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Abstract: Rough set theory is an advanced uncertainty tool that is capable of processing sophisticated
real-world data satisfactorily. Rough approximation operators are used to determine the confirmed and
possible data that can be obtained by using subsets. Numerous rough approximation models, inspired
by neighborhood systems, have been proposed in earlier studies for satisfying axioms of Pawlak
approximation spaces (P-approximation spaces) and improving the accuracy measures. This work
provides a formulation a novel type of generalized approximation spaces (G-approximation spaces)
based on new neighborhood systems inspired by I j-neighborhoods and ideal structures. The originated
G-approximation spaces are offered to fulfill the axiomatic requirements of P-approximation spaces
and give more information based on the data subsets under study. That is, they are real simulations of
the P-approximation spaces and provide more accurate decisions than the previous models. Several
examples are provided to compare the suggested G-approximation spaces with existing ones. To
illustrate the application potentiality and efficiency of the provided approach, a numerical example for
Chikungunya disease is presented. Ultimately, we conclude our study with a summary and direction
for further research.
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1. Introduction

In 1982, Pawlak [48, 49] established the concept of rough set theory as a crucial foundation for
the analysis of information systems that involve ambiguity/imperfect data. This theory starts from an
equivalence relation R over the universe U, which serves to define the granule (or block) bases. These
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bases are known as equivalent classes and it is said that the elements lie in the same class or category
provided that they are associated with each other by R. To decide the nature of the information obtained
from a rough set of data, the concepts of lower approximation and upper approximation which are
central in the rough set theory have been introduced. The ordered pair consisting of lower and upper
approximations known as P-approximation space. For more illustrative descriptions of the obtained
information in terms of structure and completeness of knowledge, researchers have put forward the
concepts of a boundary region and an accuracy measure.

The condition of equivalence relation that is imposed for P-approximation spaces is a strict
condition that limits the applications of rough sets. Therefore, Yao [55] relaxed this condition to an
arbitrary relation and defined the after and before neighborhoods as novel granule bases to analyze
information systems. This model (called G-approximation space) overcame the drawbacks of P-
approximation space and helped decision-makers to deal with a wide range of practical problems.
Afterward, many researchers and scholars introduced new sorts of neighborhood systems [1, 5, 6, 59].
By using operators like union, intersection, subset and superset, various scholars have proposed another
category of rough neighborhoods. Among them, Mareay [43] applied the equality relation between
Yao’s neighborhoods to present new rough set paradigms. Further discussion about these paradigms
has been conducted in [21, 22]. Dai et al. [24] displayed three types of rough models by using the
concept of maximal right neighborhoods inspired by a similarity relation. Then, Al-shami [9] provided
seven rough set paradigms from the perspective of different kinds of maximal neighborhoods they
generated from arbitrary binary relations. He exploited these models to rank suspected individuals
of COVID-19. Fresh techniques to create G-approximation spaces utilizing maximal neighborhoods
have been suggested by Azzam and Al-shami [23]. In the previous studies, various types of G-
approximation spaces have been introduced with the aim to develop characterizations of boundary
regions and accuracy measures such as I j-neighborhoods [14], containment rough neighborhoods [8]
and subset rough neighborhoods [13]. Abu-Donia [2, 3] exhibited approximation operators using
finite set relations instead of one relation, which offers more advantages for G-approximation spaces
and can handle some real-life issues. To cope with some complicated problems and widen the
scope of applications, several authors have hybridized the rough set with fuzzy set and soft set
theories [18–20, 27, 37, 42, 44–46, 52].

Given the similarity between interior and closure operators and lower and upper rough
approximation operators, scholars have studied G-approximation spaces from the perspective of
topology [41, 51, 53, 54, 60]. Moreover, some generalizations of topology such as supra topology [12],
infra topology [16], minimal structure [7, 26], generalized open sets [4, 10, 11] and bitopology [50]
have been used to describe G-approximation spaces. In 2013, Kandil et al. [39] introduced the abstract
principle of the so-called ideal K with rough neighborhoods to provide the ideal G-approximation
spaces (I-G-approximation spaces) as new rough set paradigms, which maximize the accuracy.
This combination has been approved by several authors, who made use of it to reduce the upper
approximation and increase the lower approximation. The aforementioned neighborhood systems have
been reformulated within the frameworks of I-G-approximation spaces [30, 32, 40, 47], topological
structures [17, 28, 31, 58] and graph theory [29]. It was combined ideals and diverse types of maximal
neighborhoods to construct some approximation spaces that have desirable properties to cope with
some practical issues by some authors [15, 33–35].

Al-shami et al. [14] presented the concept of E j-neighborhoods (studied here under the name of
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I j-neighborhoods) using the intersection operator between Yao’s neighborhoods. Then, Hosny et
al. [36] analyzed the rough set models induced from I j-neighborhoods via I-G-approximation spaces
and topologies. Here, we replace the nonempty intersection of I j-neighborhoods by the belong relation
to ideal with the aim to establish new types of neighborhood systems, namely, IKj -neighborhoods. We
demonstrate in this context the advantages of the proposed models as tools to enlarge lower (shrink
upper) approximation and reduce ambiguity regions, which results in a more accurate decision. Also,
we illustrate via our experimental results on Chikungunya’s information system that the proposed
approach outperforms state-of-the-art methods [14,36] in terms of improving approximation operators
and increasing accuracy measures. Finally, it should be noted that the current methodology is valid
for any arbitrary binary relation, which means that the strict condition of an equivalence relation for
P-approximation spaces can be eliminated.

The layout of this article is as follows. Section 2 describes the basic concepts of rough
neighborhoods, topologies, and ideals. Then, Section 3 is devoted to presenting new rough
neighborhood systems, i.e., IKj -neighborhoods, and exploring their basic properties. In Section 4, we
employ IKj -neighborhoods to present some rough set paradigms and elucidate their merits compared
to the state-of-the-art methods given in [14, 36]. These models are discussed from the perspective
of topology in Section 5. In Section 6 we give a medical example on the subject of Chikungunya’s
information system to illustrate how the current models effectively assist to reduce the amount of
uncertain information and increase the decision-making accuracy. Finally, in Section 7, we conclude
our paper with a summary of the paper’s contributions and a direction for further research.

2. Preliminaries

This section is dedicated to recalling the preliminaries and fundamentals that are necessary for the
readers to be aware of the manuscript content.

It is well known that a (binary) relation R on a nonempty set U is a subset of U × U. For s, t ∈ U
we write sRt if (s, t) ∈ R.

Definition 2.1. (see [25]) A relation R on U is said to be:

1) reflexive if sRs,∀s ∈ U.
2) symmetric if sRt ⇔ tRs.
3) transitive if sRt whenever tRp and sRp.
4) preorder (or quasi-order) if it is reflexive and transitive.
5) equivalence if it is reflexive, symmetric and transitive.
6) serial if for each s ∈ U there exists t ∈ U such that sRt.

Henceforth, we consider U as a nonempty finite set and R as an arbitrary relation unless we state
otherwise.

Definition 2.2. The following ω-neighborhoods of an element s ∈ U inspired by a relation R are
defined as follows:

1) after neighborhood of s, denoted by ωa(s) is given by ωa(s) = {t ∈ U : (s, t) ∈ R} [55].
2) before neighborhood of s, denoted by ωb(s) is given by ωb(s) = {t ∈ U : (t, s) ∈ R} [55].
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3) minimal-after neighborhood of s, denoted by ω⟨a⟩(s), is the intersection of all after neighborhoods
containing s [5, 6].

4) minimal-before neighborhood of s, denoted by ω⟨b⟩(s), is the intersection of all before
neighborhoods containing s [5, 6].

Remark 2.3. Some authors studied “after neighborhoods” and “before neighborhoods” under the
names “right neighborhoods” and “left neighborhoods”, respectively.

Definition 2.4. [14] The following I-neighborhoods of an element s ∈ U inspired by a relation R are
defined as follows:

1) Ia(s) = {t ∈ U : ωa(t) ∩ ωa(s) , ϕ}.
2) Ib(s) = {t ∈ U : ωb(t) ∩ ωb(s) , ϕ}.
3) Ii(s) = Ia(s) ∩ Ib(s).
4) Iu(s) = Ia(s) ∪ Ib(s).
5) I⟨a⟩(s) = {t ∈ U : ω⟨a⟩(t) ∩ ω⟨a⟩(s) , ϕ}.
6) I⟨b⟩(s) = {t ∈ U : ω⟨b⟩(t) ∩ ω⟨b⟩(s) , ϕ}.
7) I⟨i⟩(s) = I⟨a⟩(s) ∩ I⟨b⟩(s).
8) I⟨u⟩(s) = I⟨a⟩(s) ∪ I⟨b⟩(s).

