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1. Introduction

We always think that groups under consideration are all finite. Let G be a group and Irr(G) be the
set of all complex irreducible characters of a group G. Let g be an element of a group G. Then denote
by cv(G) = {χ(g) : χ ∈ Irr(G), g ∈ G}, the set of character values of G, so cd(G) ⊆ cv(G) where
cd(G) = {χ(1) : χ ∈ Irr(G)} is the set of character degrees of a group G. We will use these symbols in
this paper:

Epn: the elementary abelian p-group of order pn;
Cn: the cyclic group of order n;
Q8: the quaternion group of order 8;
D2n: the dihedral group of order 2n.
Character values of finite groups have large influence on their structures; see [1,2,23,26]. Recently,

Madanha [17] and Sakural [24] studied the influence of character values in a character table on the
structure of a group respectively. In particular, Madanha in [17] showed that if a non-solvable group G
with |cv(G)| = 8, then G � PSL2(5) or PGL2(5).

Some scholars are of interest in the set cd(G). For example, the structure of finite groups are
determined if the degrees of finite groups are either prime powers [13,19,20] or divisible by two prime
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divisors [21] or the direct product of at most two primes [9, 16] or square-free [12] or p′-numbers [6]
or are consecutive [8, 14, 15, 22].

In this paper, we go on the subgroup’s character values and group structure, namely, we replace
the condition “the number of character values of a group is small” with the condition “the number of
character values of each proper subgroup of a group is small”. For convenient arguments, we introduce
the following definition.

Definition 1.1. Let
∑

G be the set of the proper subgroups of a group G, and n a positive integer. A
group is called a pcvn-group if for each H ∈

∑
G, |cv(H)| ≤ n.

We mainly show the following.

Theorem 1.2. If G is a pcvn-group with n ≤ 5, then G is solvable.

Theorem 1.2 is corresponding to [10, Theorem 12.15] or [17, Theorem 1.1] which says that a finite
group with |cv(G)| ≤ 7 or |cd(G)| ≤ 3 is solvable. Here we use the structure of a minimal simple group
to prove Theorem 1.2.

We also obtain the following result which is corresponding to [17, Theorem 1.2]
or [18, Theorem 2.2].

Theorem 1.3. Let G be a non-solvable pcvn-group.
(1) If n = 6, then G is isomorphic to A5.
(2) If n = 7, then G is isomorphic to PSL2(q) with q ∈ {5, 7}.

The structure of this short paper is as follows. In Section 2, some basic results are given, and in
Section 3, the structures of non-solvable pcv6- and pcv7-groups are identified respectively. For the
other notions and symbols are standard, please see [5, 10].

2. Minimal simple groups

In this section, we assemble some results needed. First result is due to Madanha.

Lemma 2.1. [17, Theorem 1.1] If |cv(G)| ≤ 7, then G is solvable.

A minimal simple group is a simple group of composite order all of whose proper subgroups are
solvable.

Lemma 2.2. [25, Corollary 1] Every minimal simple group is isomorphic to one of the following
minimal simple groups:

(1) PSL2(2p) for p a prime;
(2) PSL2(3p) for p an odd prime;
(3) PSL2(p), for p any prime exceeding 3 such that p2 + 1 ≡ 0 (mod 5);
(4) S z(2p) for p an odd prime;
(5) PSL3(3).

Let A be a group, and let exp A be a number which is minimal such that the order of all elements
from A divides exp A. The following two lemmas are given because the subgroups of a group can
control the structure of a group.
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Lemma 2.3. Let G be a dihedral group D2n of order 2n. Then |cv(G)| ≤ n + 1.

Proof. Obviously exp A ≤ n with equality when A is cyclic and so by [17, Lemma 2.2], |cv(A)| ≤ n,
and so |cv(G)| ≤ n + 1. □

Remark 2.4. In Lemma 2.3 we cannot replace ≤ with =. For instance, Let n = 16, then by [4],
cv(D32) = {1, 2,−1,−2, 0, A,−A, B,−B,C,−C}. Now |cv(D32)| = 11 < 16.

Remark 2.5. The result of Lemma 2.3 is mostly possible. For example, let n = 5. Then by [4],
cv(D10) = {1, 0,−1, 2, A, A∗}. Now |cv(D10)| = 6 = 5 + 1.

Lemma 2.6. Let G be a Frobenius group with the form Epn : Cpn−1 where n ≥ 1 is a positive integer.
Then |cv(G)| = p + 1. In particular, if Epn : Ck is a Frobenius subgroup of Epn : Cpn−1, then |cv(Epn :
Ck)| ≤ p + 1.

Proof. We see exp Epn = p, so Lemma 2.2 of [17] forces cv(Epn) = p. We know that Cpn−1, acts
fixed-point-freely on Epn so by Theorem 18.7 of [8], |cv(G)| = p + 1. □

Lemma 2.7. (1) G is a pcvn-group G if and only if for H ∈
∑

G, |cv(H)| ≤ n.
(2) Let N be a normal subgroup of a pcvn-group G, then, both N and G/N are pcvn-groups.

