

AIMS Mathematics, 8(4): 9074–9081. DOI: 10.3934/math.2023454 Received: 30 December 2022 Revised: 11 January 2023 Accepted: 29 January 2023 Published: 13 February 2023

http://www.aimspress.com/journal/Math

Brief report

Finite groups all of whose proper subgroups have few character values

Shitian Liu¹ and Runshi Zhang ^{2,*}

- ¹ School of Mathematics, Lianhu Campus, Sichuan Institute of Arts and Science Dazhou Sichuan 635000, China
- ² School of Mathematical Science and Statistics Sichuan University of Science and Engineering Zigong Sichuan 643000, China
- * Correspondence: Email: stxyzhangrs@163.com; Tel: +8615756390565.

Abstract: In this paper, the structures of non-solvable groups whose all proper subgroups have at most seven character values are identified.

Keywords: simple group; character value; proper subgroup **Mathematics Subject Classification:** 20C15, 20C33

1. Introduction

We always think that groups under consideration are all finite. Let *G* be a group and Irr(G) be the set of all complex irreducible characters of a group *G*. Let *g* be an element of a group *G*. Then denote by $cv(G) = \{\chi(g) : \chi \in Irr(G), g \in G\}$, the set of character values of *G*, so $cd(G) \subseteq cv(G)$ where $cd(G) = \{\chi(1) : \chi \in Irr(G)\}$ is the set of character degrees of a group *G*. We will use these symbols in this paper:

 E_{p^n} : the elementary abelian *p*-group of order p^n ;

- C_n : the cyclic group of order n;
- Q_8 : the quaternion group of order 8;
- D_{2n} : the dihedral group of order 2n.

Character values of finite groups have large influence on their structures; see [1,2,23,26]. Recently, Madanha [17] and Sakural [24] studied the influence of character values in a character table on the structure of a group respectively. In particular, Madanha in [17] showed that if a non-solvable group *G* with |cv(G)| = 8, then $G \cong PSL_2(5)$ or $PGL_2(5)$.

Some scholars are of interest in the set cd(G). For example, the structure of finite groups are determined if the degrees of finite groups are either prime powers [13, 19, 20] or divisible by two prime

divisors [21] or the direct product of at most two primes [9, 16] or square-free [12] or p'-numbers [6] or are consecutive [8, 14, 15, 22].

In this paper, we go on the subgroup's character values and group structure, namely, we replace the condition "the number of character values of a group is small" with the condition "the number of character values of each proper subgroup of a group is small". For convenient arguments, we introduce the following definition.

Definition 1.1. Let $\sum G$ be the set of the proper subgroups of a group G, and n a positive integer. A group is called a \mathbf{pcv}_n -group if for each $H \in \sum G$, $|\mathbf{cv}(H)| \le n$.

We mainly show the following.

Theorem 1.2. If G is a pcv_n -group with $n \le 5$, then G is solvable.

Theorem 1.2 is corresponding to [10, Theorem 12.15] or [17, Theorem 1.1] which says that a finite group with $|cv(G)| \le 7$ or $|cd(G)| \le 3$ is solvable. Here we use the structure of a minimal simple group to prove Theorem 1.2.

We also obtain the following result which is corresponding to [17, Theorem 1.2] or [18, Theorem 2.2].

Theorem 1.3. Let G be a non-solvable \mathbf{pcv}_n -group.

(1) If n = 6, then G is isomorphic to A_5 .

(2) If n = 7, then G is isomorphic to $PSL_2(q)$ with $q \in \{5, 7\}$.

The structure of this short paper is as follows. In Section 2, some basic results are given, and in Section 3, the structures of non-solvable \mathbf{pcv}_{6} - and \mathbf{pcv}_{7} -groups are identified respectively. For the other notions and symbols are standard, please see [5, 10].

2. Minimal simple groups

In this section, we assemble some results needed. First result is due to Madanha.

Lemma 2.1. [17, Theorem 1.1] If $|cv(G)| \le 7$, then G is solvable.

A *minimal simple group* is a simple group of composite order all of whose proper subgroups are solvable.

