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Abstract: Let G = (V, E) be a simple, connected graph with vertex set V(G) and E(G) edge set of G.
For two vertices a and b in a graph G, the distance d(a, b) from a to b is the length of shortest path a−b
path in G. A k-ordered partition of vertices of G is represented as Rp = {Rp1,Rp2, . . . ,Rpk} and the
representation r(a|Rp) of a vertex a with respect to Rp is the vector (d(a|Rp1), d(a|Rp2), . . . , d(a|Rpk)).
The partition is called a resolving partition of G if r(a|Rp) , r(b|Rp) for all distinct a, b ∈ V(G). The
partition dimension of a graph, denoted by pd(G), is the cardinality of a minimum resolving partition
of G. Computing precise and constant values for the partition dimension poses a interesting problem;
therefore, it is possible to compute an upper bound for the partition dimension within a general family
of graphs. In this paper, we studied partition dimension of the some families of convex polytopes,
specifically Tn, Un, Vn, and An, and proved that these graphs have constant partition dimension.

Keywords: convex polytope-like graph; bounded partition dimension; partition dimension; partition
resolving set
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1. Introduction and preliminaries

Consider a simple and connected graph. Let V(G) represent the vertex set of G and E(G) represent
the edge set of G. The distance between two vertices a and b in a graph G, denoted by d(a, b),
represents the number of edges connecting them. Let Q be an ordered set vertices a1, a2, . . . , ak of
the given graph. A vertex a ∈ V(G) and the representation r(a|Q) of a vertex a with respect to Q
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is the vector (d(a|a1), d(a|a2), . . . , d(a|ak)). A set Q is called the resolving set if all vertices have
unique representations with respect to Q. The metric dimension of a graph, denoted as dim(G), is
the minimum cardinality of the resolving set. This concept is interested by the challenge of exactly
defining the location of a vertex in relation to a particular group of vertices. Slater presented the idea
of metric dimension and mentioned to it as a locating set in [1, 2]. Later, Harary and Melter showed
separate investigations into the same idea, that they called metric dimension [3,4]. The literature gives
a detailed information of resolving set, metric basis, and metric dimension [5,6]. Further deliberations
on different subjects are presented in the references [7–9].

Consider a k-ordered partition of vertices of G represented as Rp = {Rp1,Rp2, . . . ,Rpk} and the
representation r(a|Rp) of a vertex a with respect to Rp is the vector (d(a|Rp1), d(a|Rp2), . . . , d(a|Rpk)).
The partition is called a resolving partition of G if r(a|Rp) , r(b|Rp) for all distinct a, b ∈ V(G).
The partition dimension of a graph, denoted by pd(G), is the cardinality of a minimum resolving
partition of G. Chartrand et al. defined this definition in their work and determining the classification
of the partition dimension of any connected, simple graph as an NP-hard problem has been decisively
recognized.

The literature extensively discusses the topic of partition resolving set and partition dimension. The
partition dimension of the (4, 6) fullerene was computed in [10], revealing that its partition dimension
is limited. The study in [11] examines the bounded partition dimension of the Cartesian product of
graphs. The authors of the paper [12] defined limits for dividing different graphs into smaller parts.
The authors of [13] outline the constraints of trees. The study of the boundaries of uni-cyclic graphs is
conducted by examining subgraphs, as described in [14]. The honeycomb network is examined in [15],
whereas [16] specifically explores architectures with a partition dimension of three. In [17], authors
investigated a few structures linked to wheels and cycles.

The partition dimension is considered to be a logical extension of the metric dimension, and a
correlation between the metric dimension and partition dimension of a graph G is established in
Chartrand’s work [18] as follows:

pd(G) ≤ dim(G) + 1. (1.1)

Resolving partitions are utilized in diverse domains, including network verification and
discovery [19], robot navigation [20], the Djokovic-Winkler relation with the metric dimension,
discussed by Hernando [21], and resolving sets applied to mastermind game strategies as described
in [22]. Furthermore, the applications of resolving sets are thoroughly explained in the references
cited as [23, 24]. To gain additional understanding of the practical uses of this concept in
networks, specifically in the fields of electronics and the polyphenyl industry, please consult the
references [25–29].

Theorem 1.1. [30] Let Rp be a resolving partition of V(G) and a, b ∈ V(G). If d(a, x) = d(b, x) for all
vertices x ∈ V(G)\(a, b), then a, b belong to different classes of Rp.

Theorem 1.2. [30] Let G be a simple and connected graph, then

• pd(G) is 2 iff G is a path graph;
• pd(G) is n iff G is a complete graph.

Obtaining consistent and accurate values for the partition dimension is a complex job, which
makes the calculation of bounds for the partition dimension of graphs a difficult effort. This study
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has determined precise and constant partition dimension of different convex structures of polytopes,
specifically referred to as Tn, Un, Vn, An.