In [14], I-neighborhoods were studied under the name “E-neighborhoods”.

Definition 2.5. [22, 43] The following ρ-neighborhoods of an element s ∈ U inspired by a relation R
are defined as follows:

1) ρa(s) = {t ∈ U : ωa(t) = ωa(s)}.
2) ρb(s) = {t ∈ U : ωb(t) = ωb(s)}.
3) ρi(s) = ρa(s) ∩ ρb(s).
4) ρu(s) = ρa(s) ∪ ρb(s).
5) ρ⟨a⟩(s) = {t ∈ U : ω⟨a⟩(t) = ω⟨a⟩(s)}.
6) ρ⟨b⟩(s) = {t ∈ U : ω⟨b⟩(t) = ω⟨b⟩(s)}.
7) ρ⟨i⟩(s) = ρ⟨a⟩(s) ∩ ρ⟨b⟩(s).
8) ρ⟨u⟩(s) = ρ⟨a⟩(s) ∪ ρ⟨b⟩(s).

For simplicity, the set {a, b, ⟨a⟩, ⟨b⟩, i, u, ⟨i⟩, ⟨u⟩} will be denoted by ℧.

Definition 2.6. [56,57] For ω-neighborhoods and for each j ∈ ℧, the approximation operators (lower
and upper), boundary region, and measures of accuracy and roughness of a nonempty subset F of U
are respectively given by

Rω j

⋆
(F) = {s ∈ U : ω j(s) ⊆ F}.

R⋆
ω j(F) = {s ∈ U : ω j(s) ∩ F , ϕ}.

BND⋆R
ω j(F) = R⋆

ω j(F) − Rω j

⋆
(F).

ACC⋆R
ω j(F) =

|R
ω j
⋆

(F)∩F|

|R⋆ω j (F)∪F|
.

Rough⋆R
ω j(F) = 1 − ACC⋆R

ω j(F).
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Definition 2.7. [14] For I-neighborhoods and for each j ∈ ℧, the approximation operators (lower
and upper), boundary region, and measures of accuracy and roughness of a nonempty subset F of U
are respectively given by

RI j
⋆

(F) = {s ∈ U : I j(s) ⊆ F}.

R⋆
I j(F) = {s ∈ U : I j(s) ∩ F , ϕ}.

BND⋆R
I j(F) = R⋆

I j(F) − RI j
⋆

(F).

ACC⋆R
I j(F) =

|R
I j
⋆

(F)∩F|

|R⋆I j (F)∪F|
.

Rough⋆R
I j(F) = 1 − ACC⋆R

I j(F).

Definition 2.8. [38] An ideal K on any nonempty set U is a nonempty collection of subsets of U that
is closed under finite unions and subsets, i.e., it satisfies the following conditions:

1) F ∈ K and H ∈ J ⇒ F ∪ H ∈ K ,
2) F ∈ K and H ⊆ F ⇒ H ∈ K .

Definition 2.9. [36] Let R and K respectively denote the binary relation and ideal on a nonempty set
U. The approximation operators (lower and upper), boundary region, accuracy and roughness of a
nonempty subset L of U derived from R and K through the use of I-neighborhoods respectively given
by

LI j
⋆

(L) = {s ∈ U : I j(s) ∩ Lc ∈ K}.

U⋆
I j(L) = {s ∈ U : I j(s) ∩ L < K}.

△⋆R
I j(L) = U⋆

I j(L) − LI j
⋆

(L).

M⋆R
IKj (L) =

|L
I j
⋆

(L)∩L|

|U⋆I j (L)∪L|
.

R⋆R
IKj (L) = 1 −M⋆R

IKj (L).

Definition 2.10. [22] For ρ-neighborhoods and for each j ∈ ℧, the approximation operators (lower
and upper), boundary region, and measures of accuracy and roughness of a nonempty subset F of U
are respectively given by

Rρ j

⋆
(F) = {s ∈ U : ρ j(s) ⊆ F}.

R⋆
ρ j(F) = {s ∈ U : ρ j(s) ∩ F , ϕ}.

BND⋆R
ρ j(F) = R⋆

ρ j(F) − Rρ j

⋆
(F).

ACC⋆R
ρ j(F) =

|R
ρ j
⋆

(F)∩F|

|R⋆ρ j (F)∪F|
.

Rough⋆R
ρ j(F) = 1 − ACC⋆R

ρ j(F).

Theorem 2.11. [14] Let K be an ideal on U. Then, ∀ j ∈ ℧, the following holds:

1) τω j = {A ⊆ U : ∀s ∈ A, ω j(s) ⊆ A} is a topology on U.
2) τρ j = {A ⊆ U : ∀s ∈ A, ρ j(s) ⊆ A} is a topology on U.
3) τI j = {A ⊆ U : ∀s ∈ A, I j(s) ⊆ A} is a topology on U.
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Definition 2.12. [14] Let τI j be a topology on U that is described by the above theorem ∀ j ∈ ℧ and
A ⊆ U. Then, the interior and closure operators of A in (U, τI j), denoted by τI j(A) and τI j(A), are called
the τI j-lower approximation and τI j-upper approximation, respectively.

Definition 2.13. [14] The τI j-boundary and τI j-accuracy induced by a topological space (U, τI j) are
respectively given by BNDτ

I j (A) = τI j(A) − τI j(A) and ACCτ
I j (A) = |τ

I j (A)|

|τ
I j (A)|

.

3. Novel types of rough set neighborhoods based on I-neighborhoods and ideals

In this section, we put forward a new type of neighborhood system generated by I-neighborhoods
and an ideal structure. We scrutinize the main features of these neighborhoods and elucidate the
relationships between them as well as their relationships with the aforementioned types.

Definition 3.1. Let R be a relation on U and K an ideal on U. Then, the IKj -neighborhoods of s ∈ U
are defined as follows:

1) IKa (s) = {t ∈ U : ωa(t) ∩ ωa(s) < K}.
2) IKb (s) = {t ∈ U : ωb(t) ∩ ωb(s) < K}.
3) IKi (s) = IKa (s) ∩ IKb (s).
4) IKu (s) = IKa (s) ∪ IKb (s).
5) IK

⟨a⟩(s) = {t ∈ U : ω⟨a⟩(t) ∩ ω⟨a⟩(s) < K}.
6) IK

⟨b⟩(s) = {t ∈ U : ω⟨b⟩(t) ∩ ω⟨b⟩(s) < K}.
7) IK

⟨i⟩(s) = IK
⟨a⟩(s) ∩ IK

⟨b⟩(s).
8) IK

⟨u⟩(s) = IK
⟨a⟩(s) ∪ IK

⟨b⟩(s).

It should be noted that if K = ϕ in Theorem 3.2, then Definition 3.1 is equivalent to the previous
one in Definition 2.4 [14]. So, the current work is considered as a real extension of the work in [14].

Theorem 3.2. Let (U,R,K) be an I-G approximation space. Then, IKj (s) ⊆ I j(s),∀ j ∈ ℧.

Proof: We prove the case for j = a and the other cases similarly. Let t ∈ IKa (s). Then, ωa(t)∩ωa(s) < K .
Thus, ωa(t) ∩ ωa(s) , ϕ. So, t ∈ Ia(s). Hence, IKa (s) ⊆ Ia(s).

The converse of Theorem 3.2 is not true in general as shown in the following example.