Lemma 2.2. [25, Corollary 1] Every minimal simple group is isomorphic to one of the following minimal simple groups:

- (1) $PSL_2(2^p)$ for p a prime;
- (2) $PSL_2(3^p)$ for p an odd prime;
- (3) $PSL_2(p)$, for p any prime exceeding 3 such that $p^2 + 1 \equiv 0 \pmod{5}$;
- (4) $Sz(2^p)$ for p an odd prime;
- (5) $PSL_3(3)$.

Let A be a group, and let $\exp A$ be a number which is minimal such that the order of all elements from A divides $\exp A$. The following two lemmas are given because the subgroups of a group can control the structure of a group.

AIMS Mathematics

Lemma 2.3. Let G be a dihedral group D_{2n} of order 2n. Then $|cv(G)| \le n + 1$.

Proof. Obviously $\exp A \le n$ with equality when A is cyclic and so by [17, Lemma 2.2], $|cv(A)| \le n$, and so $|cv(G)| \le n + 1$.

Remark 2.4. In Lemma 2.3 we cannot replace \leq with =. For instance, Let n = 16, then by [4], $cv(D_{32}) = \{1, 2, -1, -2, 0, A, -A, B, -B, C, -C\}$. Now $|cv(D_{32})| = 11 < 16$.

Remark 2.5. The result of Lemma 2.3 is mostly possible. For example, let n = 5. Then by [4], $cv(D_{10}) = \{1, 0, -1, 2, A, A^*\}$. Now $|cv(D_{10})| = 6 = 5 + 1$.

Lemma 2.6. Let G be a Frobenius group with the form $E_{p^n} : C_{p^{n-1}}$ where $n \ge 1$ is a positive integer. Then |cv(G)| = p + 1. In particular, if $E_{p^n} : C_k$ is a Frobenius subgroup of $E_{p^n} : C_{p^{n-1}}$, then $|cv(E_{p^n} : C_k)| \le p + 1$.

Proof. We see $\exp E_{p^n} = p$, so Lemma 2.2 of [17] forces $\operatorname{cv}(E_{p^n}) = p$. We know that $C_{p^{n-1}}$, acts fixed-point-freely on E_{p^n} so by Theorem 18.7 of [8], $|\operatorname{cv}(G)| = p + 1$.

Lemma 2.7. (1) *G* is a \mathbf{pcv}_n -group *G* if and only if for $H \in \sum G$, $|\mathbf{cv}(H)| \le n$. (2) Let *N* be a normal subgroup of a \mathbf{pcv}_n -group *G*, then, both *N* and *G*/*N* are \mathbf{pcv}_n -groups.

Proof. We conclude the two results from the definition of a \mathbf{pcv}_n -group.

3. Simple pcv_n-groups and Solvable pcv₅-groups

In this section we will first determine the structure of simple \mathbf{pcv}_n -groups for n = 6, 7 by using Lemma 2.2 and then show the solvability of \mathbf{pcv}_n -groups when $n \le 5$. For easy reading, we rewrite Theorem 1.3 here.

Theorem 3.1. Let G be a non-abelian simple \mathbf{pcv}_n -group with $n \leq 7$. Then

(1) if n = 6, G is isomorphic to A_5 ;

(2) if n = 7, G is isomorphic to A_5 or $PSL_2(7)$.

Proof. We know that for each $H \in \sum G$, $|cv(H)| \le 7$, H is solvable by Lemma 2.1. It follows that G is a group whose proper subgroups are all solvable, so we can assume that G is a minimal simple group. Thus G is isomorphic to $PSL_2(2^p)$ for p a prime; $PSL_2(3^p)$ for p an odd prime; $PSL_2(p)$, for p any prime exceeding 3 such that $p^2 + 1 \equiv 0 \pmod{5}$; $Sz(2^p)$ for p an odd prime; $PSL_3(3)$; see Lemma 2.2. So in what follows, these cases are considered.

Case 1: $PSL_2(q)$ for certain q.