Convex polytopes and their importance:
Convex polytopes are fundamental geometric objects with wide range applications in various

academic disciplines. Due to diverse properties and extensive range of operations, the practicality
of these geometrical entities become more useful in different application areas. Geometric modelling
refers to the process of creating mathematical representations and their visualization in precise and
detailed manner. These objects become more beneficial for representing and analyzing complex
geometric arrangements in two and three-dimensional spaces due to their inherent simplicity and
well-defined geometric properties. Linear programming: Convex polytopes play vital role in the
field of linear programming, which is a mathematical approach used for optimizing the solutions.
The feasible zone in a linear programming is typically illustrated as a convex polytope. Linear
constraints can be effectively addressed within this geometric framework for optimization problems.
Computational geometry is a field of study that focuses on the development and analysis of algorithms
for solving geometric problems. Computational geometry utilizes the methods that specifically deal
with convex polytopes to tackle issues related to geometric objects. Convex hull algorithms are used
for optimization in several computer applications particularly in computer graphics.

Combinatorial structure refers to the arrangement and organization of elements of a discrete
structure, to define the families of convex polytopes combinatorial properties defines lot of theorems
to find the equivalence among the structures. Analytical studies on the facets, vertices, and edges
of convex polytopes provides useful insights into the combinatorial properties of the corresponding
polytope. This analysis makes important contributions to the fields of combinatorial geometry
and combinatorics. Polyhedral combinatorics: Polyhedral combinatorics is the investigation of the
combinatorial properties of polyhedra and polytopes, with specific focus on convex polytopes, which
are highly interrelated in this area of research. Statistical modelling and data analysis: Convex
polytopes are extensively utilized in statistics for data modelling and analysis. In robust statistics,
convex hulls are used to define central regions that are less affected by outliers, hence enabling more
robust estimation of central tendencies.

Operations research: Convex polytopes have practical uses in operations research as they are
used to specify feasible regions and constraints in optimization problems. Linear programming,
integer programming, and other optimization methods make use of the geometric properties of convex
polytopes to efficiently solve problems. Quantum information theory: Convex polytopes are employed
in quantum information theory for representing the set of quantum states. This application is essential
for understanding and describing the behavior of quantum systems, which can be employ in the fields of
quantum computing and communication. Topological data analysis: Convex structures are used in the
discipline of topological data analysis to investigate the geometric attributes and topological features
of data. This phenomenon has important implications for understanding the fundamental structure of
complex datasets in various fields, including biology and neuroscience. Polytope theory is a branch of
algebraic geometry. Toric varieties establish a direct connection between the study of convex polytopes
and algebraic geometry. Polytope theory provides a geometric framework for characterizing algebraic
varieties, making them more useful in the fields of algebraic geometry and mathematical physics.

The fundamental geometric simplicity of these objects, together with their vast combinatorial and
computational properties, make them particularly effective tools for modelling, analysis, and problem-
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solving in several mathematical fields and beyond. More detailed information about convex polytopes
can be found in references [30–32].

2. The Tn convex polytope-like graph

The graph illustrated in Figure 1 portrays a distinct variant of a convex polytope graph, denoted
as Tn. All convex polytopes in this family are planar graphs. The creation of the convex polytope
graph Tn can be obtained by modifying the structure of the convex polytope graph Rn described in [33].
This modification involves eliminating the edges vϕvϕ+1. The graph Tn is a convex polytope that consists
of n, 5, and 3-dimensional faces. In accordance with the fundamental definition, the vertex and edge
sets are defined as V(Tn) = V(Rn) and E(Tn) = {E(Rn)}\{vϕvϕ+1 : 1 ≤ ϕ ≤ n}, respectively. It is crucial
to emphasise that in every construction of convex polytope graphs, we take into account that vn+1 = v1.
For a more comprehensive analysis of convex polytopes, additional sources can be referred [34–36].

We split the vertices {uϕ, vϕ,wϕ : 1 ≤ ϕ ≤ n} as inner, central, and outer cycles respectively.

u1

v1

w1

u2

v2

w2

u3

v3

w3

u4
v4

w4

u5v5w5

un

vn

wn

un-1

vn-1

wn-1

vn-2

wn-2

Figure 1. Convex polytope-like graph Tn.

Theorem 2.1. If Tn is a convex polytope-like graph, given n ≥ 6, then pd(Tn) = 4.

Proof. We split the proof into two steps as:
Step 1: For n = 2ψ, ψ ≥ 3, ψ ∈ N, let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set, where Rp1 = {u1},
Rp2 = {u3}, Rp3 = {uψ+1}, and Rp4 = V(Tn)\{Rp1,Rp2,Rp3}. Here, we showed the distinct representation
of all vertices V(Tn)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp.