Proof. We conclude the two results from the definition of a pcvn-group. □

3. Simple pcvn-groups and Solvable pcv5-groups

In this section we will first determine the structure of simple pcvn-groups for n = 6, 7 by using
Lemma 2.2 and then show the solvability of pcvn-groups when n ≤ 5. For easy reading, we rewrite
Theorem 1.3 here.

Theorem 3.1. Let G be a non-abelian simple pcvn-group with n ≤ 7. Then
(1) if n = 6, G is isomorphic to A5;
(2) if n = 7, G is isomorphic to A5 or PSL2(7).

Proof. We know that for each H ∈
∑

G, |cv(H)| ≤ 7, H is solvable by Lemma 2.1. It follows that G is
a group whose proper subgroups are all solvable, so we can assume that G is a minimal simple group.
Thus G is isomorphic to PSL2(2p) for p a prime; PSL2(3p) for p an odd prime; PSL2(p), for p any
prime exceeding 3 such that p2 + 1 ≡ 0 (mod 5); S z(2p) for p an odd prime; PSL3(3); see Lemma 2.2.
So in what follows, these cases are considered.

Case 1: PSL2(q) for certain q.
By Table 1, D2(q+1)/k ∈ max PSL2(q) and so by Lemma 2.3, q+1

2 ≤ 7 when q is odd or q+1 ≤ 7 when
q is even. It follows that q is equal to 4, 5, 7, 9, 11 or 13. Note that PSL2(4) � PSL2(5) � A5, so two
subcases are dealt with.

Subcase 1: q ∈ {5, 7}.
Let q = 5. Then by [5, p. 2], max A5 = {A4,D10, S 3} and by [4], cv(A4) = {−1, 0, 1, A, A∗}, cv(D10) =

{−1, 0, 1, 2, A, A∗} and cv(S 3) = {−1, 0, 1, 2}. It follows that for each H ∈ max A5, |cv(H)| ≤ 6, so G is
isomorphic to A5.
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If q = 7, then max PSL2(7) = {S 4, 7 : 3} and by [4], cv(7 : 3) = {1, 3, A, A∗, B, B∗, 0}, cv(S 4) =
{1, 2, 3,−1, 0}, so |cv(7 : 3)| = 7 and |cv(S 4)| = 5. Assumption shows that G is isomorphic to PSL2(7)
as desired.

Subcase 2: q ∈ {9, 11, 13}.
By Table 1, A5 ∈ max PSL2(q) when q = 9 or 11 and |cv(A5)| = 8 by [17, Theorem 1.2] or [5, p. 2].
If q = 13, then 13 : 6 ∈ max PSL2(13) and cv(13 : 6) = {1, 6, A, A∗, B, −B, B∗, −B∗, -1, 0} by [4],

so |cv(13 : 6)| = 10, a contradiction.
It follows that PSL2(q) for q ∈ {9, 11, 13} is not a pcvn-group with n ≤ 7.

Table 1. PSL2(q), q ≥ 5 [11, p. 191].
max(PSL2(q)) Condition

C1 Eq : C(q−1)/k k = gcd(q − 1, 2)
C2 D2(q−1)/k q < {5, 7, 9, 11}
C3 D2(q+1)/k q < {7, 9}
C5 PSL2(q0).(k, b) q = qb

0, b a prime, q0 , 2
C6 S 4 q = p ≡ ±1 (mod 8)

A4 q = p ≡ 3, 5, 13, 27, 37 (mod 40)
S A5 q ≡ ±1 (mod 10), Fq = Fp[

√
5]

Case 2: S z(2p) for p an odd prime.
In this case, by Table 2, D2(q−1) ∈ max S z(q), so by Lemma 2.3, q − 1 ≤ 7, so q = 8. Now

23+3 : 7 ∈ max S z(8) and by [4], cv(23+3 : 7) = {1, 7, 14, −2, −1, A, −A, B, B∗, C, C∗, D, D∗, 0}. Thus
|cv(23+3 : 7)| = 14, a contradiction.

Table 2. S z(q), q = 22m+1 ≥ 8 [3, p. 385].
max(2B2(q)) Condition
E1+1

q : Cq−1

D2(q−1)

C
q+
√

2q+1
.C4

C
q−
√

2q+1
.C4

2B2(q0) q = qa
0, a prime, q0 ≥ 8

Case 3: PSL3(3).
By [5, pp. 13], 13 : 3 ∈ PSL3(3) and so by [4], cv(13 : 3) = {0, 1, 3, A, A∗, B, B∗,C,C∗}. Now

|cv(13 : 3)| = 9 ≰ 7, a contradiction. □

Now we can prove Theorem 1.2. For reader’s convenience, we rewrite it here.

Theorem 3.2. If G is a pcvn-group with n ≤ 5, then G is solvable.