By Table 1, $D_{2(q+1)/k} \in \max PSL_2(q)$ and so by Lemma 2.3, $\frac{q+1}{2} \le 7$ when *q* is odd or $q+1 \le 7$ when *q* is even. It follows that *q* is equal to 4, 5, 7, 9, 11 or 13. Note that $PSL_2(4) \cong PSL_2(5) \cong A_5$, so two subcases are dealt with.

Subcase 1: $q \in \{5, 7\}$ *.*

Let q = 5. Then by [5, p. 2], max $A_5 = \{A_4, D_{10}, S_3\}$ and by [4], $cv(A_4) = \{-1, 0, 1, A, A^*\}$, $cv(D_{10}) = \{-1, 0, 1, 2, A, A^*\}$ and $cv(S_3) = \{-1, 0, 1, 2\}$. It follows that for each $H \in max A_5$, $|cv(H)| \le 6$, so G is isomorphic to A_5 .

If q = 7, then max PSL₂(7) = {S₄, 7 : 3} and by [4], cv(7 : 3) = {1, 3, A, A^{*}, B, B^{*}, 0}, cv(S₄) = {1, 2, 3, -1, 0}, so |cv(7 : 3)| = 7 and $|cv(S_4)| = 5$. Assumption shows that *G* is isomorphic to PSL₂(7) as desired.

Subcase 2: $q \in \{9, 11, 13\}$.

By Table 1, $A_5 \in \max PSL_2(q)$ when q = 9 or 11 and $|cv(A_5)| = 8$ by [17, Theorem 1.2] or [5, p. 2]. If q = 13, then $13 : 6 \in \max PSL_2(13)$ and $cv(13 : 6) = \{1, 6, A, A^*, B, -B, B^*, -B^*, -1, 0\}$ by [4], so |cv(13 : 6)| = 10, a contradiction.

It follows that $PSL_2(q)$ for $q \in \{9, 11, 13\}$ is not a **pcv**_n-group with $n \le 7$.

Table 1. $PSL_2(q), q \ge 5 [11, p. 191].$			
	$\max(\text{PSL}_2(q))$	Condition	
C_1	$E_q: C_{(q-1)/k}$	$k = \gcd(q - 1, 2)$	
C_2	$D_{2(q-1)/k}$	$q \notin \{5, 7, 9, 11\}$	
C_3	$D_{2(q+1)/k}$	$q \notin \{7,9\}$	
C_5	$PSL_2(q_0).(k, b)$	$q = q_0^b, b$ a prime, $q_0 \neq 2$	
\mathcal{C}_6	S_4	$q = p \equiv \pm 1 \pmod{8}$	
	A_4	$q = p \equiv 3, 5, 13, 27, 37 \pmod{40}$	
S	A_5	$q \equiv \pm 1 \pmod{10}, F_q = F_p[\sqrt{5}]$	

Case 2: $Sz(2^p)$ for p an odd prime.

In this case, by Table 2, $D_{2(q-1)} \in \max S_z(q)$, so by Lemma 2.3, $q-1 \le 7$, so q = 8. Now $2^{3+3}: 7 \in \max S_z(8)$ and by [4], $\operatorname{cv}(2^{3+3}: 7) = \{1, 7, 14, -2, -1, A, -A, B, B^*, C, C^*, D, D^*, 0\}$. Thus $|\operatorname{cv}(2^{3+3}: 7)| = 14$, a contradiction.

Table 2. $Sz(q)$,	$q = 2^{2m+1} \ge 8 [3, p. 385].$
$\max(^2B_2(q))$	Condition
$E_q^{1+1}: C_{q-1}$	
$D_{2(q-1)}$	
$C_{q+\sqrt{2q+1}}.C_4$	
$C_{q-\sqrt{2q+1}}.C_4 \ {}^2B_2(q_0)$	
${}^{2}B_{2}(q_{0})$	$q = q_0^a$, <i>a</i> prime, $q_0 \ge 8$

Case 3: PSL₃(3).