The representation of vertices of inner, central, and outer cycles are given below:

r(uϕ|Rp) =



(1, 1, ψ − 1, 0), if ϕ = 2;
(−1 + ϕ, ϕ − 3, 1 − ϕ + ψ, 0), if 4 ≤ ϕ ≤ ψ;
(ψ − 1, ψ − 1, 1, 0), if ϕ = ψ + 2;
(ψ − 2, ψ, 2, 0), if ϕ = ψ + 3;
(2ψ − ϕ + 1, 2ψ − ϕ + 3, ϕ − ψ − 1, 0), if ψ + 4 ≤ ϕ ≤ 2ψ.
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r(vϕ|Rp) =



(1, 2, ψ, 0), if ϕ = 1;
(2, 1, ψ − 1, 0), if ϕ = 2;
(ϕ, ϕ − 2, ψ − ϕ + 1, 0), if 3 ≤ ϕ ≤ ψ;
(ψ, ψ − 1, 1, 0), if ϕ = ψ + 1;
(ψ − 1, ψ, 2, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 1, 2ψ − ϕ + 3, ϕ − ψ, 0), if ψ + 3 ≤ ϕ ≤ 2ψ.

r(wϕ|Rp) =



(2, 3, ψ + 1, 0), if ϕ = 1;
(3, 2, ψ, 0), if ϕ = 2;
(ϕ + 1, ϕ − 1, ψ − ϕ + 2, 0), if 3 ≤ ϕ ≤ ψ;
(ψ + 1, ψ, 2, 0), if ϕ = ψ + 1;
(ψ, ψ + 1, 3, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 2, 2ψ − ϕ + 4, ϕ − ψ + 1, 0), if ψ + 3 ≤ ϕ ≤ 2ψ.

We can see that every vertex v ∈ V(Tn) has distinct representation in correspondence with the partition
resolving set Rp for n even.
Step 2: For n = 2ψ+1, ψ ≥ 3, ψ ∈ N, let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set, where Rp1 = {u1},
Rp2 = {u2}, Rp3 = {uψ+1}, and Rp4 = V(Tn) \ {Rp1,Rp2,Rp3}. The representation of all inner, central, and
outer cycles vertices with respect to the partition resolving set Rp are given below:

r(uϕ|Rp) =



(1, 1, ψ − 1, 0), if ϕ = 2;
(−1 + ϕ, − 3 + ϕ, 1 − ϕ + ψ, 0), if 4 ≤ ϕ ≤ ψ;
(ψ, ψ − 1, 1, 0), if ϕ = ψ + 2;
(ψ − 1, ψ, 2, 0), if ϕ = ψ + 3;
(2ψ − ϕ + 2, 2ψ − ϕ + 4, ϕ − ψ − 1, 0), if ψ + 4 ≤ ϕ ≤ 2ψ + 1.

r(vϕ|Rp) =



(1, 2, ψ, 0), if ϕ = 1;
(2, 1, ψ − 1, 0), if ϕ = 2;
(ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(1 + ψ, − 1 + ψ, 1, 0), if ϕ = ψ + 1;
(ψ, ψ, 2, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 2, 2ψ − ϕ + 4, ϕ − ψ, 0), if ψ + 3 ≤ ϕ ≤ 2ψ + 1.

r(wϕ|Rp) =



(2, 3, ψ + 1, 0), if ϕ = 1;
(3, 2, ψ, 0), if ϕ = 2;
(1 + ϕ, − 1 + ϕ, 2 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(2 + ψ, ψ, 2, 0), if ϕ = ψ + 1;
(ψ + 1, ψ + 1, 3, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 3, 2ψ − ϕ + 5, ϕ − ψ + 1, 0), if ψ + 3 ≤ ϕ ≤ 2ψ + 1.

We can see that every vertex v ∈ V(Tn) has distinct representation in correspondence with the partition
resolving set Rp for n odd. From Steps 1 and 2, we can conclude that all the vertices that have distinct
representation hence, pd(Tn) ≤ 4.

For the purpose of contradiction, lets assume that there exists a resolving set Rp of cardinality equal
to 3, to distinguish the path for Tn. This means any two different vertices u and v belonging to V(Tn),
there exists a vertex r ∈ Rp such that the distance between u and r is not equal to the distance between
v and r. Nevertheless, given the distinct structure and characteristics of the convex polytope graph Tn,
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it is feasible to ascertain that the vertices may be unequivocally distinguished based on their respective
distances from the vertices in the resolving set Rp.

Specifically, the positions of the vertices uϕ, vϕ, and wϕ in the inner, central, and outer cycles,
respectively, can be uniquely determined by the distances to the resolving set Rp. Now, let us take
a pair of vertices denoted as uϕ and wϕ, where ϕ is a variable. These vertices are located in the inner
and outer cycles, respectively, and they possess identical distance values to the resolving set Rp.

Hence, the existence of any resolving set Rp that can differentiate between uϕ and wϕ contradicts
the assumption that the persistence diagram of Tn has a persistence dimension of 3. This contradiction
suggests that the partition dimension of Tn is not equals to three. Hence, pd(Tn) , 3, supports the
converse proof. Therefore, we can conclude that pd(Tn) = 4.