Example 3.3. Let U = {p, q, s, t}, R = {(p, p), (t, t), (p, s), (p, t), (t, q), (q, t)} and K = {ϕ, {t}}. In Table
1, we compute ω j-neighborhoods, ρ j-neighborhoods, I j-neighborhoods and IKj -neighborhoods.
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Table 1. ω j-neighborhoods, ρ j-neighborhoods, I j-neighborhoods and IKj -neighborhoods.

p q s t
ωa {p, s, t} {t} {ϕ} {q, t}
ωb {p} {t} {p} {p, q, t}
ωi {p} {t} {ϕ} {q, t}
ωu {p, s, t} {t} {p} {p, q, t}
ω⟨a⟩ {p, s, t} {q, t} {p, s, t} {t}
ω⟨b⟩ {p} {p, q, t} {ϕ} {t}
ω⟨i⟩ {p} {q, t} {ϕ} {t}
ω⟨u⟩ {p, s, t} {p, q, t} {p, s, t} {t}
ρa {p} {q} {s} {t}
ρb {p, s} {q} {p, s} {t}
ρi {p} {q} {s} {t}
ρu {p, s} {q} {p, s} {t}
ρ⟨a⟩ {p, s} {q} {p, s} {t}
ρ⟨b⟩ {p} {q} {s} {t}
ρ⟨i⟩ {p} {q} {s} {t}
ρ⟨u⟩ {p, s} {q} {p, s} {t}
Ia {p, q, t} {p, q, t} {ϕ} {p, q, t}
Ib {p, s, t} {q, t} {p, s, t} U
Ii {p, t} {q, t} {ϕ} {p, q, t}
Iu U {p, q, t} {p, s, t} U
I⟨a⟩ U U U U
I⟨b⟩ {p, q} {p, q, t} {ϕ} {q, t}
I⟨i⟩ {p, q} {p, q, t} {ϕ} {q, t}
I⟨u⟩ U U U U
IKa {p} {ϕ} {ϕ} {t}
IKb {p, s, t} {ϕ} {p, s, t} {p, s, t}
IKi {p} {ϕ} {ϕ} {t}
IKu {p, s, t} {ϕ} {p, s, t} {p, s, t}
IK
⟨a⟩ {p, s} {q} {p, s} {ϕ}

IK
⟨b⟩ {p, q} {p, q} {ϕ} {ϕ}

IK
⟨i⟩ {p} {q} {ϕ} {ϕ}

IK
⟨u⟩ {p, q, s} {p, q} {p, s} {ϕ}

Theorem 3.4. Let (U,R,K) be an I-G approximation space and s ∈ U. Then, the following holds:

1) IKi (s) ⊆ IKa (s) ∩ IKb (s) ⊆ IKa (s) ∪ IKb (s) ⊆ IKu (s).
2) IK

⟨i⟩(s) ⊆ IK
⟨a⟩(s) ∩ IK

⟨b⟩(s) ⊆ IK
⟨a⟩(s) ∪ IK

⟨b⟩(s) ⊆ IK
⟨u⟩(s).

3) t ∈ IKj (s)⇔ s ∈ IKj (t),∀ j ∈ ℧.
4) if R is reflexive, then IK

⟨ j⟩(s) ⊆ IKj (s) and ρ j(s) ∪ ω j(s) ⊆ IKj (s),∀ j ∈ ℧.
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5) If R is symmetric, then IKi (s) = IKa (s) = IKb (s) = IKu (s) and IK
⟨i⟩(s) = IK

⟨a⟩(s) = IK
⟨b⟩(s) = IK

⟨u⟩(s).
6) If R is transitive, then IKj (s) ⊆ IK

⟨ j⟩(s),∀ j ∈ {a, b, i, u}.
7) If R is serial, then ρ j(s) ⊆ IKj (s),∀ j ∈ ℧.
8) If R is symmetric and transitive, then IKj (s) ⊆ ω j(s) and IKj (s) ⊆ IKj (t) (if s ∈ IKj (t),∀ j ∈ ℧.
9) If R is an equivalence relation, then all instances of IKj (s) are identical ∀ j ∈ ℧.

Proof:

(3) p ∈ IKj (s) ⇔ ω j(p) ∩ ω j(s) < K ⇔ s ∈ IKj (p),∀ j ∈ {a, b, ⟨a⟩, ⟨b⟩}. Hence, p ∈ IKj (s) ⇔ s ∈
IKj (p),∀ j ∈ {i, u, ⟨i⟩, ⟨u⟩}.

(4) First, ∩p∈ωa(s)ωa(s) ⊆ ωa(p) and ∩p∈ωb(s)ωa(s) ⊆ ωb(p) for R is reflexive. Therefore, IK
⟨a⟩(s) ⊆ IKa (s)

and IK
⟨b⟩(s) ⊆ IKb (s). So, IK

⟨i⟩(s) ⊆ IKi (s) and IK
⟨u⟩(s) ⊆ IKu (s).

Second, Let p ∈ ω j(s). Since R is reflexive, then p ∈ ω j(p). Consequently, p ∈ ω j(p) ∩ ω j(s).
Hence,ω j(p)∩ω j(s) , ϕ. So,ω j(p)∩ω j(s) < K . Then, p ∈ IKj (s) and consequently,ω j(s) ⊆ IKj (s).
Let p ∈ P j(s). Then, ω j(p) = ω j(s) , ϕ for R is reflexive. So, ω j(p) ∩ ω j(s) , ϕ. Hence,
ω j(p) ∩ ω j(s) < K . Then, p ∈ IKj (s) and consequently, P j(s) ⊆ IKj (s).

(5) ωa(s) = ωb(s),∀s ∈ U for R is symmetric. Consequently, ωa(s)∩ωa(p) < K ⇔ ωb(s)∩ωb(p) < K .
So, IKa (s) = IKb (s). Thus, IKa (s) = IKb (s) = IKi (s) = IKu (s). Similarly, IK

⟨a⟩(s) = IK
⟨b⟩(s) = IK

⟨i⟩(s) =
IK
⟨u⟩(s).

(6) It follows from the fact that ωa(s) ⊆ ω⟨a⟩(p) for R is transitive. Consequently, IKa (s) ⊆ IK
⟨a⟩(s).

Similarly, IKb (s) ⊆ IK
⟨b⟩(s). Thus, IKi (s) ⊆ IK

⟨i⟩(s) and IKu (s) ⊆ IK
⟨u⟩(s).

(7) Follows by (3) and (4).

(8) First, let p ∈ IK
⟨i⟩(s). Then, ωa(p) ∩ ωa(s) < K . So, ωa(p) ∩ ωa(s) , ϕ. Thus, there exists q ∈

ωa(p) ∩ ωa(s). So, pRq and xRq. Since R is symmetric and transitive, xRp. Therefore, p ∈ ωa(s)
So, IKa (s) ⊆ ωa(s).
Second, since R is symmetric, IKa (s) = IKb (s) = IKi (s) = IKu (s). Let s ∈ IKa (t). Then, ωa(s)∩ωa(t) <
K . Thus, ωa(s) ∩ ωa(t) , ϕ. So, there exists a ∈ U such that xRa and yRa. Let p ∈ IKb (s). Then,
ωb(p) ∩ ωb(s) < K . So, there exists b ∈ U such that bRp and bRx. Consequently, aRp and aRy
since R is symmetric and transitive. Therefore, a ∈ ωb(p) ∩ ωb(t). So, ωb(p) ∩ ωb(s) , ϕ. Thus,
p ∈ IKb (t).

(9) First, by (4) and (8), IKj (s) = ω j(s) and P j(s) ⊆ IKj (s). It remains to prove that IKj (s) ⊆ P j(s). Since
R is symmetric, IKa (s) = IKb (s) = IKi (s) = IKu (s) by (5). Let p ∈ IKb (s). Then, ωb(p) ∩ ωb(s) < K .
Thus, ωb(p)∩ωb(s) , ϕ. Since R is an equivalence relation, ωb(p) = ωb(s). Therefore, p ∈ Pb(s).
Consequently, IKb (s) ⊆ Pb(s). Thus, the result is obtained.
Second, let x ∈ IKb (t). Then, ωb(s)∩ωb(t) < K . Thus, ωb(s)∩ωb(t) , ϕ. Since R is an equivalence
relation, ωb(s) = ωb(t) , ϕ. Therefore, IKj (s) = IKj (t). Since, R is reflexive, s ∈ ωb(s). Hence,
s ∈ IKj (t).
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4. Some new rough set models based on IKj -neighborhoods

This part is devoted to setting up new rough set models that are defined by using IKj -neighborhoods.
Here, we research their main characterizations and compare them. We also demonstrate, with the help
of illustrative examples, how the proposed models improve the approximation operators and increase
the accuracy measures of subsets relative to those presented in [14, 36].

Definition 4.1. Let R and K respectively denote the binary relation and ideal on a nonempty set U.
The improved operators (lower and upper), boundary region, accuracy and roughness of a nonempty
subset L of U derived from R and K are respectively given by

R
IKj

⋆
(L) = {s ∈ U : IKj (s) ∩ Lc ∈ K}.

R⋆
IKj (L) = {s ∈ U : IKj (s) ∩ L < K}.

BND⋆R
IKj (L) = R⋆

IKj (L) − R
IKj

⋆
(L).

ACC⋆R
IKj (L) =

|R
IKj
⋆

(L)∩L|

|R⋆
IKj (L)∪L|

.

