~} \mathrm{SL}_{2}(7)$ and by [4], $\operatorname{cv}\left(E_{7}: C_{6}\right)=\left\{1,6,-1,0, A,-A, A^{*},-A^{*}\right\}$. It follows that $\left|\operatorname{cv}\left(E_{7}: C_{6}\right)\right|=8$ (this result can be gotten from Lemma 2.6), so $\mathrm{SL}_{2}(7)$ is not a pcv $_{7}$-group. Thus $G^{\prime} / H \cong \mathrm{SL}_{2}(7)$ is not possible. Now consider when $G^{\prime} / H \cong \mathrm{PSL}_{2}(7)$. Then $G^{\prime} \cap H=1,\left[G^{\prime}, H\right]=1$ and $G \cong H \times \mathrm{PSL}_{2}(7)$ too. If $H \neq 1$, then $\operatorname{PSL}_{2}(7)$ is not a $\mathbf{p c v}_{7}$-group, so $H=1$ and G is isomorphic to $\operatorname{PSL}_{2}(7)$, the wanted result.

Proposition 4.2. Let G be a $\mathbf{p c v}_{n}$-group with $n \leq 7$. Assume that G has no section isomorphic to $\mathrm{PSL}_{2}(q)$ for $q \in\{5,7\}$, then G is solvable.

Proof. By Theorems 1.2 and 1.3, we can get the desired result.

Acknowledgments

The authors were supported by NSF of China(Grant No: 11871360) and also the first author was supported by the Opening Project of Sichuan Province University Key Laborstory of Bridge Nondestruction Detecting and Engineering Computing (Grant Nos: 2022QYJ04), and by the the Project of High-Level Talent of Sichuan Institute of Arts and Science (Grant No: 2021RC001Z).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. Y. Berkovich, D. Chillag, E. Zhmud, Finite groups in which all nonlinear irreducible characters have three distinct values, Houston J. Math., 21 (1995), 17-28.
2. M. Bianchi, D. Chillag, A. Gillio, Finite groups with many values in a column or a row of the character table, Publ. Math. Debrecen, 693 (2006), 281-290. https://doi.org/10.5486/PMD.2006.3523
3. J. N. Bray, D. F. Holt, C. M. Roney-Dougal, The maximal subgroups of the lowdimensional finite classical groups, Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139192576
4. T. Breuer, The GAP character table library, Version 1.2.1, 2012. Available from: http://www.math.rwth-aachen.de/T̃homas.Breuer/ctbllib .
5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, Atlas of finite groups, Eynsham: Oxford University Press, 1985.
6. E. Giannelli, Characters of odd degree of symmetric groups, J. Lond. Math. Soc., 96 (2017) , 1-14. https://doi.org/10.1112/jlms. 12048
7. B. Huppert, Endliche gruppen I, Berlin: Springer-Verlag, 2013.
8. B. Huppert, Character theory of finite groups, Providence: American Mathematical Society, 2006. https://doi.org/10.1515/9783110809237
9. B. Huppert, O. Manz, Nonsolvable groups, whose character degrees are products of at most two prime numbers, Osaka J. Math., 23 (1986), 491-502. http://projecteuclid.org/euclid.ojm/1200779340
10. I. M. Isaacs, Character theory of finite groups, New York: Dover Publications, Inc., 1994.
11. P. B. Kleidman, The subgroup structure of some finite simple groups, Ph.D thesis, Trinity College, Cambridge, 1987.
12. M. L. Lewis, D. L. White, Nonsolvable groups all of whose character degrees are odd-square-free, Comm. Algebra, 39 (2011), 1273-1292. https://doi.org/10.1080/00927871003652652
13. S. Liu, On groups whose irreducible character degrees of all proper subgroups are all prime powers, J. Math., 2021 (2021), 6345386. https://doi.org/10.1155/2021/6345386
14. S. Liu, Finite groups for which all proper subgroups have consecutive character degrees, AIMS Math., 8 (2023), 5745-5762. https://doi.org/10.3934/math. 2023289
15. S. Liu, D. Lei, X. Li, On groups with consecutive three smallest character degrees, ScienceAsia, 45 (2019), 474-481. https://doi.org/10.2306/scienceasia1513-1874.2019.45.474
16. S. Liu, X. Tang, Nonsolvable groups whose degrees of all proper subgroups are the direct products of at most two prime numbers, J. Math., 2022 (2022), 1455299. https://doi.org/10.1155/2022/1455299
17. S. Y. Madanha, Finite groups with few character values, Comm. Algebra, 50 (2022), 308-312. https://doi.org/10.1080/00927872.2021.1957107
18. G. Malle, A. Moretó, Nonsolvable groups with few character degrees, J. Algebra, 294 (2005), 117-126. https://doi.org/10.1016/j.jalgebra.2005.01.006
19. O. Manz, Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Algebra, 94 (1985), 211-255. https://doi.org/10.1016/0021-8693(85)90210-8
20. O. Manz, Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, J. Algebra, 96 (1985), 114-119. https://doi.org/10.1016/0021-8693(85)90042-0
21. B. Miraali, S. M. Robati, Non-solvable groups each of whose character degrees has at most two prime divisors, J. Algebra Appl., 20 (2021), 2150030. https://doi.org/10.1142/S0219498821500304
22. G. Qian, Finite groups with consecutive nonlinear character degrees, J. Algebra, 285 (2005), 372382. https://doi.org/10.1016/j.jalgebra.2004.11.021
23. G. H. Qian, Y. X. Zhu, Solvable groups admitting an element on which distinct irreducible characters take distinct values, Chinese Ann. Math. Ser. A, 26 (2005), 1-6.
24. T. Sakurai, Finite groups with very few character values, Comm. Algebra, 49 (2021) , 658-661. https://doi.org/10.1080/00927872.2020.1813747
25. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, Bull. Amer. Math. Soc.,74 (1968), 383-437. https://doi.org/10.1090/S0002-9904-1968-11953-6
26. P. H. Tiep, H. P. Tong-Viet. Finite groups with many values in a column of the character table, J. Algebra Appl., 17 (2018), 1850196. https://doi.org/10.1142/S0219498818501967
27. H. Xu, G. Chen, Y. Yan, A new characterization of simple K_{3}-groups by their orders and large degrees of their irreducible characters, Comm. Algebra, 42 (2014), 5374-5380. https://doi.org/10.1080/00927872.2013.842242
© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