3. The Un convex polytope-like graph

Figure 2 illustrates the graph of convex polytope Un. The construction of this specific type,
Un-convex polytope graph, can be derived from Rn-convex polytope graph as presented in [33] by
incorporating new xϕxϕ+1-edges. The graph Un consists of n, 6, 5, and 3-sided faces.
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v2

w2
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Figure 2. Convex polytope-like graph Un.

The vertex and edge sets are defined as follows:

V(Un) ={uϕ, vϕ,wϕ, xϕ, yϕ : 1 ≤ ϕ ≤ n},

E(Un) ={uϕuϕ+1 : 1 ≤ ϕ ≤ n} ∪ {uϕvϕ : 1 ≤ ϕ ≤ n} ∪ {uϕ+1vϕ : 1 ≤ ϕ ≤ n}

∪ {vϕwϕ : 1 ≤ ϕ ≤ n} ∪ {wϕxϕ : 1 ≤ ϕ ≤ n} ∪ {wϕ+1xϕ : 1 ≤ ϕ ≤ n}

∪ {xϕyϕ : 1 ≤ ϕ ≤ n} ∪ {yϕyϕ+1 : 1 ≤ ϕ ≤ n} ∪ {xϕxϕ+1 : 1 ≤ ϕ ≤ n}.

There are 5n, 8n, and 3n+2 number of vertices, edges, and faces of Un, respectively. For our simplicity
the vertices are categorized as: inner cycle vertices ({uϕ : 1 ≤ ϕ ≤ n}); interior vertices ({vϕ : 1 ≤ ϕ ≤
n}); middle vertices ({wϕ : 1 ≤ ϕ ≤ n}); exterior vertices ({xϕ : 1 ≤ ϕ ≤ n}) and outer vertices (
{yϕ : 1 ≤ ϕ ≤ n}). Furthermore, Figure 2 introduces a generalized approach for labeling vertices.

In the next theorem, we showed that the partition dimension of the convex polytope graphUn is four.

Theorem 3.1. For n ≥ 6, if Un is a convex polytope-like graph, then pd(Un) = 4.

Proof. We split the proof into two steps as:
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Step 1: When n = 2ψ, ψ ≥ 3, ψ ∈ N. let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set where Rp1 = {u1},
Rp2 = {a2}, Rp3 = {uψ+1}, and Rp4 = V(Un)\{Rp1,Rp2,Rp3}. Here, we showed the distinct representation
of all vertices V(Un)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp. The representation
of the vertices of convex polytope graph with respect to Rp is given below:

r(uϕ|Rp) =
{

(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ϕ, 0), if 3 ≤ ϕ ≤ ψ;
(2ψ + 1 − ϕ, 2ψ + 2 − ϕ,−1 − ψ + ϕ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, − 1 + ϕ, 1 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = ψ + 1;
(2ψ + 1 − ϕ, 2ψ + 2 − ϕ, − ψ + ϕ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(wϕ|Rp) =


(2, 2, ψ + 1, 0), if ϕ = 1;
(ϕ + 1, ϕ, ψ − ϕ + 2, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 1, ψ + 1, 2, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ + 1, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(xϕ|Rp) =



(3, 3, ψ + 1, 0), if ϕ = 1;
(2 + ϕ, 1 + ϕ, 2 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 2, ψ + 1, 3, 0), if ϕ = ψ;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ + 2, 0), if ψ + 1 ≤ ϕ ≤ 2ψ − 1;
(3, 3, ψ + 2, 0), if ϕ = 2ψ.

r(yϕ|Rp) =



(4, 4, ψ + 2, 0), if ϕ = 1;
(ϕ + 3, ϕ + 2, ψ − ϕ + 3, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 3, ψ + 2, 4, 0), if ϕ = ψ;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 3, 0), if ψ + 1 ≤ ϕ ≤ 2ψ − 1;
(4, 4, ψ + 3, 0), if ϕ = 2ψ.

We can see that every vertex v ∈ V(Un) has distinct representation in correspondence with the partition
resolving set Rp for n even.
Step 2: When n = 2ψ + 1, ψ ≥ 3, ψ ∈ N. Let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set where
Rp1 = {u1}, Rp2 = {u2}, Rp3 = {uψ+1}, and Rp4 = V(Un) \ {Rp1,Rp2,Rp3}. Here, we showed the distinct
representation of all vertices V(Un)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp.

r(uϕ|Rp) =


(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ − 1, 0), if ψ + 3 ≤ ϕ ≤ 2ψ + 1.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, ϕ − 1, ψ − ϕ + 1, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 1, ψ, 1, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.