Proof. By hypothesis, we know that every proper subgroup of G is solvable. If G is non-solvable, then
we can assume that G is simple. Now as the proof of Theorem 3.1 we obtain a contradiction. Thus G
is solvable. □
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4. Non-solvable pcvn-groups

In this section, we first show the structure of non-solvable pcv6-groups and then the structures of
non-solvable pcv7-groups are determined. For convenient reading, we rewrite Theorem 1.3 here.

Theorem 4.1. Let G be a non-solvable pcvn-group.
(1) If n = 6, then G is isomorphic to A5

(2) If n = 7, then G is isomorphic to PSL2(q) with q ∈ {5, 7}.

Proof. The non-solvability of G shows that G has a normal sequel 1 ≤ H ≤ K ≤ G such that K/H is
isomorphic to a direct product of isomorphic simple groups and that |G/K| divides |Out(K/H)|, where
Out(A) denotes the outer-automorphism group of a group A; see [27].

Now we have that

K/H is isomorphic to S × S × · · · × S︸             ︷︷             ︸
m times

where S � A5 when n = 6 and S � A5 or PSL2(7) when n = 7; see Theorem 3.1. By Lemma 2.7, K/H
is a pcvn-group, so let H ∈ max S , now

H × S × · · · × S︸       ︷︷       ︸
m−1 times

is a maximal subgroup of S × S × · · · × S︸             ︷︷             ︸
m times

.

If m ≥ 2, then |cv(A5)| = 8 and |cv(PSL2(7))| = 10 as cv(A5) = {1, 3, 4, 5,−1, 0, A, A∗} and
cv(PSL2(7)) = {1, 3, 6, 7, 8,−1, 2, 0, A, A∗} by [5, p. 2-3], so |cv(H × S × · · · × S )| ≥ 8, a contradiction.
Thus m = 1 and for any S < H ≤ Aut(S ), |cv(S )| ≥ 8 shows that H is not a pcvn-group with n = 6, 7;
see [17, Theorem 1.2]. Now G/H � A5 or PSL2(7) and G is not an almost simple group. It follows
that

G′/H � PSL2(q) or SL2(q) with q ∈ {5, 7};

see [7, Chap 2, Theorem 6.10].
So in the following two cases are done with.
Where N1 maximal under < δ > with |δ| = (q − 1, 2); N2 maximal under subgroups not contained

in < φ > with |φ| = e, q = pe, p a prime.
Case 1: G′/H � A5 or SL2(5).
By Table 3, 2.A4 ∈ max SL2(5) and by [4], cv(2.A4) = {1, 3, 2,−2, 0, A, A∗,−A∗,−A}. It follows that

|cv(2.A4)| = 9 > 7, so SL2(5) is not a pcvn-group with n = 6, 7. Thus G′/H � SL2(5) is impossible.
Now G′/H � A5 and G′ ∩ H = 1, so [G′,H] ≤ G′ ∩ H = 1. Thus,

G′ � G′
G′∩H �

G′
H � A5.

It follows that G � H × A5. If H , 1, then A5 ∈
∑

G. Observe that |cv(A5)| = 8, so in this case G is a
non-pcvn-group with n = 6, 7. Therefore G is isomorphic to A5, the desired result.
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Table 3. SL2(q), q ≥ 4( [3, p. 377]).
max SL2(q) Condition
Eq : Cq−1

Q2(q−1) q , 5, 7, 9, 11; q odd
N1 if q = 7, 11; N2 if q = 9

D2(q−1) q even
Q2(q+1) q , 7, 9; q odd

N1 if q = 7; N2 if q = 9
D2(q+1) q even

SL2(q0).2 q = q2
0, q odd

SL2(q0) q = qr
0, q odd, r odd prime

PSL2(q0) q = qr
0, q even, q0 , 2, r prime

2.S 4 q = p ≡ ±1 (mod 8)
2.A4 q = p ≡ ±3, 5,±13 (mod 40)

N1 if q = p ≡ ±11,±19 (mod 40)
2.A5 q = p ≡ ±1 (mod 10)

q = p2, p ≡ ±3 (mod 10)

Case 2: G′/H � PSL2(7) or SL2(7).
In this case n = 7. Table 3 gives that E7 : C6 ∈ max SL2(7) and by [4],

cv(E7 : C6) = {1, 6,−1, 0, A,−A, A∗,−A∗}. It follows that |cv(E7 : C6)| = 8 (this result can be gotten
from Lemma 2.6), so SL2(7) is not a pcv7-group. Thus G′/H � SL2(7) is not possible. Now consider
when G′/H � PSL2(7). Then G′ ∩ H = 1, [G′,H] = 1 and G � H × PSL2(7) too. If H , 1, then
PSL2(7) is not a pcv7-group, so H = 1 and G is isomorphic to PSL2(7), the wanted result. □

Proposition 4.2. Let G be a pcvn-group with n ≤ 7. Assume that G has no section isomorphic to
PSL2(q) for q ∈ {5, 7}, then G is solvable.

Proof. By Theorems 1.2 and 1.3, we can get the desired result. □
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