By [5, pp. 13], 13 : $3 \in PSL_3(3)$ and so by [4], $cv(13 : 3) = \{0, 1, 3, A, A^*, B, B^*, C, C^*\}$. Now $|cv(13 : 3)| = 9 \leq 7$, a contradiction.

Now we can prove Theorem 1.2. For reader's convenience, we rewrite it here.

Theorem 3.2. If G is a pcv_n -group with $n \le 5$, then G is solvable.

Proof. By hypothesis, we know that every proper subgroup of G is solvable. If G is non-solvable, then we can assume that G is simple. Now as the proof of Theorem 3.1 we obtain a contradiction. Thus G is solvable. \Box

4. Non-solvable pcv_n-groups

In this section, we first show the structure of non-solvable \mathbf{pcv}_6 -groups and then the structures of non-solvable \mathbf{pcv}_7 -groups are determined. For convenient reading, we rewrite Theorem 1.3 here.

Theorem 4.1. Let G be a non-solvable \mathbf{pcv}_n -group. (1) If n = 6, then G is isomorphic to A_5 (2) If n = 7, then G is isomorphic to $PSL_2(q)$ with $q \in \{5, 7\}$.

Proof. The non-solvability of *G* shows that *G* has a normal sequel $1 \le H \le K \le G$ such that K/H is isomorphic to a direct product of isomorphic simple groups and that |G/K| divides |Out(K/H)|, where Out(A) denotes the outer-automorphism group of a group *A*; see [27].

Now we have that

$$K/H$$
 is isomorphic to $\underbrace{S \times S \times \cdots \times S}_{m \text{ times}}$

where $S \cong A_5$ when n = 6 and $S \cong A_5$ or PSL₂(7) when n = 7; see Theorem 3.1. By Lemma 2.7, K/H is a **pcv**_n-group, so let $H \in \max S$, now

$$H \times \underbrace{S \times \cdots \times S}_{m-1 \text{ times}}$$
 is a maximal subgroup of $\underbrace{S \times S \times \cdots \times S}_{m \text{ times}}$.

If $m \ge 2$, then $|cv(A_5)| = 8$ and $|cv(PSL_2(7))| = 10$ as $cv(A_5) = \{1, 3, 4, 5, -1, 0, A, A^*\}$ and $cv(PSL_2(7)) = \{1, 3, 6, 7, 8, -1, 2, 0, A, A^*\}$ by [5, p. 2-3], so $|cv(H \times S \times \cdots \times S)| \ge 8$, a contradiction. Thus m = 1 and for any $S < H \le Aut(S)$, $|cv(S)| \ge 8$ shows that H is not a **pcv**_n-group with n = 6, 7; see [17, Theorem 1.2]. Now $G/H \cong A_5$ or $PSL_2(7)$ and G is not an almost simple group. It follows that

$$G'/H \cong PSL_2(q)$$
 or $SL_2(q)$ with $q \in \{5, 7\}$;

see [7, Chap 2, Theorem 6.10].

So in the following two cases are done with.

Where N1 maximal under $\langle \delta \rangle$ with $|\delta| = (q - 1, 2)$; N2 maximal under subgroups not contained in $\langle \varphi \rangle$ with $|\varphi| = e$, $q = p^e$, p a prime.

Case 1: $G'/H \cong A_5$ or $SL_2(5)$.

By Table 3, $2.A_4 \in \max SL_2(5)$ and by [4], $cv(2.A_4) = \{1, 3, 2, -2, 0, A, A^*, -A^*, -A\}$. It follows that $|cv(2.A_4)| = 9 > 7$, so $SL_2(5)$ is not a **pcv**_n-group with n = 6, 7. Thus $G'/H \cong SL_2(5)$ is impossible. Now $G'/H \cong A_5$ and $G' \cap H = 1$, so $[G', H] \le G' \cap H = 1$. Thus,

$$G' \cong \frac{G'}{G' \cap H} \cong \frac{G'}{H} \cong A_5.$$

It follows that $G \cong H \times A_5$. If $H \neq 1$, then $A_5 \in \sum G$. Observe that $|cv(A_5)| = 8$, so in this case G is a non-**pcv**_n-group with n = 6, 7. Therefore G is isomorphic to A_5 , the desired result.

