Rough set theory is an advanced uncertainty tool that is capable of processing sophisticated real-world data satisfactorily. Rough approximation operators are used to determine the confirmed and possible data that can be obtained by using subsets. Numerous rough approximation models, inspired by neighborhood systems, have been proposed in earlier studies for satisfying axioms of Pawlak approximation spaces (P-approximation spaces) and improving the accuracy measures. This work provides a formulation a novel type of generalized approximation spaces (G-approximation spaces) based on new neighborhood systems inspired by $ \mathbb{I}_j $-neighborhoods and ideal structures. The originated G-approximation spaces are offered to fulfill the axiomatic requirements of P-approximation spaces and give more information based on the data subsets under study. That is, they are real simulations of the P-approximation spaces and provide more accurate decisions than the previous models. Several examples are provided to compare the suggested G-approximation spaces with existing ones. To illustrate the application potentiality and efficiency of the provided approach, a numerical example for Chikungunya disease is presented. Ultimately, we conclude our study with a summary and direction for further research.
Citation: Tareq M. Al-shami, M. Hosny. Generalized approximation spaces generation from $ \mathbb{I}_j $-neighborhoods and ideals with application to Chikungunya disease[J]. AIMS Mathematics, 2024, 9(4): 10050-10077. doi: 10.3934/math.2024492
Rough set theory is an advanced uncertainty tool that is capable of processing sophisticated real-world data satisfactorily. Rough approximation operators are used to determine the confirmed and possible data that can be obtained by using subsets. Numerous rough approximation models, inspired by neighborhood systems, have been proposed in earlier studies for satisfying axioms of Pawlak approximation spaces (P-approximation spaces) and improving the accuracy measures. This work provides a formulation a novel type of generalized approximation spaces (G-approximation spaces) based on new neighborhood systems inspired by $ \mathbb{I}_j $-neighborhoods and ideal structures. The originated G-approximation spaces are offered to fulfill the axiomatic requirements of P-approximation spaces and give more information based on the data subsets under study. That is, they are real simulations of the P-approximation spaces and provide more accurate decisions than the previous models. Several examples are provided to compare the suggested G-approximation spaces with existing ones. To illustrate the application potentiality and efficiency of the provided approach, a numerical example for Chikungunya disease is presented. Ultimately, we conclude our study with a summary and direction for further research.
[1] | E. A. Abo-Tabl, A comparison of two kinds of definitions of rough approximations based on a similarity relation, Inform. Sciences, 181 (2011), 2587–2596. https://doi.org/10.1016/j.ins.2011.01.007 doi: 10.1016/j.ins.2011.01.007 |
[2] | H. M. Abu-Donia, Comparison between different kinds of approximations by using a family of binary relations, Knowl.-Based Syst., 21 (2008), 911–919. https://doi.org/10.1016/j.knosys.2008.03.046 doi: 10.1016/j.knosys.2008.03.046 |
[3] | H. M. Abu-Donia, Multi knowledge based rough approximations and applications, Knowl.-Based Syst., 26 (2012), 20–29. https://doi.org/10.1016/j.knosys.2011.06.010 doi: 10.1016/j.knosys.2011.06.010 |
[4] | H. M. Abu-Donia, A. S. Salama, Generalization of Pawlak's rough approximation spaces by using $\delta\beta$-open sets, Int. J. Approx. Reason., 53 (2012), 1094–1105. https://doi.org/10.1016/j.ijar.2012.05.001 doi: 10.1016/j.ijar.2012.05.001 |
[5] | A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts, In: International workshop on rough sets, fuzzy sets, data mining, and granular computing, Heidelberg: Springer, 2005, 64–73. https://doi.org/10.1007/11548669_7 |
[6] | A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for closure spaces by relations, Acta Mathematica Academiae Paedagogicae Nyiregyhaziensis, 22 (2006), 285–304. |
[7] | B. Almarri, A. A. Azzam, Energy saving via a minimal structure, Math. Probl. Eng., 2022 (2022), 5450344. https://doi.org/10.1155/2022/5450344 doi: 10.1155/2022/5450344 |
[8] | T. M. Al-shami, An improvement of rough sets' accuracy measure using containment neighborhoods with a medical application, Inform. Sciences, 569 (2021), 110–124. https://doi.org/10.1016/j.ins.2021.04.016 doi: 10.1016/j.ins.2021.04.016 |
[9] | T. M. Al-shami, Maximal rough neighborhoods with a medical application, J. Ambient Intell. Human. Comput., 14 (2023), 16373–16384. https://doi.org/10.1007/s12652-022-03858-1. doi: 10.1007/s12652-022-03858-1 |
[10] | T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8 (2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x doi: 10.1007/s40747-022-00704-x |
[11] | T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-021-06358-0 doi: 10.1007/s00500-021-06358-0 |
[12] | T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif. Intell. Rev., 56 (2023), 6855–6883, https://doi.org/10.1007/s10462-022-10346-7 doi: 10.1007/s10462-022-10346-7 |
[13] | T. M. Al-shami, D. Ciucci, Subset neighborhood rough sets, Knowl.-Based Syst., 237 (2022), 107868, https://doi.org/10.1016/j.knosys.2021.107868 doi: 10.1016/j.knosys.2021.107868 |
[14] | T. M. Al-shami, W. Q. Fu, E. A. Abo-Tabl, New rough approximations based on E-neighborhoods, Complexity, 2021 (2021), 6666853. https://doi.org/10.1155/2021/6666853 doi: 10.1155/2021/6666853 |
[15] | T. M. Al-shami, M. Hosny, Improvement of approximation spaces using maximal left neighborhoods and ideals, IEEE Access, 10 (2022), 79379–79393. https://doi.org/10.1109/ACCESS.2022.3194562 doi: 10.1109/ACCESS.2022.3194562 |
[16] | T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-07627-2 doi: 10.1007/s00500-022-07627-2 |
[17] | T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with applications, Demonstr. Math., 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223. doi: 10.1515/dema-2022-0223 |
[18] | M. Akram, F. Ilyas, M. Deveci, Interval rough integrated SWARA-ELECTRE model: An application to machine tool remanufacturing, Expert Syst. Appl., 238 (2024), 122067, https://doi.org/10.1016/j.eswa.2023.122067 doi: 10.1016/j.eswa.2023.122067 |
[19] | M. Akram, H. S. Nawaz, C. Kahraman, Rough Pythagorean fuzzy approximations with neighborhood systems and information granulation, Expert Syst. Appl., 218 (2023), 119603, https://doi.org/10.1016/j.eswa.2023.119603 doi: 10.1016/j.eswa.2023.119603 |
[20] | M. Akram, S. Zahid, M. Deveci, Enhanced CRITIC-REGIME method for decision making based on Pythagorean fuzzy rough number, Expert Syst. Appl., 238 (2024), 122014, https://doi.org/10.1016/j.eswa.2023.122014 doi: 10.1016/j.eswa.2023.122014 |
[21] | M. Atef, A. M. Khalil, S. G. Li, A. A. Azzam, A. E. F. E. Atik, Comparison of six types of rough approximations based on $j$-neighborhood space and $j$-adhesion neighborhood space, J. Intell. Fuzzy Syst., 39 (2020), 4515–4531. https://doi.org/10.3233/JIFS-200482 doi: 10.3233/JIFS-200482 |
[22] | M. Atef, A. M. Khalil, S. G. Li, A. Azzam, H. Liu, A. E. F. E. Atik, Comparison of twelve types of rough approximations based on j-neighborhood space and j-adhesion neighborhood space, Soft Comput., 26 (2022), 215–236. https://doi.org/10.1007/s00500-021-06426-5 doi: 10.1007/s00500-021-06426-5 |
[23] | A. A. Azzam, T. M. Al-shami, Five generalized rough approximation spaces produced by maximal rough neighborhoods, Symmetry, 15 (2023), 751. https://doi.org/10.3390/sym15030751 doi: 10.3390/sym15030751 |
[24] | J. Dai, S. Gao, G. Zheng, Generalized rough set models determined by multiple neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094. https://doi.org/10.1007/s00500-017-2672-x doi: 10.1007/s00500-017-2672-x |
[25] | M. K. El-Bably, T. M. Al-shami, Different kinds of generalized rough sets based on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086. https://doi.org/10.1142/S1793524521500868 doi: 10.1142/S1793524521500868 |
[26] | M. M. El-Sharkasy, Minimal structure approximation space and some of its application, J. Intell. Fuzzy Syst., 40 (2021), 973–982. https://doi.org/10.3233/JIFS-201090 doi: 10.3233/JIFS-201090 |
[27] | R. Gul, M. Shabir, T. M. Al-shami, M. Hosny, A Comprehensive study on $(\alpha, \beta)$-multi-granulation bipolar fuzzy rough sets under bipolar fuzzy preference relation, AIMS Mathematics, 8 (2023), 25888–25921. https://doi.org/10.3934/math.20231320 doi: 10.3934/math.20231320 |
[28] | A. Ç. Güler, E. D. Yildirim, O. Ozbakir, Rough approximations based on different topolofies via ideals, Turk. J. Math., 46 (2022), 1177–1192. https://doi.org/10.55730/1300-0098.3150 doi: 10.55730/1300-0098.3150 |
[29] | A. Ç. Güler, M. A. Balcı, L. M. Batrancea, Ö. Akgüller, L. Gaban, Novel graph neighborhoods emerging from ideals, Mathematics, 11 (2023), 2305. https://doi.org/10.3390/math11102305 doi: 10.3390/math11102305 |
[30] | M. Hosny, Idealization of $j$-approximation spaces, Filomat, 34 (2020), 287–301. https://doi.org/10.2298/FIL2002287H doi: 10.2298/FIL2002287H |
[31] | M. Hosny, Topologies generated by two ideals and the corresponding j-approximations spaces with applications, J. Math., 2021 (2021), 6391266. https://doi.org/10.1155/2021/6391266. doi: 10.1155/2021/6391266 |
[32] | M. Hosny, Generalization of rough sets using maximal right neighbourhood and ideals with medical applications, AIMS Mathematics, 7 (2022), 13104–13138. https://doi.org/10.3934/math.2022724 doi: 10.3934/math.2022724 |
[33] | M. Hosny, T. M. Al-shami, Rough set models in a more general manner with applications, AIMS Mathematics, 7 (2022), 18971–19017. https://doi.org/10.3934/math.20221044 doi: 10.3934/math.20221044 |
[34] | M. Hosny, T. M. Al-shami, A. Mhemdi, Rough approximation spaces via maximal union neighborhoods and ideals with a medical application, J. Math., 2022 (2022), 5459796. https://doi.org/10.1155/2022/5459796 doi: 10.1155/2022/5459796 |
[35] | M. Hosny, T. M. Al-shami, A. Mhemdi, Novel approaches of generalized rough approximation spaces inspired by maximal neighbourhoods and ideals, Alex. Eng. J., 69 (2023), 497–520. https://doi.org/10.1016/j.aej.2023.02.008 doi: 10.1016/j.aej.2023.02.008 |
[36] | R. A. Hosny, B. A. Asaad, A. A. Azzam, T. M. Al-shami, Various topologies generated from $E_j$-neighbourhoods via ideals, Complexity, 2021 (2021), 4149368. https://doi.org/10.1155/2021/4149368 doi: 10.1155/2021/4149368 |
[37] | K. H. Hu, F. H. Chen, M. F. Hsu, G. H. Tzeng, Governance of artificial intelligence applications in a business audit via a fusion fuzzy multiple rule-based decision-making model, Financ. Innov., 9 (2023), 117. https://doi.org/10.1186/s40854-022-00436-4 doi: 10.1186/s40854-022-00436-4 |
[38] | D. Jankovic, T. R. Hamlet, New topologies from old via ideals, Am. Math. Mon., 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593 doi: 10.1080/00029890.1990.11995593 |
[39] | A. Kandil, M. M. Yakout, A. Zakaria, Generalized rough sets via ideals, Annals of Fuzzy Mathematics and Informatics, 5 (2013), 525–532. |
[40] | A. Kandil, S. A. El-Sheikh, M. Hosny, M. Raafat, Bi-ideal approximation spaces and their applications, Soft Comput., 24 (2020), 12989–13001. https://doi.org/10.1007/s00500-020-04720-2 doi: 10.1007/s00500-020-04720-2 |
[41] | E. F. Lashin, A. M. Kozae, A. A. A. Khadra, T. Medhat, Rough set theory for topological spaces, Int. J. Approx. Reason., 40 (2005), 35–43. https://doi.org/10.1016/j.ijar.2004.11.007 doi: 10.1016/j.ijar.2004.11.007 |
[42] | W. Li, S. Yüksel, H. Dinçer, Understanding the financial innovation priorities for renewable energy investors via QFD-based picture fuzzy and rough numbers, Financ. Innov., 8 (2022), 67. https://doi.org/10.1186/s40854-022-00372-3 doi: 10.1186/s40854-022-00372-3 |
[43] | R. Mareay, Generalized rough sets based on neighborhood systems and topological spaces, Journal of the Egyptian Mathematical Society, 24 (2016), 603–608. https://doi.org/10.1016/j.joems.2016.02.002 doi: 10.1016/j.joems.2016.02.002 |
[44] | N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, M. Hosny, Rough bipolar fuzzy ideals in semigroups, Complex Intell. Syst., 9 (2023), 7197–7212. https://doi.org/10.1007/s40747-023-01132-1 doi: 10.1007/s40747-023-01132-1 |
[45] | N. Malik, M. Shabir, T. M. Al-shami, R. Gul, A. Mhemdi, Medical decision-making techniques based on bipolar soft information, AIMS Mathematics, 8 (2023), 18185–18205. https://doi.org/10.3934/math.2023924 doi: 10.3934/math.2023924 |
[46] | N. Malik, M. Shabir, T. M. Al-shami, R. Gul, M. Arar, A novel decision-making technique based on T-rough bipolar fuzzy sets, J. Math. Comput. Sci., 33 (2024), 275–289. https://doi.org/10.22436/jmcs.033.03.06 doi: 10.22436/jmcs.033.03.06 |
[47] | H. Mustafa, T. M. Al-shami, R. Wassef, Rough set paradigms via containment neighborhoods and ideals, Filomat, 37 (2023), 4683–4702. |
[48] | Z. Pawlak, Rough sets, International Journal of Computer and Information Sciences, 11 (2005), 341–356. |
[49] | Z. Pawlak, Rough concept analysis, Bull. Pol. Acad. Sci. Math., 33 (1985), 9–10. |
[50] | A. S. Salama, Bitopological approximation space with application to data reduction in multi-valued information systems, Filomat, 34 (2020), 99–110. https://doi.org/10.2298/FIL2001099S doi: 10.2298/FIL2001099S |
[51] | A. S. Salama, E. El-Seidy, A. K. Salah, Properties of different types of rough approximations defined by a family of dominance relations, Int. J. Fuzzy Log. Inte., 22 (2022), 193–201. http://doi.org/10.5391/IJFIS.2022.22.2.193 doi: 10.5391/IJFIS.2022.22.2.193 |
[52] | J. Sanabria, K. Rojo, F. Abad, A new approach of soft rough sets and a medical application for the diagnosis of Coronavirus disease, AIMS Mathematics, 8 (2023), 2686–2707. https://doi.org/10.3934/math.2023141 doi: 10.3934/math.2023141 |
[53] | A. Skowron, D. Vanderpooten, A generalized definition of rough approximations based on similarity, IEEE T. Knowl. Data En., 12 (2000), 331–336. https://doi.org/10.1109/69.842271 doi: 10.1109/69.842271 |
[54] | P. K. Singh, S. Tiwari, Topological structures in rough set theory: a survey, Hacet. J. Math. Stat., 49 (2020), 1270–1294. https://doi.org/10.15672/hujms.662711 doi: 10.15672/hujms.662711 |
[55] | Y. Y. Yao, Two views of the theory of rough sets in finite universes, Int. J. Approx. Reason., 15 (1996), 291–317. https://doi.org/10.1016/S0888-613X(96)00071-0 doi: 10.1016/S0888-613X(96)00071-0 |
[56] | Y. Y. Yao, On generalized Pawlak approximation operators, In: Rough sets and current trends in computing, Heidelberg: Springer, 1998,298–307. https://doi.org/10.1007/3-540-69115-4_41 |
[57] | Y. Y. Yao, Relational interpretations of neighborhood operators and rough set approximation operators, Inform. Sciences, 111 (1998), 239–259. https://doi.org/10.1016/S0020-0255(98)10006-3 doi: 10.1016/S0020-0255(98)10006-3 |
[58] | E. D. Yildirim, New topological approaches to rough sets via subset neighborhoods, J. Math., 2022 (2022), 3942708. https://doi.org/10.1155/2022/3942708 doi: 10.1155/2022/3942708 |
[59] | X. Zhang, J. Dai, Y. Yu, On the union and intersection operations of rough sets based on various approximation spaces, Inform. Sciences, 292 (2015), 214–229. https://doi.org/10.1016/j.ins.2014.09.007 doi: 10.1016/j.ins.2014.09.007 |
[60] | Y. L. Zhang, J. Li, C. Li, Topological structure of relational-based generalized rough sets, Fund. Inform., 147 (2016), 477–491. https://doi.org/10.3233/FI-2016-1418 doi: 10.3233/FI-2016-1418 |