Research article Special Issues

On bounded partition dimension of different families of convex polytopes with pendant edges

  • Received: 18 April 2021 Revised: 04 June 2021 Accepted: 23 September 2021 Published: 21 December 2021
  • MSC : 05C12, 05C76

  • Let $ \psi = (V, E) $ be a simple connected graph. The distance between $ \rho_1, \rho_2\in V(\psi) $ is the length of a shortest path between $ \rho_1 $ and $ \rho_2. $ Let $ \Gamma = \{\Gamma_1, \Gamma_2, \dots, \Gamma_j\} $ be an ordered partition of the vertices of $ \psi $. Let $ \rho_1\in V(\psi) $, and $ r(\rho_1|\Gamma) = \{d(\rho_1, \Gamma_1), d(\rho_1, \Gamma_2), \dots, d(\rho_1, \Gamma_j)\} $ be a $ j $-tuple. If the representation $ r(\rho_1|\Gamma) $ of every $ \rho_1\in V(\psi) $ w.r.t. $ \Gamma $ is unique then $ \Gamma $ is the resolving partition set of vertices of $ \psi $. The minimum value of $ j $ in the resolving partition set is known as partition dimension and written as $ pd(\psi). $ The problem of computing exact and constant values of partition dimension is hard so one can compute bound for the partition dimension of a general family of graph. In this paper, we studied partition dimension of the some families of convex polytopes with pendant edge such as $ R_n^P $, $ D_n^p $ and $ Q_n^p $ and proved that these graphs have bounded partition dimension.

    Citation: Adnan Khali, Sh. K Said Husain, Muhammad Faisal Nadeem. On bounded partition dimension of different families of convex polytopes with pendant edges[J]. AIMS Mathematics, 2022, 7(3): 4405-4415. doi: 10.3934/math.2022245

    Related Papers:

  • Let $ \psi = (V, E) $ be a simple connected graph. The distance between $ \rho_1, \rho_2\in V(\psi) $ is the length of a shortest path between $ \rho_1 $ and $ \rho_2. $ Let $ \Gamma = \{\Gamma_1, \Gamma_2, \dots, \Gamma_j\} $ be an ordered partition of the vertices of $ \psi $. Let $ \rho_1\in V(\psi) $, and $ r(\rho_1|\Gamma) = \{d(\rho_1, \Gamma_1), d(\rho_1, \Gamma_2), \dots, d(\rho_1, \Gamma_j)\} $ be a $ j $-tuple. If the representation $ r(\rho_1|\Gamma) $ of every $ \rho_1\in V(\psi) $ w.r.t. $ \Gamma $ is unique then $ \Gamma $ is the resolving partition set of vertices of $ \psi $. The minimum value of $ j $ in the resolving partition set is known as partition dimension and written as $ pd(\psi). $ The problem of computing exact and constant values of partition dimension is hard so one can compute bound for the partition dimension of a general family of graph. In this paper, we studied partition dimension of the some families of convex polytopes with pendant edge such as $ R_n^P $, $ D_n^p $ and $ Q_n^p $ and proved that these graphs have bounded partition dimension.