AIMS Mathematics

Table 3. $SL_2(q), q \ge 4([3, p. 377]).$		
$\max \operatorname{SL}_2(q)$	Condition	
$E_q: C_{q-1}$		
$Q_{2(q-1)}$	$q \neq 5, 7, 9, 11; q$ odd	
	N1 if $q = 7, 11$; N2 if $q = 9$	
$D_{2(q-1)}$	q even	
$Q_{2(q+1)}$	$q \neq 7, 9; q \text{ odd}$	
	N1 if $q = 7$; N2 if $q = 9$	
$D_{2(q+1)}$	q even	
$SL_2(q_0).2$	$q = q_0^2, q$ odd	
$\mathrm{SL}_2(q_0)$	$q = q_0^r, q$ odd, r odd prime	
$PSL_2(q_0)$	$q = q_0^r$, q even, $q_0 \neq 2$, r prime	
$2.S_{4}$	$q = p \equiv \pm 1 \pmod{8}$	
$2.A_4$	$q = p \equiv \pm 3, 5, \pm 13 \pmod{40}$	
	N1 if $q = p \equiv \pm 11, \pm 19 \pmod{40}$	
$2.A_5$	$q = p \equiv \pm 1 \pmod{10}$	
	$q = p^2, p \equiv \pm 3 \pmod{10}$	

Case 2: $G'/H \cong PSL_2(7)$ or $SL_2(7)$.

In this case n = 7. Table 3 gives that $E_7 : C_6 \in \max SL_2(7)$ and by [4], $cv(E_7 : C_6) = \{1, 6, -1, 0, A, -A, A^*, -A^*\}$. It follows that $|cv(E_7 : C_6)| = 8$ (this result can be gotten from Lemma 2.6), so $SL_2(7)$ is not a **pcv**₇-group. Thus $G'/H \cong SL_2(7)$ is not possible. Now consider when $G'/H \cong PSL_2(7)$. Then $G' \cap H = 1$, [G', H] = 1 and $G \cong H \times PSL_2(7)$ too. If $H \neq 1$, then $PSL_2(7)$ is not a **pcv**₇-group, so H = 1 and G is isomorphic to $PSL_2(7)$, the wanted result. \Box

Proposition 4.2. Let G be a pcv_n -group with $n \le 7$. Assume that G has no section isomorphic to $PSL_2(q)$ for $q \in \{5, 7\}$, then G is solvable.

Proof. By Theorems 1.2 and 1.3, we can get the desired result.

Acknowledgments

The authors were supported by NSF of China(Grant No: 11871360) and also the first author was supported by the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant Nos: 2022QYJ04), and by the the Project of High-Level Talent of Sichuan Institute of Arts and Science (Grant No: 2021RC001Z).

Conflict of interest

The authors declare that they have no conflicts of interest.

References

1. Y. Berkovich, D. Chillag, E. Zhmud, Finite groups in which all nonlinear irreducible characters have three distinct values, *Houston J. Math.*, **21** (1995), 17–28.

AIMS Mathematics

- 2. M. Bianchi, D. Chillag, A. Gillio, Finite groups with many values in a column or a row of the character table, *Publ. Math. Debrecen*, **693** (2006), 281–290. https://doi.org/10.5486/PMD.2006.3523
- J. N. Bray, D. F. Holt, C. M. Roney-Dougal, *The maximal subgroups of the lowdimensional finite classical groups*, Cambridge: Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139192576
- 4. T. Breuer, The GAP character table library, Version 1.2.1, 2012. Available from: http://www.math.rwth-aachen.de/Thomas.Breuer/ctbllib.
- 5. J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, R. A. Wilson, *Atlas of finite groups*, Eynsham: Oxford University Press, 1985.
- 6. E. Giannelli, Characters of odd degree of symmetric groups, *J. Lond. Math. Soc.*, **96** (2017), 1–14. https://doi.org/10.1112/jlms.12048
- 7. B. Huppert, Endliche gruppen I, Berlin: Springer-Verlag, 2013.
- 8. B. Huppert, *Character theory of finite groups*, Providence: American Mathematical Society, 2006. https://doi.org/10.1515/9783110809237
- B. Huppert, O. Manz, Nonsolvable groups, whose character degrees are products of at most two prime numbers, *Osaka J. Math.*, 23 (1986), 491–502. http://projecteuclid.org/euclid.ojm/1200779340
- 10. I. M. Isaacs, Character theory of finite groups, New York: Dover Publications, Inc., 1994.
- 11. P. B. Kleidman, *The subgroup structure of some finite simple groups*, Ph.D thesis, Trinity College, Cambridge, 1987.
- M. L. Lewis, D. L. White, Nonsolvable groups all of whose character degrees are odd-square-free, *Comm. Algebra*, **39** (2011), 1273–1292. https://doi.org/10.1080/00927871003652652
- 13. S. Liu, On groups whose irreducible character degrees of all proper subgroups are all prime powers, *J. Math.*, **2021** (2021), 6345386. https://doi.org/10.1155/2021/6345386
- S. Liu, Finite groups for which all proper subgroups have consecutive character degrees, AIMS Math., 8 (2023), 5745–5762. https://doi.org/10.3934/math.2023289
- 15. S. Liu, D. Lei, X. Li, On groups with consecutive three smallest character degrees, *ScienceAsia*, **45** (2019), 474–481. https://doi.org/10.2306/scienceasia1513-1874.2019.45.474
- 16. S. Liu, X. Tang, Nonsolvable groups whose degrees of all proper subgroups are the direct products of at most two prime numbers, J. Math., 2022 (2022), 1455299. https://doi.org/10.1155/2022/1455299
- 17. S. Y. Madanha, Finite groups with few character values, *Comm. Algebra*, **50** (2022), 308–312. https://doi.org/10.1080/00927872.2021.1957107
- 18. G. Malle, A. Moretó, Nonsolvable groups with few character degrees, J. Algebra, **294** (2005), 117–126. https://doi.org/10.1016/j.jalgebra.2005.01.006
- 19. O. Manz, Endliche auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, *J. Algebra*, **94** (1985), 211–255. https://doi.org/10.1016/0021-8693(85)90210-8

- 20. O. Manz, Endliche nicht-auflösbare Gruppen, deren sämtliche Charaktergrade Primzahlpotenzen sind, *J. Algebra*, **96** (1985), 114–119. https://doi.org/10.1016/0021-8693(85)90042-0
- 21. B. Miraali. S. M. Robati, Non-solvable groups each of whose character degrees has at most two prime divisors, J. Algebra Appl., 20 (2021),2150030. https://doi.org/10.1142/S0219498821500304
- 22. G. Qian, Finite groups with consecutive nonlinear character degrees, *J. Algebra*, **285** (2005), 372–382. https://doi.org/10.1016/j.jalgebra.2004.11.021
- 23. G. H. Qian, Y. X. Zhu, Solvable groups admitting an element on which distinct irreducible characters take distinct values, *Chinese Ann. Math. Ser. A*, **26** (2005), 1–6.
- 24. T. Sakurai, Finite groups with very few character values, *Comm. Algebra*, **49** (2021), 658–661. https://doi.org/10.1080/00927872.2020.1813747
- 25. J. G. Thompson, Nonsolvable finite groups all of whose local subgroups are solvable, *Bull. Amer. Math. Soc.*,**74** (1968), 383–437. https://doi.org/10.1090/S0002-9904-1968-11953-6
- 26. P. H. Tiep, H. P. Tong-Viet. Finite groups with many values in a column of the character table, *J. Algebra Appl.*, **17** (2018), 1850196. https://doi.org/10.1142/S0219498818501967
- 27. H. Xu, G. Chen, Y. Yan, A new characterization of simple K₃-groups by their orders and large degrees of their irreducible characters, *Comm. Algebra*, **42** (2014), 5374–5380. https://doi.org/10.1080/00927872.2013.842242

© 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)