r(wϕ|Rp) =


(2, 2, ψ + 1, 0), if ϕ = 1;
(ϕ + 1, ϕ, ψ − ϕ + 2, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 2, ψ + 1, 2, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 1, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.
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r(xϕ|Rp) =



(3, 3, ψ + 1, 0), if ϕ = 1;
(2 + ϕ, 1 + ϕ, 2 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 2, ψ + 1, 3, 0), if ϕ = ψ;
(ψ + 2, ψ + 2, 3, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 2, 0), if ψ + 2 ≤ ϕ ≤ 2ψ;
(3, 3, ψ + 2, 0), if ϕ = 2ψ + 1.

r(yϕ|Rp) =



(4, 4, ψ + 2, 0), if ϕ = 1;
(3 + ϕ, 2 + ϕ, 3 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 3, ψ + 2, 4, 0), if ϕ = ψ;
(ψ + 3, ψ + 3, 4, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 4, 2ψ − ϕ + 5, ϕ − ψ + 3, 0), if ψ + 2 ≤ ϕ ≤ 2ψ;
(4, 4, ψ + 3, 0), if ϕ = 2ψ + 1.

We can see that every vertex v ∈ V(Un) has distinct representation in correspondence with the partition
resolving set Rp for n even. From Steps 1 and 2, we can conclude that all the vertices that have distinct
representation hence, pd(Un) ≤ 4.

Every category of a vertex (namely, inner, interior, middle, exterior and outer) possesses a distinct
positional relationship in relation to the resolving set. The unique location of the vertices can determine
by evaluating their distances from the resolving set. The distinguishability of cycles in a graph is
determined by the distinct structural functions played by different types of vertices within these cycles.
The aforementioned structural differentiation facilitates the process of partitioning.

The xϕxϕ+1-edges can significantly improve the connectivity and structural properties of the graph.
The presence of these supplementary edges enhances the distinct identification of vertices and provides
additional evidence in favor of an upper limit of 4 in the partition dimension. The given configuration,
consisting of 5n vertices, 8n edges, and 3n + 2 faces, corresponds to the anticipated complexity that
requires a higher partition dimension. The necessity for a resolving set of minimum four subgroups is
underscored by the presence of structural variety observed in these counts.

The generalized labeling strategy, illustrated in Figure 2, gives a logical approach for assigning
labels to vertices. The act of labeling aids in creating a resolving set that can differentiate vertices
by their respective positions. In conclusion, the evidence provided substantiates the assertion that the
upper limit of the partition dimension for the convex polytope graph Un is 4. The explanation for this
upper bound is supported by several factors, including the distinct positioning of vertices, the presence
of unique cycles, the inclusion of additional edges, the calculation of structural counts, and the use of
a generalized labeling approach. Understanding this concept is crucial for creating resolving sets that
are successful and for completely analyzing the partitioning properties of the graph.

4. The Vn convex polytope-like graph

The structure of the convex polytope graph S n is explained in [37]. This convex polytope graph Vn

is derived from S n by introducing additional vϕvϕ+1-edges. The vertex and edge set of Vn are defined
as V(Vn) = V(Un) and E(Vn) = E(Un) ∪ {vϕvϕ+1 : 1 ≤ ϕ ≤ n} \ {xϕxϕ+1 : 1 ≤ ϕ ≤ n}, respectively.

For our convenient, the arrangements of cycles and vertices that are shown in Figure 3 are
considered as: inner cycle ({uϕ : 1 ≤ ϕ ≤ n}); middle cycle ({vϕ : 1 ≤ ϕ ≤ n}); interior vertices
({wϕ : 1 ≤ ϕ ≤ n} ∪ {xϕ : 1 ≤ ϕ ≤ n}) and outer cycle ({yϕ : 1 ≤ ϕ ≤ n}).
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Figure 3. Convex polytope-like graph Vn.

In the next theorem, we determined partition dimension for the convex polytope graph Vn. For the
upper bound of the partition dimension of Vn, it sufficient to prove that the 4 subsets are enough for
different representation of vertices.

Theorem 4.1. If Vn is a convex polytope-like graph, where n ≥ 6, then pd(Vn) = 4.

Proof. We split the proof into two steps as:
Step 1: When n = 2ψ, ψ ≥ 3, ψ ∈ N. Let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set where Rp1 = {u1},
Rp2 = {a2}, Rp3 = {uψ+1}, and Rp4 = V(Vn)\{Rp1,Rp2,Rp3}. Here, we showed the distinct representation
of all vertices V(Vn)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp.

r(uϕ|Rp) =
{

(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(1 − ϕ + 2ψ, 2ψ + 2 − ϕ,−1 − ψ + ψ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, − 1 + ϕ, 1 − ϕ + ϕ, 0), if 2 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 1, 2ψ − ϕ + 2, ϕ − ψ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(wϕ|Rp) =


(2, 2, ψ + 1, 0), if ϕ = 1;
(ϕ + 1, ϕ, ψ − ϕ + 2, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 1, ψ + 1, 2, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ + 1, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(xϕ|Rp) =



(3, 3, ψ + 1, 0), if ϕ = 1;
(2 + ϕ, 1 + ϕ, 2 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(2 + ψ, 1 + ψ, 3, 0), if ϕ = ψ;
(ψ + 1, ψ + 2, 3, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ + 2, 0), if ψ + 2 ≤ ϕ ≤ 2ψ − 1;
(3, 3, ψ + 2, 0), if ϕ = 2ψ.
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r(yϕ|Rp) =



(4, 4, ψ + 2, 0), if ϕ = 1;
(ϕ + 3, ϕ + 2, ψ − ϕ + 3, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 3, ψ + 2, 4, 0), if ϕ = ψ;
(ψ + 2, ψ + 3, 4, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 3, 0), if ψ + 2 ≤ ϕ ≤ 2ψ − 1;
(4, 4, ψ + 3, 0), if ϕ = 2ψ.

As we can see that every vertex v ∈ V(Vn) are having distinct representations in correspondence with
the partition resolving set Rp for given n is even.
Step 2: When n = 2ψ + 1, ψ ≥ 3, ψ ∈ N. Let Rp = {Rp1,Rp2,Rp3,Rp4} be a resolving set where
Rp1 = {u1}, Rp2 = {u2}, Rp3 = {uψ+1}, and Rp4 = V(Vn) \ {Rp1,Rp2,Rp3}. Here, we showed the distinct
representation of all vertices V(Vn)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp.

r(aϕ|Rp) =


(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ − 1, 0), if ψ + 3 ≤ ϕ ≤ 2ψ + 1.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, ϕ − 1, ψ − ϕ + 1, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 1, ψ, 1, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.

r(wϕ|Rp) =


(2, 2, ψ + 1, 0), if ϕ = 1;
(ϕ + 1, ϕ, ψ − ϕ + 2, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 2, ψ + 1, 2, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 1, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.

r(xϕ|Rp) =



(3, 3, ψ + 1, 0), if ϕ = 1;
(2 + ϕ, 1 + ϕ, 2 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 2, ψ + 1, 3, 0), if ϕ = ψ;
(ψ + 2, ψ + 2, 3, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 3, 2ψ − ϕ + 4, ϕ − ψ + 2, 0), if ψ + 2 ≤ ϕ ≤ 2ψ;
(3, 3, ψ + 2, 0), if ϕ = 2ψ + 1.

r(yϕ|Rp) =



(4, 4, ψ + 2, 0), if ϕ = 1;
(3 + ϕ, 2 + ϕ, 3 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 3, ψ + 2, 4, 0), if ϕ = ψ;
(ψ + 3, ψ + 3, 4, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 4, 2ψ − ϕ + 5, ϕ − ψ + 3, 0), if ψ + 2 ≤ ϕ ≤ 2ψ;
(4, 4, ψ + 3, 0), if ϕ = 2ψ + 1.

Again, we can see that every vertex v ∈ V(Vn) are having distinct representations in correspondence
with the partition resolving set Rp for given n is odd. From Steps 1 and 2, we can conclude that no two
vertices that have same representation hence, pd(Vn) ≤ 4.

This statement suggests that for any distinct vertices u and v in the vertex set V(Vn), for a given
graph, there must exist a vertex r in the set Rp such that the distance between u and r is not equal to the
distance between v and r.
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Now, let us examine the structure and cycles within the vertices Vn of the graph. The set of vertices
{uϕ : 1 ≤ ϕ ≤ n} represents the inner cycle. The set of vertices {vϕ : 1 ≤ ϕ ≤ n} represents the central
cycle. The set of vertices {wϕ : 1 ≤ ϕ ≤ n} ∪ {xϕ : 1 ≤ ϕ ≤ n} represents the middle cycle. The cycle
consists of vertices {yϕ : 1 ≤ ϕ ≤ n} is referred to the outer cycle.

Now, let us consider the vertices denoted by u1 and y1, from the inner and outer cycles, respectively.
Given that they are in distinct cycles, it follows that the distances to any partition resolving set Rp must
be unique. Nevertheless, the incorporation of the variable vϕvϕ+1. The presence of such edges in the
set of vertices Vn establishes a structural linkage connecting the inner and outer cycles by means of
the middle cycle. This relationship serves to undermine the distinctiveness of distances and ultimately
gives rise to a paradox.

Let r ∈ Rp be a vertex in the partition resolving set that distinguishes distances. The presence of
vϕvϕ+1-edges introduces connectivity, which in turn affects the distance between u1 and r due to the
influence of the middle cycle. The distance between y1 and r is affected by the intermediate cycle in a
similar manner. The existence of this shared impact challenges the premise that the distance between u1

and r is not equal to the distance between y1 and r.
The presence of a contradiction suggests that the premise of pd(Vn) = 3 is invalid. Hence, the

partition dimension of Vn is not equal to three. Therefore, the contrary demonstration demonstrates
that the partition dimension of the graph of the convex polytope Vn is not three, thereby providing
support for the earlier assertion that dividing sets into four subsets is adequate.

5. The An convex polytope-like graph

The structure of convex polytope graph Rn was defined in [38] and its further detail can be find
in [39,40]. Also, the graph of convexAn can be obtained by Rn by adding the edge {wϕvϕ+1 : 1 ≤ ϕ ≤ n}.
Accordingly to Figure 4, the vertex and edge set defined as: V(An) = V(Rn) = {uϕ, vϕ,wϕ : 1 ≤ ϕ ≤ n}
and E(An) = E(Rn) ∪ {wϕvϕ+1 : 1 ≤ ϕ ≤ n} = {uϕuϕ+1, vϕvϕ+1,wϕwϕ+1, uϕvϕ, vϕwϕ, vϕuϕ+1,wϕvϕ+1 : 1 ≤
ϕ ≤ n}.
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Figure 4. Convex polytope-like graph An.

Theorem 5.1. If An is a convex polytope-like graph, where n ≥ 6, then pd(An) = 4.

Proof. We split the proof into two steps as:
Step 1: When n = 2ψ, ψ ≥ 3, ψ ∈ N. Let Rp = {Rp1,Rp2,Rp3,Rp4} be a partition resolving set, where
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Rp1 = {u1}, Rp2 = {u2}, Rp3 = {uψ+1}, and Rp4 = V(An) \ {Rp1,Rp2,Rp3}. Here, we showed the distinct
representation of all vertices V(An)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving set Rp.

r(uϕ|Rp) =
{

(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(1 + 2ψ − ϕ, 2 + 2ψ − ϕ,−1 − ψ + ϕ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, − 1 + ϕ, 1 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = 1 + ψ;
(1 + 2ψ − ϕ, 2 + 2ψ − ϕ, − ψ + ψ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ.

r(wϕ|Rp) =



(2, 2, ψ, 0), if ϕ = 1;
(1 + ϕ, ϕ, 1 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 1, ψ, 2, 0), if ψ = ϕ;
(1 + 2ψ − ϕ, 2 + 2ψ − ϕ, 1 − ψ + ϕ, 0), if ψ + 1 ≤ ϕ ≤ 2ψ − 1
(2, 2, ψ + 1, 0), if ϕ = 2ψ.

As we can see that every vertex v ∈ V(An) are having distinct representations in correspondence with
the partition resolving set Rp for n even.
Step 2: When n = 2ψ + 1, ψ ≥ 3, ψ ∈ N. Let Rp = {Rp1,Rp2,Rp3,Rp4} be a partition resolving set
where Rp1 = {u1}, Rp2 = {v1}, Rp3 = {wψ+1}, and Rp4 = V(An) \ {Rp1,Rp2,Rp3}. Here, we showed
the distinct representation of all vertices V(An)\Rp1 ∪ Rp2 ∪ Rp3 with respect to the partition resolving
set Rp.

r(uϕ|Rp) =


(−1 + ϕ, − 2 + ϕ, 1 − ϕ + ψ, 0), if 3 ≤ ϕ ≤ ψ;
(ψ, ψ, 1, 0), if ϕ = ψ + 2;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ − 1, 0), if ψ + 3 ≤ ϕ ≤ 2ψ + 1.

r(vϕ|Rp) =


(1, 1, ψ, 0), if ϕ = 1;
(ϕ, − 1 + ϕ, 1 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ;
(ψ + 1, ψ, 1, 0), if ϕ = ψ + 1;
(2 + 2ψ − ϕ, 3 + 2ψ − ϕ, − ψ + ϕ, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.

r(wϕ|Rp) =



(2, 2, ψ, 0), if ϕ = 1;
(1 + ϕ, ϕ, 2 − ϕ + ψ, 0), if 2 ≤ ϕ ≤ ψ − 1;
(ψ + 1, ψ, 2, 0), if ϕ = ψ;
(ψ + 1, ψ + 1, 2, 0), if ϕ = ψ + 1;
(2ψ − ϕ + 2, 2ψ − ϕ + 3, ϕ − ψ + 1, 0), if ψ + 2 ≤ ϕ ≤ 2ψ + 1.

Again, we can see that every vertex v ∈ V(An) are having distinct representations in correspondence
with the partition resolving set Rp for n odd. From Steps 1 and 2, we can conclude that no two vertices
that have same representation hence, pd(An) ≤ 4.

The convex polytope graph An is obtained by augmenting the structure Rn with extra edges of the
type wϕvϕ+1. This configuration yields a graph characterized by a certain distribution of vertices and
edges, which subsequently gives rise to faces of order n. The sets of edges and vertices are explicitly
defined as follows: The vertex set of the graph An is equal to the vertex set of the graph Rn, denoted
by V(An) = V(Rn), and the edge set of An is equal to the union of edge set of Rn and set of edges of the
form wϕvϕ+1, where 1 ≤ ϕ ≤ n. The cycles depicted in the graph are classified into distinct categories.
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The cyclic structure that comprises of vertices uϕ : 1 ≤ ϕ ≤ n is recognized as the inner cycle. The
middle cycle is composed of vertices vϕ : 1 ≤ ϕ ≤ n. The outer cycle is denoted by wϕ : 1 ≤ ϕ ≤ n. The
approach depicted in Figure 4 illustrates a generalized labeling technique that gives a logical strategy
for assigning labels to the vertices.

The graph exhibits the distinct structural role for each cycle, like inner, middle and outer cycles.
The unique location of vertices plays a significant role in facilitating the identification of vertices
by their respective cycle memberships. The incorporation of wϕvϕ+1-edges significantly improves the
connectedness and structural intricacy of the graph. Addition of these supplementary edges enhanced
the distinction between vertices and provides evidence in favor of an upper limit of 4 for the partition
dimension.

The necessity for a resolving set of minimum four subgroups is underscored by the presence of
structural variety observed in these counts.

The numerical values of vertices, edges, and n-order faces provided insight into the intricacy
of the graph, thereby highlighting the necessity for a resolving set of minimum four subgroups to
accurately differentiate between vertices. The application of labels to the vertices in a generalized
approach ensures a logical and uniform means of identifying vertices. The utilization of this labeling
methodology is vital in the formation of partition resolving sets.

Given evidence are substantiate to assert that the upper limit of the partition dimension for the
convex polytope graph An is 4. The explanation for this upper bound is supported by several
factors, including the distinctive arrangement of cycles, the inclusion of extra edges, the calculation
of structural counts, and the implementation of a generalized labeling method. The comprehension of
this concept holds significant importance in the development of efficient partition resolving sets and
comprehensive analysis of the partitioning properties of the graph.

6. Conclusions and discussion

In this paper, we gave the upper bounds of the partition dimension of convex polytope graph An,
Vn, Un and Tn and their partition dimension is bounded by four, as shown. We also put forward the
given below hypothesis:

Conjecture 6.1. The following equities are true:

pd(An) = pd(Vn) = pd(Un) = pd(Tn) = 4.

Difference between metric and partition dimension
Metric dimension: The metric dimension of a graph refers to the minimum number of vertices

required in a subset such that each vertex in the graph can be uniquely identified based on its distances
to the vertices in the subset. A collection of vertices is considered a resolving set if, for any given pair of
vertices inside the graph, there exists at least one vertex in the resolving set such that the distances from
that vertex to the pair of vertices are unique. The metric dimension refers to the smallest possible size
of resolving sets. One of the practical applications of resolving sets is in network architecture, where
they can be utilized to represent the positions of sensors or landmarks for the purpose of achieving
effective navigation. For more detail on metric dimension, see [41, 42].

Partition dimension: The partition dimension of a graph refers to the minimum number of sets
required to partition the vertex set so that each partition generates an injective function on the vertex
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set. A partition refers to a grouping of non-empty sets that are pairwise disjoint, with the property
that their union forms the vertex set of the graph. The vertex set is subjected to an injective function
induced by each partition. Stated otherwise, it may be observed that there is no occurrence of several
vertices being mapped to a single element within the partition. The partition dimension refers to
the smallest possible cardinality of partitions. The practical applications encompass coding theory,
wherein partitions can serve as representations of encoding schemes or blocks inside error-correcting
codes. For more detail on the partition dimension one can see [43, 44].

Key differences: Characteristics of the sets: Resolving sets, in the metric dimension context, are
subsets of vertices that allow for the exclusive determination of distances between vertices. Within
the framework of partition dimension, the sets, referred to as partitions, consist of vertices that induce
injective functions on the vertex set. The objective of dimension: The goal of metric dimension is to
find a set of vertices that uniquely determines the distances between all pairs of vertices. The purpose
of the partition dimension is to determine partitions of the vertex set that yield injective functions.
Interpretation from the perspective of graph theory: Metric dimension refers to the identification
of sets that precisely determine the placements of vertices by considering the distances inside the
graph. Partition dimension refers to the act of separating the vertices in a way that preserves unique
interactions inside each partition. Real-world uses: Metric dimension is commonly employed in the
domains of network design and location-based issues. The concept of partition dimension is employed
in diverse domains, such as coding theory, where the importance of injective functions is highlighted.
To gain a more comprehensive understanding of the distinction between the metric and partition
dimension, go to the sources cited as [45, 46].

Simply said, the metric dimension and partition dimension are two separate indicators of a graph’s
structural intricacy. The metric dimension largely deals with determining distances inside the graph,
whereas the partition dimension focuses on the existence of partition-induced injective functions.
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