Rough⋆R
IKj (L) = 1 − ACC⋆R

IKj (L).
In Table 2, we offer a comparison of the approximation operators, boundary region, and accuracy

measure results for a set L as based on Definition 4.1 in the cases of j ∈ {a, b, i, u}.

Proposition 4.2. Consider L,D ⊆ U and let K be an ideal and R be a binary relation on U. Then the
following holds:

1) if Lc ∈ K , then R
IKj

⋆
(L) = U.

2) if K = P(U), then R
IKj

⋆
(L) = U.

3) ϕ ⊆ R
IKj

⋆
(ϕ).

4) R
IKj

⋆
(U) = U.

5) L ⊆ D⇒ R
IKj

⋆
(L) ⊆ R

IKj

⋆
(D).

6) R
IKj

⋆
(L ∪ D) ⊇ R

IKj

⋆
(L) ∪ R

IKj

⋆
(D).

7) R
IKj

⋆
(L ∩ D) = R

IKj

⋆
(L) ∩ R

IKj

⋆
(D).

8) R
IKj

⋆
(L) = (R⋆I

K
j (Lc))c.

Proof:

(4)

R
IKj

⋆
(U) = {s ∈ U : IKj (s) ∩ Uc ∈ K}.

= U.

(5) Let s ∈ R
IKj

⋆
(L). Then, IKj (s)∩ Lc ∈ K . Since Dc ⊆ Lc andK is an ideal, it follows that IKj (s)∩Dc ∈

K . Therefore, s ∈ R
IKj

⋆
(L). Hence, R

IKj

⋆
(L) ⊆ R

IKj

⋆
(D).
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(6) It follows immediately by part (5).

(7) R
IKj

⋆
(L ∩ D) ⊆ R

IKj

⋆
(L) ∩ R

IKj

⋆
(D) by part (2). Let s ∈ R

IKj

⋆
(L) ∩ R

IKj

⋆
(D). Then,

IKj (s) ∩ Lc ∈ K and IKj (s) ∩ Dc ∈ K . It follows that (IKj (s) ∩ (Lc ∪ Dc)) ∈ K . So, (IKj (s) ∩

(L ∩ D)c) ∈ K . Therefore, s ∈ R
IKj

⋆
(L ∩ D). Thus, R

IKj

⋆
(L) ∩ R

IKj

⋆
(D) ⊆ R

IKj

⋆
(L ∩ D). Hence,

R
IKj

⋆
(L ∩ D) = R

IKj

⋆
(L) ∩ R

IKj

⋆
(D).

(8)

(R⋆
IKj (Lc))c = ({s ∈ U : IKj (s) ∩ Lc < K})c.

= {s ∈ U : IKj (s) ∩ Lc ∈ K}.

= R
IKj

⋆
(L).

Proposition 4.3. Consider L,D ⊆ U and let K be an ideal and R be a binary relation on U. Then the
following holds:

1) if L ∈ K , then R⋆
IKj (L) = ϕ.

2) if K = P(U), then R⋆
IKj (L) = ϕ.

3) R⋆
IKj (U) ⊇ U.

4) ϕ = R⋆
IKj (ϕ).

5) L ⊆ D⇒ R⋆
IKj (L) ⊆ R⋆

IKj (D).
6) R⋆

IKj (L ∩ D) ⊆ R⋆
IKj (L) ∩ R⋆

IKj (D).
7) R⋆

IKj (L ∪ D) = R⋆
IKj (L) ∪ R⋆

IKj (D).
8) R⋆

IKj (L) = (R⋆
IKj (Lc))c.

Proof:

(4)

R⋆
IKj (ϕ) = {s ∈ U : IKj (s) ∩ ϕ < K}.

= ϕ.

(5) Let s ∈ R⋆
IKj (L). Then, IKj (s)∩L < K . Since L ⊆ D andK is an ideal, it follows that IKj (s)∩D < K .

Therefore, s ∈ R⋆
IKj (D). Hence, R⋆

IKj (L) ⊆ R⋆
IKj (D).

(6) It follows immediately by part (5).

(7) R⋆
IKj (L ∪ D) ⊇ R⋆

IKj (L) ∪ R
IKj

⋆
(D) by part (2). Let x ∈ R⋆

IKj (L ∪ D). Then, IKj (s) ∩ (L ∪ D) < K . It
follows that ((IKj (s) ∩ L) ∪ (IKj (s) ∩ D)) < K . Therefore, IKj (s) ∩ L < K or IKj (s) ∩ D < K , which

means that s ∈ R⋆
IKj (L) or R

IKj

⋆
(D). Then, R⋆

IKj (L)∪R
IKj

⋆
(D). Thus, R⋆

IKj (L)∪R
IKj

⋆
(D) ⊇ R⋆

IKj (L∪D).

Hence, R⋆
IKj (L ∪ D) = R⋆

IKj (L) ∪ R
IKj

⋆
(D).
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(8)

(R⋆
IKj (Lc))c = ({s ∈ U : IKj (s) ∩ L ∈ K})c.

= {s ∈ U : IKj (s) ∩ L < K}.

= R⋆
IKj (L).

Remark 4.4. By Example 3.3, we elucidate that

1) the converse of part (5) in Propositions 4.2 and 4.3 is generally incorrect.
2) the inclusion relations of parts (3) and (6) in Propositions 4.2 and 4.3 are generally proper.

Theorem 4.5. Let (U,R,K) be an I-G approximation space such that L ⊆ U. Then, ∀ j ∈ ℧, the
following holds:

1) RI j
⋆

(L) ⊆ R
IKj

⋆
(L).

2) R⋆
IKj (L) ⊆ R⋆

I j(L).

3) BND⋆R
IKj (L) ⊆ BND⋆R

I j(L).

4) ACC⋆R
I j(L) ≤ ACC⋆R

IKj (L).

Proof:

(1) Let s ∈ RI j
⋆

(L). Then, I j(s) ⊆ L. Since IKj (s) ⊆ I j(s) (by Theorem 3.2), then IKj (s) ⊆ L. Thus,

IKj (s) ∩ Lc ∈ K . Hence, s ∈ R
IKj

⋆
(L). Therefore, RI j

⋆
(L) ⊆ R

IKj

⋆
(L).

(2) Let s ∈ R⋆
IKj (L). Then, IKj (s) ∩ L < K . So, IKj (s) ∩ L , ϕ. Consequently, I j(s) ∩ L , ϕ given that

IKj (s) ⊆ I j(s) (by Theorem 3.2). Thus, s ∈ R⋆
I j(L). Therefore, R⋆

IKj (L) ⊆ R⋆
I j(L).

(3)–(4) It follow by (1) and (2).

Remark 4.6. Consider Example 3.3 and the following:

1) Table 3 shows that the inclusion relation and less than relation of parts in Theorem 4.5 are
generally proper.

2) Table 4 shows that the approximations in [22, 55] (see 2.6 and 2.10) and the proposed
approximation operators in Definition 4.1 are incomparable.
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Table 3. Comparison of the results obtained based on the proposed Definition 4.1 and
Definition 2.7 [14] for j = a.

L
The proposed Definition 4.1 at j = a Definition [14] 2.7 at j = a

RI
K
a
⋆

(L) R⋆
IKa (L) BND⋆

IKa (L) ACC⋆
IKa (L) RIa

⋆
(L) R⋆

Ia(L) BND⋆R
Ia(L) ACC⋆R

Ia(L)
ϕ {q, s, t} ϕ ϕ 0 {s} ϕ ϕ 0
U U {p} ϕ 1 U {p, q, t} ϕ 1
{p} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 0
{q} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 0
{s} {q, s, t} ϕ ϕ 1 {s} ϕ ϕ 1
{t} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 0
{p, q} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 0
{p, s} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 1/4
{p, t} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 0
{q, s} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 1/4
{q, t} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 0
{s, t} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 1/4
{p, q, s} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 1/4
{p, q, t} U {p} ϕ 1 U {p, q, t} ϕ 1
{p, s, t} U {p} ϕ 1 {s} {p, q, t} {p, q, t} 1/4
{q, s, t} {q, s, t} ϕ ϕ 1 {s} {p, q, t} {p, q, t} 1/4
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5. Generalized topology based on IKj -neighborhoods

One of the well-known approaches to initiating new rough set models is the use of a topology. Here,
we provide a method to generate topological spaces from IKj -neighborhoods. Then, we exploit these
topologies to introduce new approximation operators and accuracy measures. We make comparisons
between them and explore their main properties.

Theorem 5.1. Let (U,R,K) be an I-G approximation space. Then, ∀ j ∈ ℧, the collection τI
K
j = {L ⊆

U : ∀s ∈ L, IKj (s) ∩ Lc ∈ K} is a topology on U.

Proof:

(1) Clearly U and ϕ belong to τI
K
j .

(2) Let Li ∈ τ
IKj (∀i ∈ I) and a ∈ ∪i∈ILi. Then,

∃ i0 ∈ I such that a ∈ Li0

⇒ IKj (a) ∩ Lc
i0
∈ I

⇒ IKj (a) ∩ (∪i∈ILi)c ∈ I

⇒ ∪i∈ILi ∈ τ
IKj .

(3) Let L,D ∈ τI
K
j , and a ∈ L ∩ D.

⇒ IKj (a) ∩ Lc ∈ I and IKj (a) ∩ Dc ∈ I

⇒ (IKj (a) ∩ Lc) ∪ (IKj (a) ∩ Dc) ∈ I
⇒ IKj (a) ∩ (Lc ∪ Dc) ∈ I
⇒ (IKj (a) ∩ (L ∩ D)c ∈ I

⇒ L ∩ D ∈ τI
K
j .

From (1)–(3), we obtain τI
K
j as a topology on U.

The proposed topologies, mentioned above, are finer than the previous ones [14] as is shown in the
following result.

Theorem 5.2. Let (U,R,K) be an I-G approximation space. Then, τI j ⊆ τI
K
j ∀ j ∈ ℧.

Proof: Let L ∈ τI j . Then, I j(s) ⊆ L ∀s ∈ L and consequently IKj (s) ⊆ L ∀s ∈ L by Theorem 3.2. Thus,

IKj (s) ∩ Lc = ϕ ∈ K ∀s ∈ L. Therefore, L ∈ τI
K
j . Hence, τI j ⊆ τI

K
j .

Remark 5.3. It should be noted that the following holds:

1) If K = ϕ in Theorem 5.2, then the proposed generated topologies are equivalent to those in
Theorem 2.11 [14]. So, the current work is considered as a proper extension of the work in [14].

2) In Example 3.3, we obtain for j = a the following: P(U) = τI
K
a ⊊ τIa = {U, ϕ, {s}, {p, q, t}}. This

means that τI
K
j ⊊ τI j .

Proposition 5.4. Let (U,R,K) be an I-G approximation space. Then the following holds:

1) τI
K
u ⊆ τI

K
a and τI

K
u ⊆ τI

K
b .

2) τI
K
a ⊆ τI

K
i and τI

K
b ⊆ τI

K
i .
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3) τI
K
⟨u⟩ ⊆ τI

K
⟨a⟩ and τI

K
⟨u⟩ ⊆ τI

K
⟨b⟩ .

4) τI
K
⟨a⟩ ⊆ τI

K
⟨i⟩ and τI

K
⟨b⟩ ⊆ τI

K
⟨i⟩ .

5) If R is reflexive, then τI
K
⟨ j⟩ ⊆ τI

K
j and τρ

K
j ⊆ τI

K
j ,∀ j ∈ ℧.

6) If R is serial, then τρ
K
j ⊆ τI

K
j ,∀ j ∈ {a, b, i, u}.

7) If R is symmetric, then τI
K
a = τI

K
b = τI

K
i = τI

K
u and τI

K
⟨a⟩ = τI

K
⟨b⟩ = τI

K
⟨i⟩ = τI

K
⟨u⟩ .

8) If R is transitive, then τI
K
j ⊆ τI

K
⟨ j⟩ ,∀ j ∈ {a, b, i, u}.

9) If R is an equivalence relation, then ∀ j ∈ ℧ all τI
K
j are identical.

Proof:

(1) Let L ∈ τI
K
u . Then, IKu (p) ∩ Lc ∈ K ∀p ∈ L. Thus, (IKa (p) ∪ IKb (p)) ∩ Lc ∈ K ∀p ∈ L. Hence,

IKa (p) ∩ Ac ∈ K ∀p ∈ L and IKb (p) ∩ Lc ∈ K ∀p ∈ A. Therefore, L ∈ τI
K
a and L ∈ τI

K
b . Hence,

τI
K
u ⊆ τI

K
a and τI

K
u ⊆ τI

K
b . Similarly, we can prove 3).

(2) Let L ∈ τI
K
a . Then, IKa (p) ∩ Lc ∈ K ∀p ∈ L. Thus, (IKa (p) ∩ IKb (p)) ∩ Lc ∈ K ∀p ∈ L. Hence,

IKi (p) ∩ Lc ∈ K ∀p ∈ L. Therefore, L ∈ τI
K
i . Hence, τI

K
a ⊆ τI

K
i . Similarly, we can prove 4).

(5)–(9) It follows directly by Theorem 3.4.

Corollary 5.5. Let (U,R,K) be an I-G approximation space. Then, ∀ j ∈ ℧ we have the following
properties:

1) τI
K
u ⊆ τI

K
a ⊆ τI

K
i .

2) τI
K
u ⊆ τI

K
b ⊆ τI

K
i .

3) τI
K
⟨u⟩ ⊆ τI

K
⟨a⟩ ⊆ τI

K
⟨i⟩ .

4) τI
K
⟨u⟩ ⊆ τI

K
⟨b⟩ ⊆ τI

K
⟨i⟩ .

Remark 5.6. Example 3.3 shows that the inclusion in Proposition 5.4 and Corollary 5.5 cannot be
replaced by an equality relation.

Definition 5.7. Let L be a subset of a topological space (U, τI
K
j ) ∀ j ∈ ℧. The interior operator of L,

denoted by τI
K
j (L) = Lo and the closure operator of L, denoted by τI

K
j (L) = L, are called the τI

K
j -lower

approximation and τI
K
j -upper approximation, respectively.

Definition 5.8. The τI
K
j -boundary and τI

K
j -accuracy induced by a topological space (U, τI

K
j ) are

respectively given by BNDτ
IKj (L) = τI

K
j (L) − τI

K
j (L) and ACCτ

IKj (L) = |τ
IKj (L)|

|τ
IKj (L)|

.

Table 5 presents the comparison of the boundary region and accuracy measure results for a set L as
based on Definition 5.7 for j ∈ {a, b, i, u}.

AIMS Mathematics Volume 9, Issue 4, 10050–10077.



10066

Ta
bl

e
5.

C
om

pa
ri

so
n

of
th

e
bo

un
da

ry
re

gi
on

an
d

ac
cu

ra
cy

m
ea

su
re

re
su

lts
fo

r
a

se
t

L,
as

ob
ta

in
ed

by
us

in
g

th
e

pr
op

os
ed

D
efi

ni
tio

n
5.

7
fo

r
j∈
{a
,b
,i
,u
}.

L
T

he
pr

es
en

tD
efi

ni
tio

n
5.

7
at

j=
r

T
he

pr
es

en
tD

efi
ni

tio
n

5.
7

at
j=

l
T

he
pr

es
en

tD
efi

ni
tio

n
5.

7
at

j=
i

T
he

pr
es

en
tD

efi
ni

tio
n

5.
7

at
j=

u

τI
K a

(L
)
τI
K a

(L
)

B
N

D
τI
K a

(L
)

AC
C
τI
K a

(L
)
τI
K b

(L
)
τI
K b

(L
)

B
N

D
τI
K b

(L
)

AC
C
τI
K b

(L
)
τI
K i

(L
)
τI
K i

(L
)

B
N

D
τI
K i

(L
)

AC
C
τI
K i

(L
)
τI
K u

(L
)
τI
K u

(L
)

B
N

D
τI
K u

(L
)

AC
C
τI
K u

(L
)