    加载中


    [1] Amrullah, S. Azmi, H. Soeprianto, M. Turmuzi, Y. S. Anwar, The partition dimension of subdivision graph on the star, J. Phys. Conf. Ser., 1280 (2019), 022037. http://dx.doi.org/10.1088/1742-6596/1280/2/022037 doi: 10.1088/1742-6596/1280/2/022037
    [2] M. Bača, Labellings of two classes of convex polytopes, Utilitas Math., 34 (1988), 24–31.
    [3] M. Bača, On magic labellings of convex polytopes, Ann. Discrete Math., 51 (1992), 13–16. https://doi.org/10.1016/S0167-5060(08)70599-5 doi: 10.1016/S0167-5060(08)70599-5
    [4] P. S. Buczkowski, G. Chartrand, C. Poisson, P. Zhang, On k-dimensional graphs and their bases, Period. Math. Hung., 46 (2003), 9–15. https://doi.org/10.1023/A:1025745406160 doi: 10.1023/A:1025745406160
    [5] Z. Beerliova, F. Eberhard, T. Erlebach, A. Hall, M. Hoffmann, M. Mihalak, et al. Network discovery and verification, IEEE J. Sel. Area. Comm., 24 (2006), 2168–2181. https://doi.org/10.1109/JSAC.2006.884015 doi: 10.1109/JSAC.2006.884015
    [6] G. Chartrand, L. Eroh, M. A. Johnson, O. R. Oellermann, Resolvability in graphs and the metric dimension of a graph, Discrete Appl. Math., 105 (2000), 99–113. https://doi.org/10.1016/S0166-218X(00)00198-0 doi: 10.1016/S0166-218X(00)00198-0
    [7] G. Chartrand, E. Salehi, P. Zhang, The partition dimension of graph, Aequationes Math., 59 (2000), 45–54. https://doi.org/10.1007/PL00000127 doi: 10.1007/PL00000127
    [8] G. Chartrand, P. Zhang, The theory and applications of resolvability in graphs, Congr. Numer., 160 (2003), 47–68.
    [9] J. Caceres, C. Hernando, M. Mora, I. M. Pelayo, M. L. Puertas, C. Seara, et al. On the metric dimension of Cartesian product of graphs, SIAM J. Discrete Math., 21 (2007), 423–441. https://doi.org/10.1137/050641867 doi: 10.1137/050641867
    [10] V. Chvatal, Mastermind, Combinatorica, 3 (1983), 325–329. https://doi.org/10.1007/BF02579188
    [11] F. Harary, R. A. Melter, On the metric dimension of a graph, Ars Combinatoria, 1976 (1976), 191–195.
    [12] M. Imran, S. A. Bokhary, A. Q. Baig, On families of convex polytopes with constant metric dimension, Comput. Math. Appl., 60 (2010), 2629–2638. https://doi.org/10.1016/j.camwa.2010.08.090 doi: 10.1016/j.camwa.2010.08.090
    [13] M. Imran, A. Q. Baig, A. Ahmad, Families of plane graphs with constant metric dimension, Utilitas Math., 88 (2012), 43–57.
    [14] M. Imran, S. A. U. H. Bokhary, A. Q. Baig, I. Tomescu, On metric dimension of convex polytopes with pendant edges, Ars Combinatoria, 125 (2016), 433–447.
    [15] I. Javaid, M. T. Rahim, K. Ali, Families of regular graphs with constant metric dimension, Utilitas Math., 75 (2008), 21–33.
    [16] I. Javaid, S. Shokat, On the partition dimension of some wheel related graphs, J. Prim. Res. Math., 4 (2008), 154–164.
    [17] M. A. Johnson, Structure-activity maps for visualizing the graph variables arising in drug design, J. Biopharm. Stat., 3 (1993), 203–236. https://doi.org/10.1080/10543409308835060 doi: 10.1080/10543409308835060
    [18] M. A. Johnson, Browsable structure-activity datasets, JAI Press Connecticut, 1998,153–170.
    [19] S. Khuller, B. Raghavachari, S. Rosenfeld, Landmarks in graphs, Discrete Appl. Math., 70 (1996), 217–229. https://doi.org/10.1016/0166-218X(95)00106-2
    [20] H. R. Lewis, M. R. Garey, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, W. H. Freeman and Company, 1979.
    [21] M. C. Monica, S. Santhakumar, Partition dimension of certain honeycomb derived networks, IJPAM, 108 (2016), 809–818. https://doi.org/10.12732/ijpam.v108i4.7 doi: 10.12732/ijpam.v108i4.7
    [22] N. Mehreen, R. Farooq, S. Akhter, On partition dimension of fullerene graphs, AIMS Mathematics, 3 (2018), 343–352. https://doi.org/10.3934/Math.2018.3.343 doi: 10.3934/Math.2018.3.343
    [23] R. A. Melter, I. Tomescu, Metric bases in digital geometry, Comput. Vis. Graph. Image Process, 25 (1984), 113–121. https://doi.org/10.1016/0734-189X(84)90051-3 doi: 10.1016/0734-189X(84)90051-3
    [24] B. Rajan, A. William, I. Rajasingh, C. Grigorious, S. Stephen, On certain networks with partition dimension three, Proc. Int. Conf. Math. English Bus. Manage., 2012 (2012), 169–172.
    [25] J. A. Rodríuez-Velázquez, I. G. Yero, M. Lemańska, On the partition dimension of trees, Discrete Appl. Math., 166 (2014), 204–209. https://doi.org/10.1016/j.dam.2013.09.026 doi: 10.1016/j.dam.2013.09.026
    [26] H. Fernau, J. A. Rodríuez-Velázquez, I. G. Yero, On the partition dimension of unicyclic graphs, Bull. Math. Soc. Sci. Math. Roumanie, 57 (2014), 381–391.
    [27] P. J. Slater, Leaves of trees, Congr. Numer., 14 (1975), 549–559.
    [28] P. J. Slater, Dominating and reference sets in graphs, J. Math. Phys., 22 (1988), 445–455.
    [29] I. G. Yero, J. A. Rodríuez-Velázquez, A note on the partition dimension of Cartesian product graphs, Appl. Math. Comput., 22 (1998), 445–455.
    [30] C. Wei, M. F. Nadeem, H. M. A. Siddiqui, M. Azeem, J. B. Liu, A. khalil, On partition dimension of some cycle-related graphs, Math. Probl. Eng., 2021 (2021), 4046909. https://doi.org/10.1155/2021/4046909 doi: 10.1155/2021/4046909
    [31] Z. B. Zheng, A. Ahmad, Z. Hussain, M. Munir, M. I. Qureshi, I. Ali, et al. Fault-tolerant metric dimension of generalized wheels and convex polytopes, Math. Probl. Eng., 2020 (2020), 1216542. https://doi.org/10.1155/2020/1216542 doi: 10.1155/2020/1216542
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1863) PDF downloads(56) Cited by(5)

Article outline

Figures and Tables

Figures(3)  /  Tables(8)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog