Let $ G = (V, E) $ be a simple, connected graph with vertex set $ V(G) $ and $ E(G) $ edge set of $ G $. For two vertices $ a $ and $ b $ in a graph $ G $, the distance $ d(a, b) $ from $ a $ to $ b $ is the length of shortest path $ a-b $ path in $ G $. A $ k $-ordered partition of vertices of $ G $ is represented as $ {R}{p} = \{{R}{p_1}, {R}{p_2}, \dots, {R}{p_k}\} $ and the representation $ r(a|{R}{p}) $ of a vertex $ a $ with respect to $ {R}{p} $ is the vector $ (d(a|{R}{p_1}), d(a|{R}{p_2}), \dots, d(a|{R}{p_k})) $. The partition is called a resolving partition of $ G $ if $ r(a|{R}{p}) \ne r(b|{R}{p}) $ for all distinct $ a, b\in V(G) $. The partition dimension of a graph, denoted by $ pd(G) $, is the cardinality of a minimum resolving partition of $ G $. Computing precise and constant values for the partition dimension poses a interesting problem; therefore, it is possible to compute an upper bound for the partition dimension within a general family of graphs. In this paper, we studied partition dimension of the some families of convex polytopes, specifically $ \mathbb{T}_n $, $ \mathbb{U}_n $, $ \mathbb{V}_n $, and $ \mathbb{A}_n $, and proved that these graphs have constant partition dimension.
Citation: Ali N. A. Koam, Adnan Khalil, Ali Ahmad, Muhammad Azeem. Cardinality bounds on subsets in the partition resolving set for complex convex polytope-like graph[J]. AIMS Mathematics, 2024, 9(4): 10078-10094. doi: 10.3934/math.2024493
Let $ G = (V, E) $ be a simple, connected graph with vertex set $ V(G) $ and $ E(G) $ edge set of $ G $. For two vertices $ a $ and $ b $ in a graph $ G $, the distance $ d(a, b) $ from $ a $ to $ b $ is the length of shortest path $ a-b $ path in $ G $. A $ k $-ordered partition of vertices of $ G $ is represented as $ {R}{p} = \{{R}{p_1}, {R}{p_2}, \dots, {R}{p_k}\} $ and the representation $ r(a|{R}{p}) $ of a vertex $ a $ with respect to $ {R}{p} $ is the vector $ (d(a|{R}{p_1}), d(a|{R}{p_2}), \dots, d(a|{R}{p_k})) $. The partition is called a resolving partition of $ G $ if $ r(a|{R}{p}) \ne r(b|{R}{p}) $ for all distinct $ a, b\in V(G) $. The partition dimension of a graph, denoted by $ pd(G) $, is the cardinality of a minimum resolving partition of $ G $. Computing precise and constant values for the partition dimension poses a interesting problem; therefore, it is possible to compute an upper bound for the partition dimension within a general family of graphs. In this paper, we studied partition dimension of the some families of convex polytopes, specifically $ \mathbb{T}_n $, $ \mathbb{U}_n $, $ \mathbb{V}_n $, and $ \mathbb{A}_n $, and proved that these graphs have constant partition dimension.
[1] | P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559. |
[2] | P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys. Sci., 22 (1988), 445–455. |
[3] | F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 2 (1976), 191–195. |
[4] | R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis. Graph. Image Process., 25 (1984), 113–121. https://doi.org/10.1016/0734-189X(84)90051-3 doi: 10.1016/0734-189X(84)90051-3 |
[5] | G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160 (2003), 47–68. |
[6] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of certain interconnection networks, J. Appl. Math. Comput., 60 (2019), 517–535. https://doi.org/10.1007/s12190-018-01225-y doi: 10.1007/s12190-018-01225-y |
[7] | H. Raza, S. Hayat, M. Imran, X. F. Pan, Fault-tolerant resolvability and extremal structures of graphs, Mathematics, 7 (2019), 1–19. https://doi.org/10.3390/math7010078 doi: 10.3390/math7010078 |
[8] | H. Raza, S. Hayat, X. F. Pan, On the fault-tolerant metric dimension of convex polytopes, Appl. Math. Comput., 339 (2018), 172–185. https://doi.org/10.1016/j.amc.2018.07.010 doi: 10.1016/j.amc.2018.07.010 |
[9] | M. F. Nadeem, M. Azeem, A. Khalil, The locating number of hexagonal Mobius ladder network, J. Appl. Math. Comput., 66 (2020), 149–165. https://doi.org/10.1007/s12190-020-01430-8 doi: 10.1007/s12190-020-01430-8 |
[10] | N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Math., 3 (2018), 343–352. https://doi.org/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343 |
[11] | I. G. Yero, A. Juan, J. A. Rodríguez-Velázquez, A note on the partition dimension of Cartesian product graphs, Appl. Math. Comput., 217 (2010), 3571–3574. https://doi.org/10.1016/j.amc.2010.08.038 doi: 10.1016/j.amc.2010.08.038 |
[12] | Amrullah, S. Azmi, H. Soeprianto, M. Turmuzi, Y. S. Anwar, The partition dimension of subdivision graph on the star, J. Phys. Conf. Ser., 1280 (2019), 022037. https://doi.org/10.1088/1742-6596/1280/2/022037 doi: 10.1088/1742-6596/1280/2/022037 |
[13] | J. A. Rodríguez-Velázquez, I. G. Yero, M. Lemańska, On the partition dimension of trees, Discrete Appl. Math., 166 (2014), 204–209. https://doi.org/10.1016/j.dam.2013.09.026 doi: 10.1016/j.dam.2013.09.026 |
[14] | H. Fernau, J. A. Rodríguez-Velázquez, I. G. Yerou, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 381–391. |
[15] | M. C. Monica, S. Santhakumar, Partition dimension of honeycomb derived networks, Int. J. Pure Appl. Math., 108 (2016), 809–818. |
[16] | B. Rajan, A. William, I. Rajasingh, C. Grigorious, S. Stephen, On certain networks with partition dimension three, In: Proceedings of the International Conference on Mathematics in Engineering & Business Management, 2012, 169–172. |
[17] | I. Javaid, S. Shokat, On the partition dimension of some wheel related graphs, J. Prime Res. Math., 4 (2008), 154–164. |
[18] | G. Chartrand, E. Salehi, P. Zhang, The partition dimension of graph, Aequ. Math., 59 (2000), 45–54. https://doi.org/10.1007/PL00000127 doi: 10.1007/PL00000127 |
[19] | Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihal'ak, et al., Network discovery and verification, IEEE J. Sel. Areas Commun., 24 (2006), 2168–2181. |
[20] | S. Khuller, B. Raghavachari, A. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2 |
[21] | J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al., On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math., 21 (2007), 423–441. https://doi.org/10.1137/05064186 doi: 10.1137/05064186 |
[22] | V. Chvatal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188 |
[23] | M. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Statist., 3 (1993), 203–236. https://doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060 |
[24] | M. A. Johnson, Browsable structure-activity datasets, Adv. Molecular Similarity, 2 (1998), 153–170. |
[25] | G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0 |
[26] | A. Ahmad, A. N. A. Koam, M. H. F. Siddiqui, M. Azeem, Resolvability of the starphene structure and applications in electronics, Ain Shams Eng. J., 13 (2021), 101587. https://doi.org/10.1016/j.asej.2021.09.014 doi: 10.1016/j.asej.2021.09.014 |
[27] | M. F. Nadeem, M. Hassan, M. Azeem, S. U. D. Khan, M. R. Shaik, M. A. F. Sharaf, et al., Application of resolvability technique to investigate the different polyphenyl structures for polymer industry, J. Chem., 2021 (2021), 1–8. https://doi.org/10.1155/2021/6633227 doi: 10.1155/2021/6633227 |
[28] | H. Raza, S. K. Sharma, M. Azeem, On domatic number of some rotationally symmetric graphs, J. Math., 2023 (2023), 1–11. https://doi.org/10.1155/2023/3816772 doi: 10.1155/2023/3816772 |
[29] | M. Azeem, M. K. Jamil, A. Javed, A. Ahmad, Verification of some topological indices of Y-junction based nanostructures by M-polynomials, J. Math., 2022 (2022), 1–18. https://doi.org/10.1155/2022/8238651 doi: 10.1155/2022/8238651 |
[30] | J. B. Liu, M. F. Nadeem, M. Azeem, Bounds on the partition dimension of convex polytopes, Comb. Chem. High T. Scr., 25 (2020), 547–553. https://doi.org/10.2174/1386207323666201204144422 doi: 10.2174/1386207323666201204144422 |
[31] | H. M. A. Siddiqui, S. Hayat, A. Khan, M. Imran, A. Razzaq, J. B. Liu, Resolvability and fault-tolerant resolvability structures of convex polytopes, Theor. Comput. Sci., 796 (2019), 114–128. https://doi.org/10.1016/j.tcs.2019.08.032 doi: 10.1016/j.tcs.2019.08.032 |
[32] | S. K. Sharma, V. K. Bhat, Metric dimension of linear graph of the subdvision of the convex polytope-like graphs, TWMS J. App. Eng. Math., 13 (2023), 448–461. |
[33] | M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric dimension, Utilitas Math., 88 (2012), 43–57. |
[34] | M. Azeem, M. F. Nadeem, A. Khalil, A. Ahmad, On the bounded partition dimension of some classes of convex polytopes, J. Discrete Math. Sci. C., 25 (2020), 2535–2548. https://doi.org/10.1080/09720529.2021.1880692 doi: 10.1080/09720529.2021.1880692 |
[35] | M. Imran, S. A. U. H. Bokhary, A. Q. Baig, On the metric dimension of convex polytopes, AKCE Int. J. Graphs Comb., 10 (2013), 295–307. |
[36] | M. K. Aslam, M. Javaid, Q. Zhu, A. Raheem, On the fractional metric dimension of convex polytopes, Math. Probl. Eng., 2021 (2021), 1–13. https://doi.org/10.1155/2021/3925925 doi: 10.1155/2021/3925925 |
[37] | M. Imran, S. A. U. H. Bokhary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629–2638. https://doi.org/10.1016/j.camwa.2010.08.090 doi: 10.1016/j.camwa.2010.08.090 |
[38] | M. Ba${\rm{\tilde{c}}}$a, Labellings of two classes of convex polytopes, Utilitas Math., 34 (1988), 24–31. |
[39] | M. Ba${\rm{\tilde{c}}}$a, On magic labellings of convex polytopes, Ann. Discrete Math., 51 (1992), 13–16. https://doi.org/10.1016/S0167-5060(08)70599-5 doi: 10.1016/S0167-5060(08)70599-5 |
[40] | I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21–33. |
[41] | S. Hayat, A. Khan, Y. B. Zhong, On resolvability- and domination-related parameters of complete multipartite graphs, Mathematics, 10 (2022), 1–16. https://doi.org/10.3390/math10111815 doi: 10.3390/math10111815 |
[42] | S. Hayat, A. Khan, M. Y. H. Malik, M. Imran, M. K. Siddiqui, Fault-tolerant metric dimension of interconnection networks, IEEE Access, 8 (2020), 145435–145445. https://doi.org/10.1109/ACCESS.2020.3014883 doi: 10.1109/ACCESS.2020.3014883 |
[43] | A. Shabbir, M. Azeem, On the partition dimension of tri-hexagonal $\alpha$-boron nanotube, IEEE Access, 9 (2021), 55644–55653. https://doi.org/10.1109/ACCESS.2021.3071716 doi: 10.1109/ACCESS.2021.3071716 |
[44] | Y. M. Chu, M. F. Nadeem, M. Azeem, M. K. Siddiqui, On sharp bounds on partition dimension of convex polytopes, IEEE Access, 8 (2020), 224781–224790. https://doi.org/10.1109/ACCESS.2020.3044498 doi: 10.1109/ACCESS.2020.3044498 |
[45] | M. Azeem, M. Imran, M. F. Nadeem, Sharp bounds on partition dimension of hexagonal Möbius ladder, J. King Saud Univ. Sci., 34 (2022), 101779. https://doi.org/10.1016/j.jksus.2021.101779 doi: 10.1016/j.jksus.2021.101779 |
[46] | M. Azeem, M. F. Nadeem, Metric-based resolvability of polycyclic aromatic hydrocarbons, Eur. Phys. J. Plus, 136 (2021), 1–14. https://doi.org/10.1140/epjp/s13360-021-01399-8 doi: 10.1140/epjp/s13360-021-01399-8 |