ϕ
ϕ

ϕ
ϕ

0
ϕ

ϕ
ϕ

0
ϕ

ϕ
ϕ

0
ϕ

ϕ
ϕ

0

U
U

U
ϕ

1
U

U
ϕ

1
U

U
ϕ

1
U

U
ϕ

1

{p
}

{p
}

{p
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0
{p
}

{p
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0

{q
}

{q
}

{q
}

ϕ
1

{q
}

{q
}

ϕ
1

{q
}

{q
}

ϕ
1

{q
}

{q
}

ϕ
1

{s
}

{s
}

{s
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0
{s
}

{s
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0

{t
}

{t
}

{t
}

ϕ
1

ϕ
{t
}

{t
}

0
{t
}

{t
}

ϕ
1

ϕ
{t
}

{t
}

0

{p
,q
}

{p
,q
}

{p
,q
}

ϕ
1

{q
}

U
{p
,s
,t
}

1/
4

{p
,q
}

{p
,q
}

ϕ
1

{q
}

U
{p
,s
,t
}

1/
4

{p
,s
}

{p
,s
}

{p
,s
}

ϕ
1

{p
,s
}

{p
,s
,t
}
{t
}

2/
3

{p
,s
}

{p
,s
}

ϕ
1

{p
,s
}

{p
,s
,t
}
{t
}

2/
3

{p
,t
}

{p
,t
}

{p
,t
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0
{p
,t
}

{p
,t
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0

{q
,s
}

{q
,s
}

{q
,s
}

ϕ
1

{q
}

U
{p
,s
,t
}

1/
4

{q
,s
}

{q
,s
}

ϕ
1

{q
}

U
{p
,s
,t
}

1/
4

{q
,t
}

{q
,t
}

{q
,t
}

ϕ
1

{q
}

{q
,t
}

{t
}

1/
2

{q
,t
}

{q
,t
}

ϕ
1

{q
}

{q
,t
}

{t
}

1/
2

{s
,t
}

{s
,t
}

{s
,t
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0
{s
,t
}

{s
,t
}

ϕ
1

ϕ
{p
,s
,t
}
{p
,s
,t
}

0

{p
,q
,s
}
{p
,q
,s
}
{p
,q
,s
}
ϕ

1
{p
,q
,s
}

U
{t
}

3/
4

{p
,q
,s
}
{p
,q
,s
}
ϕ

1
{p
,q
,s
}

U
{t
}

3/
4

{p
,q
,t
}
{p
,q
,t
}
{p
,q
,t
}
ϕ

1
{q
}

U
{p
,s
,t
}

1/
4

{p
,q
,t
}
{p
,q
,t
}
ϕ

1
{q
}

U
{p
,s
,t
}

1/
4

{p
,s
,t
}
{p
,s
,t
}
{p
,s
,t
}
ϕ

1
{p
,s
,t
}
{p
,s
,t
}
ϕ

1
{p
,s
,t
}
{p
,s
,t
}
ϕ

1
{p
,s
,t
}
{p
,s
,t
}
ϕ

1

{q
,s
,t
}
{q
,s
,t
}
{q
,s
,t
}
ϕ

1
{q
}

U
{p
,s
,t
}

1/
4

{q
,s
,t
}
{q
,s
,t
}
ϕ

1
{q
}

U
{p
,s
,t
}

1/
4

AIMS Mathematics Volume 9, Issue 4, 10050–10077.



10067

By the next result, we confirm that the accuracy calculated by employing the approach of Section 4
is higher than that of this section.

Theorem 5.9. Let (U,R,K) be an I-G approximation space. Then, ACCτ
IKj (L) ≤ ACC⋆R

IKj (L) ∀ j ∈ ℧.

Proof: First, let s ∈ τI
K
j (L). Then, s ∈ R

IKj

⋆
(L). Thus, τI

K
j (L) ⊆ R

IKj

⋆
(L). So, |τI

K
j (L)| ≤ |R

IKj

⋆
(L)|. Second, let

s ∈ R⋆
IKj (L)∪L. Then, s ∈ R⋆

IKj (L) or s ∈ L. Thus, IKj (s)∩L < K or s ∈ τI
K
j (L). So, 1

|τ
IKj (L)|

≤ 1

|R⋆
IKj (L)∪L|

.

Consequently, ACCτ
IKj (A) = |τ

IKj (L)|

|τ
IKj (L)|

≤
|R
IKj
⋆

(L)∩L|

|R⋆
IKj (L)∪L|

= ACC⋆R
IKj .

Theorem 5.10. Let L be a subset of an I-G approximation space (U,R,K). Then, ∀ j ∈ ℧, we have the
following:

1) τI j(L) ⊆ τI
K
j (L).

2) τI
K
j (L) ⊆ τI j(L).

3) BNDτ
IKj (L) ⊆ BNDτ

I j (L).

4) ACCτ
I j (L) ≤ ACCτ

IKj (L).

Proof: It follows directly from Theorem 5.2.

Remark 5.11. It should be noted that the following holds:

1) The inclusion relations of parts in Theorem 5.10 are generally proper as demonstrated in Example
3.3 and Table 6.

2) If K = ϕ in Theorem 5.10, then the approximations in Definition 2.13 [14] and the proposed
approximations in Definition 5.7 are equivalent.
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Table 6. Comparison of the boundary region and accuracy measure results for a set L based
on the proposed Definition 5.7 and Definition 2.13 [14] for j = a.

L
The present Definition 5.7 at j = a The previous Definition 2.13 at j = a

τI
K
a (L) τI

K
a (L) BNDτ

IKa (L) ACCτ
IKa (L) τIb(L) τIb(L) BNDτ

Ib (L) ACCτ
Ib (L)

ϕ ϕ ϕ ϕ 0 ϕ ϕ ϕ 0
U U U ϕ 1 U U ϕ 1
{p} {p} {p} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{q} {q} {q} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{s} {s} {s} ϕ 1 {s} {s} ϕ 1
{t} {t} {t} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{p, q} {p, q} {p, q} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{p, s} {p, s} {p, s} ϕ 1 {s} U {p, q, t} 1/4
{p, t} {p, t} {p, t} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{q, s} {q, s} {q, s} ϕ 1 {s} U {p, q, t} 1/4
{q, t} {q, t} {q, t} ϕ 1 ϕ {p, q, t} {p, q, t} 0
{s, t} {s, t} {s, t} ϕ 1 {s} U {p, q, t} 1/4
{p, q, s} {p, q, s} {p, q, s} ϕ 1 {s} U {p, q, t} 1/4
{p, q, t} {p, q, t} {p, q, t} ϕ 1 {p, q, t} {p, q, t} ϕ 1
{p, s, t} {p, s, t} {p, s, t} ϕ 1 {s} U {p, q, t} 1/4
{q, s, t} {q, s, t} {q, s, t} ϕ 1 {s} U {p, q, t} 1/4

6. Medical example: Chikungunya disease

In this section, we look at the performance of the method proposed here and the previous one
introduced in [14,36] by applying them to the information system of Chikungunya disease. This illness
is an infection caused by the Chikungunya virus and it spreads to humans through the bite of an
infected mosquito. The symptoms of infection usually start within 3 days to a week after an infected
mosquito bite. There are several symptoms of infection, and the most common ones are joint pain and
fever; alternatively, joint swelling, headache, and rashes are other symptoms that are different for each
individual. Up to now, there is no medicine to treat or vaccine to prevent Chikungunya. However,
there are some procedures that may relieve some symptoms, such as the administration of fluids, rest,
and over-the-counter pain medications. People with medical conditions such as diabetes, high blood
pressure, or heart disease are at risk for more severe disease as well as older adults and newborns
infected around the time of birth. In general, most patients feel better within a week; however, the
seriousness of this disease stems from the fact that joint pain can be severe and disabling and may
persist for months. This disease presents a challenge for medical care professionals in many countries
around the world.

In what follows, we are going to utilize the proposed approaches to analyze the data of some
patients given in Table 7, which will help the decision-makers to make an accurate decision for the
patients under consideration. In Table 7, we display the set of patients U = {s1, s2, s3, s4, s5, s6, s7} in
rows, while we put the symptoms (or attributes) of Chikungunya disease in the columns as follows:
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E1 is a fever, E2 is joint pain, E3 is joint swelling, E4 is a headache, and E5 is a rashes, where
E1, E2, E3, E4 take two values: ‘T’ and ‘F’ which respectively denote the occurrence or non-occurrence
of a symptom. Whereas the attribute E5 takes three values: first-degree (1-d), second-degree (2-d), and
third-degree (3-d). In the last column, we set the decision of disease D as having two values “infected”
or “uninfected”.

Table 7. Information system for Chikungunya disease.

U E1 E2 E3 E4 E5 Chikungunya disease
s1 T F F F (1-d) uninfected
s2 T T F F (3-d) infected
s3 F F T T (1-d) uninfected
s4 T T T F (3-d) infected
s5 F F T T (1-d) uninfected
s6 F T F T (2-d) uninfected
s7 T F T T (2-d) infected

Now, we compute the values of the variable descriptions of the patient symptoms provided in
Table 7. This procedure is completed, as shown in Table 8, by finding the similarity degrees between
the patients’ symptoms which are computed as follows:

φ(si, s j) =
∑n

k=1(Ek(si) = Ek(s j))
n

, (6.1)

where φ(si, s j) denotes the similarity degree between two patients si, s j and n denotes the number of
patients’ symptoms.

Table 8. Degrees of similarity for the symptoms of seven patients.

s1 s2 s3 s4 s5 s6 s7

s1 1 0.6 0.4 0.4 0.4 0.2 0.4
s2 0.6 1 0 0.8 0 0.4 0.2
s3 0.4 0 1 0.2 1 0.4 0.6
s4 0.4 0.8 0.2 1 0.2 0.2 0.4
s5 0.4 0 1 0.2 1 0.4 0.6
s6 0.2 0.4 0.4 0.2 0.4 1 0.4
s7 0.4 0.2 0.6 0.4 0.6 0.4 1

Then, let us consider the patients that are associated with each other according to their existing
symptoms by the relation siRs j ⇐⇒ φ(si, s j) ≥ 0.6, where φ(si, s j) is calculated by using Eq (6.1). It
is worth noting that the proposed relations are provided by the experts in charge of the system. This
means that it may change according to the estimation of the experts.

To initiate the G-approximation spaces, we chose to build the basic neighborhood system ω j. It
is obvious that there exist two types of ω j-neighborhoods because of the symmetry of the proposed
relation R. We remark that (s2, s4), (s4, s7) ∈ R but (s2, s7) < R, so R is not a transitive relation. Hence,
the P-approximation space fails to describe this type of information system.
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By the proposed relation and the given similarities we obtain that R =

{(s1, s1), (s2, s2), (s3, s3), (s4, s4), (s5, s5), (s6, s6), (s7, s7), (s1, s2), (s2, s1), (s2, s4), (s3, s7), (s4, s2), (s5, s7),
(s7, s3), (s7, s5)}.

Without loss of generality, let the ideal be K = {ϕ, {s2}, {s7}, {s2, s7}}.
In Table 9, we suffice by calculating theω j-neighborhoods, I j-neighborhoods and IKj -neighborhoods

for j = a.

Table 9. ωa-neighborhoods, Ia-neighborhoods, and IKa -neighborhoods.

ωa-neighborhood Ia-neighborhood IKa -neighborhood
s1 {s1, s2} {s1, s2, s4} {s1, s2}

s2 {s1, s2, s4} {s1, s2, s4} {s1, s2, s4}

s3 {s3, s7} {s3, s5, s7} {s3, s7}

s4 {s2, s4} {s1, s2, s4} {s2, s4}

s5 {s5, s7} {s3, s5, s7} {s5, s7}

s6 {s6} {s6} {s6}

s7 {s3, s5, s7} {s3, s5, s7} {s3, s5, s7}

For the uninfected set with Chikungunya, i.e., F = {s1, s3, s5, s6} and the infected set with
Chikungunya, i.e., L = {s2, s4, s7}, we compute their approximation operators (lower and upper),
boundary regions, and measures of accuracy by employing the methodologies in [14, 36] and our
methodology given in the previous section.

(i) For patients without infection with Chikungunya F = {s1, s3, s5, s6}, the settings are as follows:

1) Al-shami et al.’s technique [14]:
• lower approximation: RI j

⋆
(F) = {s6};

• upper approximation: R⋆
I j(F) = U;

• region of boundary: BND⋆R
I j(F) = U \ {s6}

• measure of accuracy: ACC⋆R
I j(F) = 1

7

2) Hosny et al.’s technique [36]:
• lower approximation: LI j

⋆
(F) = {s3, s5, s6, s7};

• upper approximation: U⋆
I j(F) = U;

• region of boundary: ∆⋆R
I j(F) = U \ {s3, s5, s6, s7};

• measure of accuracy:M⋆R
I j(F) = 3

7 .
3) Our technique:

• lower approximation: R
IKj

⋆
(F) = {s1, s3, s5, s6, s7};

• upper approximation: R⋆
IKj (F) = U \ {s4};

• region of boundary: BND⋆R
IKj (F) = {s2};

• measure of accuracy: ACC⋆R
IKj (F) = 2

3 .

(ii) For patients with infection with Chikungunya L = {s2, s4, s7}, the settings are as follows:

1) Al-shami et al.’s technique [14]:
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• lower approximation: RI j
⋆

(L) = ϕ;

• upper approximation: R⋆
I j(L) = U \ {s6};

• region of boundary: BND⋆R
I j(L) = U \ {s6};

• measure of accuracy: ACC⋆R
I j(L) = 0.

2) Hosny et al.’s technique [36]:
• lower approximation: LI j

⋆
(F) = ϕ;

• upper approximation: U⋆
I j(F) = U \ {s3, s5, s6, s7};

• region of boundary: ∆⋆R
I j(F) = U \ {s3, s5, s6, s7};

• measure of accuracy:M⋆R
I j(F) = 0.

3) Our technique:

• lower approximation: R
IKj

⋆
(L) = {s4};

• upper approximation: R⋆
IKj (L) = {s2, s4};

• region of boundary: BND⋆R
IKj (L) = {s2};

• measure of accuracy: ACC⋆R
IKj (L) = 1

3 .

According to the aforementioned calculations, it can be seen that the boundary regions of uninfected
set with Chikungunya and infected set with Chikungunya, as obtained by using the approach in
[14, 36] are U \ {s6} and U \ {s3, s5, s6, s7}, respectively which means that we are unable, in this
situation, to determine whether these people are infected with Chikungunya. Thus, the area of
vagueness/uncertainty enlarges, and hence the decision-making accuracy decreases. On the other hand,
the boundary region of these two subsets according to the current method is {s2}. This means that
we successfully reduced the area of vagueness/uncertainty for both subsets. This directly leads to
maximizing the measure of accuracy and increasing the confidence in the decision.

Finally, we provide Algorithm 1 to show how the approximation operator, boundary region, and
measure of accuracy are determined via our approach.
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Algorithm 1: The algorithm for computing approximation operators and accuracy measure
using IKj -neighborhoods.

Input : The group of patients U = {s1, s2, ..., sn} under study, the common symptoms of
Chikungunya disease E = {E1, E2, ..., Em}

Output: Lower approximation, upper approximation, boundary region and accuracy measure
of a subset F of patients.

1 Build the information system of Chikungunya by inputing the values of symptoms for each
patient;

2 Construct similarity matrix (φ(si, s j))n×n using Eq (6.1);
3 Ask experts of the system to determine the relation between patients by considering the values

of the similarity matrix;
4 Provide an ideal structure;
5 for j ∈ ℧ do
6 Calculate the basic granule ω j-neighborhoods;
7 Find I j-neighborhoods;
8 Find IKj -neighborhoods;
9 end

10 for F ⊆ U do

11 Calculate lower approximation of F : R
IKj

⋆
(F);

12 Calculate upper approximation of F : R⋆
IKj (F);

13 end

14 if R
IKj

⋆
(F) = ϕ then

15 Set accuracy measure ACC⋆R
IKj (F) = 0;

16 Set boundary region BND⋆R
IKj (F) = R⋆

IKj (F)
17 else

18 Find boundary region by applying BND⋆R
IKj (F) = R⋆

IKj (F) − R
IKj

⋆
(F);

19 Find accuracy measure by applying ACC⋆R
IKj (F) =

|R
IKj
⋆

(F)∩F|

|R⋆
IKj (F)∪F|

20 end

7. Conclusions

The theory of rough sets is a robust approach to remedying uncertainty problems in a variety of
situations by classifying their input into three essential areas. The key concepts of this theory are
lower and upper approximations and accuracy measures. One of the existing techniques to improve the
output of these concepts is the use of neighborhood systems, so many studies have been conducted in
this line of research. Considering this, we chose this research as the focus of this manuscript.

First, we have established new types of rough set neighborhoods inspired by I j-neighborhoods and
ideal structures K , namely, IKj -neighborhoods. We have demonstrated their main characterizations
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and derived some relationships under specific types of relations. We have also constructed a new
rough set models using IKj -neighborhoods as granular of computations. We have explored their basic
features and elucidated their role in maximizing the measure of accuracy as compared to the existing
models in [14,36]. Among the G-approximation spaces the best approximation operators and accuracy
measures were obtained in the cases of i and ⟨i⟩, whereas less desirable results were produced as a
result of using IKu -neighborhoods and IK

⟨i⟩-neighborhoods. After that, we applied IKj -neighborhoods to
build some topological spaces, which were then used to introduce G-approximation spaces. Ultimately,
we have examined the performance of the proposed approach by analyzing the information system of
Chikungunya disease; the numerical simulations proved the superiority of the proposed approach in
terms of ability to reduce boundary regions and maximize accuracy.

Our future plan will be to combine the ideal structure with some types of the aforementioned
neighborhood systems such as rough containment and subset neighborhoods to produce novel types
of G-approximation spaces. The merits of such rough neighborhoods as a tool to increase the
lower approximation and minimize the upper approximation constitute a strong motivation for further
research. Description of real-life issues by making use of these G-approximation spaces and their
topological models will be another pioneering topic for further research.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

The second author extends her appreciation to the Deanship of Scientific Research at King Khalid
University for funding this work through a research groups program under grant RGP2/310/44.

Conflict of interest

The authors declare that they have no competing interest.

References

1. E. A. Abo-Tabl, A comparison of two kinds of definitions of rough approximations
based on a similarity relation, Inform. Sciences, 181 (2011), 2587–2596.
https://doi.org/10.1016/j.ins.2011.01.007

2. H. M. Abu-Donia, Comparison between different kinds of approximations by
using a family of binary relations, Knowl.-Based Syst., 21 (2008), 911–919.
https://doi.org/10.1016/j.knosys.2008.03.046

3. H. M. Abu-Donia, Multi knowledge based rough approximations and applications, Knowl.-Based
Syst., 26 (2012), 20–29. https://doi.org/10.1016/j.knosys.2011.06.010

4. H. M. Abu-Donia, A. S. Salama, Generalization of Pawlak’s rough approximation
spaces by using δβ-open sets, Int. J. Approx. Reason., 53 (2012), 1094–1105.
https://doi.org/10.1016/j.ijar.2012.05.001

AIMS Mathematics Volume 9, Issue 4, 10050–10077.

http://dx.doi.org/https://doi.org/10.1016/j.ins.2011.01.007
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2008.03.046
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2011.06.010
http://dx.doi.org/https://doi.org/10.1016/j.ijar.2012.05.001


10074

5. A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for basic rough set concepts,
In: International workshop on rough sets, fuzzy sets, data mining, and granular computing,
Heidelberg: Springer, 2005, 64–73. https://doi.org/10.1007/11548669 7

6. A. A. Allam, M. Y. Bakeir, E. A. Abo-Tabl, New approach for closure spaces by relations, Acta
Mathematica Academiae Paedagogicae Nyiregyhaziensis, 22 (2006), 285–304.

7. B. Almarri, A. A. Azzam, Energy saving via a minimal structure, Math. Probl. Eng., 2022 (2022),
5450344. https://doi.org/10.1155/2022/5450344

8. T. M. Al-shami, An improvement of rough sets’ accuracy measure using containment
neighborhoods with a medical application, Inform. Sciences, 569 (2021), 110–124.
https://doi.org/10.1016/j.ins.2021.04.016

9. T. M. Al-shami, Maximal rough neighborhoods with a medical application, J. Ambient Intell.
Human. Comput., 14 (2023), 16373–16384. https://doi.org/10.1007/s12652-022-03858-1 .

10. T. M. Al-shami, Topological approach to generate new rough set models, Complex Intell. Syst., 8
(2022), 4101–4113. https://doi.org/10.1007/s40747-022-00704-x

11. T. M. Al-shami, Improvement of the approximations and accuracy measure of a rough set using
somewhere dense sets, Soft Comput., 25 (2021), 14449–14460. https://doi.org/10.1007/s00500-
021-06358-0

12. T. M. Al-shami, I. Alshammari, Rough sets models inspired by supra-topology structures, Artif.
Intell. Rev., 56 (2023), 6855–6883, https://doi.org/10.1007/s10462-022-10346-7

13. T. M. Al-shami, D. Ciucci, Subset neighborhood rough sets, Knowl.-Based Syst., 237 (2022),
107868, https://doi.org/10.1016/j.knosys.2021.107868

14. T. M. Al-shami, W. Q. Fu, E. A. Abo-Tabl, New rough approximations based on E-neighborhoods,
Complexity, 2021 (2021), 6666853. https://doi.org/10.1155/2021/6666853

15. T. M. Al-shami, M. Hosny, Improvement of approximation spaces using
maximal left neighborhoods and ideals, IEEE Access, 10 (2022), 79379–79393.
https://doi.org/10.1109/ACCESS.2022.3194562

16. T. M. Al-shami, A. Mhemdi, Approximation operators and accuracy measures of rough sets from
an infra-topology view, Soft Comput., 27 (2023), 1317–1330. https://doi.org/10.1007/s00500-022-
07627-2

17. T. M. Al-shami, A. Mhemdi, Approximation spaces inspired by subset rough neighborhoods with
applications, Demonstr. Math., 56 (2023), 20220223. https://doi.org/10.1515/dema-2022-0223 .

18. M. Akram, F. Ilyas, M. Deveci, Interval rough integrated SWARA-ELECTRE model:
An application to machine tool remanufacturing, Expert Syst. Appl., 238 (2024), 122067,
https://doi.org/10.1016/j.eswa.2023.122067

19. M. Akram, H. S. Nawaz, C. Kahraman, Rough Pythagorean fuzzy approximations with
neighborhood systems and information granulation, Expert Syst. Appl., 218 (2023), 119603,
https://doi.org/10.1016/j.eswa.2023.119603

20. M. Akram, S. Zahid, M. Deveci, Enhanced CRITIC-REGIME method for decision making
based on Pythagorean fuzzy rough number, Expert Syst. Appl., 238 (2024), 122014,
https://doi.org/10.1016/j.eswa.2023.122014

AIMS Mathematics Volume 9, Issue 4, 10050–10077.

http://dx.doi.org/https://doi.org/10.1007/11548669_7
http://dx.doi.org/https://doi.org/10.1155/2022/5450344
http://dx.doi.org/https://doi.org/10.1016/j.ins.2021.04.016
http://dx.doi.org/https://doi.org/10.1007/s12652-022-03858-1
http://dx.doi.org/https://doi.org/10.1007/s40747-022-00704-x
http://dx.doi.org/https://doi.org/10.1007/s00500-021-06358-0
http://dx.doi.org/https://doi.org/10.1007/s00500-021-06358-0
http://dx.doi.org/https://doi.org/10.1007/s10462-022-10346-7
http://dx.doi.org/https://doi.org/10.1016/j.knosys.2021.107868
http://dx.doi.org/https://doi.org/10.1155/2021/6666853
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2022.3194562
http://dx.doi.org/https://doi.org/10.1007/s00500-022-07627-2
http://dx.doi.org/https://doi.org/10.1007/s00500-022-07627-2
http://dx.doi.org/https://doi.org/10.1515/dema-2022-0223
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.122067
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.119603
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2023.122014


10075

21. M. Atef, A. M. Khalil, S. G. Li, A. A. Azzam, A. E. F. E. Atik, Comparison of six types of rough
approximations based on j-neighborhood space and j-adhesion neighborhood space, J. Intell.
Fuzzy Syst., 39 (2020), 4515–4531. https://doi.org/10.3233/JIFS-200482

22. M. Atef, A. M. Khalil, S. G. Li, A. Azzam, H. Liu, A. E. F. E. Atik, Comparison of twelve types
of rough approximations based on j-neighborhood space and j-adhesion neighborhood space, Soft
Comput., 26 (2022), 215–236. https://doi.org/10.1007/s00500-021-06426-5

23. A. A. Azzam, T. M. Al-shami, Five generalized rough approximation spaces produced by maximal
rough neighborhoods, Symmetry, 15 (2023), 751. https://doi.org/10.3390/sym15030751

24. J. Dai, S. Gao, G. Zheng, Generalized rough set models determined by multiple
neighborhoods generated from a similarity relation, Soft Comput., 22 (2018), 2081–2094.
https://doi.org/10.1007/s00500-017-2672-x

25. M. K. El-Bably, T. M. Al-shami, Different kinds of generalized rough sets based
on neighborhoods with a medical application, Int. J. Biomath., 14 (2021), 2150086.
https://doi.org/10.1142/S1793524521500868

26. M. M. El-Sharkasy, Minimal structure approximation space and some of its application, J. Intell.
Fuzzy Syst., 40 (2021), 973–982. https://doi.org/10.3233/JIFS-201090

27. R. Gul, M. Shabir, T. M. Al-shami, M. Hosny, A Comprehensive study on (α, β)-multi-granulation
bipolar fuzzy rough sets under bipolar fuzzy preference relation, AIMS Mathematics, 8 (2023),
25888–25921. https://doi.org/10.3934/math.20231320
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