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Abstract: Let ψ = (V, E) be a simple connected graph. The distance between ρ1, ρ2 ∈ V(ψ) is the
length of a shortest path between ρ1 and ρ2. Let Γ = {Γ1,Γ2, . . . ,Γ j} be an ordered partition of the
vertices of ψ. Let ρ1 ∈ V(ψ), and r(ρ1|Γ) = {d(ρ1,Γ1), d(ρ1,Γ2), . . . , d(ρ1,Γ j)} be a j-tuple. If the
representation r(ρ1|Γ) of every ρ1 ∈ V(ψ) w.r.t. Γ is unique then Γ is the resolving partition set of
vertices of ψ. The minimum value of j in the resolving partition set is known as partition dimension
and written as pd(ψ). The problem of computing exact and constant values of partition dimension is
hard so one can compute bound for the partition dimension of a general family of graph. In this paper,
we studied partition dimension of the some families of convex polytopes with pendant edge such as
RP

n , Dp
n and Qp

n and proved that these graphs have bounded partition dimension.
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1. Introduction

Let ψ be a simple, connected graph with vertex set V(ψ) and edge set E(ψ). The distance d(ρ1, ρ2),
ρ1, ρ2 ∈ V(ψ) is the length of shortest path between ρ1 and ρ2. Let Q = {v1, v2, . . . , v j} be an ordered
set of vertices of ψ. Let ρ1 ∈ V(ψ), the representations denoted by r(ρ1|Q) is the j-tuple distances
as (d(ρ1|v1), d(ρ1|v2), . . . , d(ρ1|v j)). If distinct vertices of ψ have distinct representation w.r.t. Q then
Q is called the resolving set. The minimum number of j in the resolving set is known as the metric
dimension of ψ and written as dim(ψ). Motivated by the problem of determining an intruder’s location
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in a network in a unique way, Slater introduced the definition of metric dimension in [27] and later
independently by Harary and Melter in [11]. The concept of resolving set, metric basis and metric
dimension appeared in the literature [4, 6, 8–10, 12, 15, 19, 28, 30, 31].

A partition of a set is collection of its subsets, no pair of which overlap, such that the union of all
the subsets is the whole set and partition dimension is related to the partitioning of the vertex set V(Ω)
and resolvability. The partition dimension is a generalized variant of matric dimension. Another type
of dimension of a graph, is called partition dimension. Let Γ = {Γ1,Γ2 . . . ,Γ j} and
r(ρ1|Γ) = {d(ρ1,Γ1), d(ρ1,Γ2), . . . , d(ρ1,Γ j)} are named as j-ordered partition of vertices and j-tuple
representations respectively. If the representations of every ρ1 in V(ψ) w.r.t. Γ is different, then Γ is
the resolving partition of the vertex set and the minimum count of the resolving partition set of V(ψ)
is named as the partition dimension of ψ and it is represented by pd(ψ) [7]. The problem of
determining the resolving set of a graph is NP-hard [20]. As, the problem of finding the partition
dimension is a generalize version of metric dimension, therefore partition dimension is also a
NP-complete problem. It is natural to think that there is a relation between metric and partition
dimension, [7] proved for any non-trivial connected graph ψ,

pd(ψ) ≤ dim(ψ) + 1. (1.1)

In [22], fullerene graph of chemical structure is discussed and proved that the graph has constant
and bounded partition dimension. For more and interesting results on constant partition dimension
can see [16, 21, 24]. To find the exact value of partition dimension of a graph is not easy therefore,
various results on the bounds of the partition dimension are discussed in literature, such as the partition
dimension of Cartesian product operation on different graphs are studies and provided extensive bounds
on partition dimension [29]. In [1] different bounds of partition dimension of subdivision of different
graphs are discussed. In [25, 26] provide bounds of partition dimension of tree and uni-cyclic graphs
in the form of subgraphs.

The applications of partition resolving sets can be found in different fields such as robot
navigation [19], Djokovic-Winkler relation [9], strategies for the mastermind game [10], network
discovery and verification [5], in chemistry for representing chemical compounds [17, 18] and in
problems of pattern recognition and image processing, some of which involve the use of hierarchical
data structures [23] for more applications see [6, 11]. Following theorems are very helpful in finding
the partition dimension of a graph.

Theorem 1.1. [7] Let Γ be a resolving partition of V(ψ) and ρ1, ρ2 ∈ V(ψ). If d(ρ1, z) = d(ρ2, z) for all
vertices z ∈ V(ψ)\(ρ1, ρ2), then ρ1, ρ2 belong to different classes of Γ.

Theorem 1.2. [7] Let ψ be a simple and connected graph, then
• pd(ψ) is 2 iff ψ is a path graph
• pd(ψ) is n iff ψ is a complete graph,
Let R be a family of connected graphs Gn : R = (Gn)n≥1, where |V(ψ)| = λ(n) and lim

n→∞
λ(n) = ∞. If

there exists a constant α ≥ 1 such that pd(ψ) ≤ α, n ≥ 1, then R has bounded partition dimension
otherwise unbounded. Imran et al. [14] studied the metric dimension of Rp

n , Dp
n , and Qp

n , convex
polytopes which motivates us to find the partition dimension of same families of convex polytopes. In
this paper, the partition dimension of same families of convex polytopes are studied. We determine
the partition dimension of Rp

n , in second section. In the third section, the partition dimension of the
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graph Dp
n of a convex polytope with pendent edges is presented. The fourth section remains for the

partition dimension of the graph Qp
n .

2. Results on planer graph RP
n

The convex polytope Rp
n (p for pendant edges) is a planar graph and obtained from the convex

polytope Rn defined in [13]. If we attach a pendant edge at each vertex of outer layer of Rn then we
obtained a new planer graph Rp

n as shown in Figure 1. The vertex set of Rp
n , V(RP

n ) = {V(Rn)} ∪ {xα :
1 ≤ α ≤ n} and edge set of Rp

n , E(RP
n ) = {E(Rn)} ∪ {wαxα : 1 ≤ α ≤ n}.
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Figure 1. Convex polytope Rp
n .

For calculation, {uα : 1 ≤ α ≤ n} represents the inner cycle, the cycle induced by {vα : 1 ≤ α ≤ n}
is interior cycle, exterior cycle containing {wα : 1 ≤ α ≤ n} set of vertices and pendant vertices named
{xα : 1 ≤ α ≤ n}.

Theorem 2.1. Let Rp
n be a polytopes with n ≥ 6. Then pd(Rp

n) ≤ 4.

Proof. We splits the proof into following two cases.
Case 1: When n = 2β, β ≥ 3, β ∈ N. We partition the vertices of Rp

n into four partition resolving sets
Θ = {Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Rp

n)| < {Γ1,Γ2,Γ3}}. It suffice
to show that if every vertex of Rp

n have different representation w.r.t. resolving set Γ, then pd(Rp
n) ≤ 4.

We give the representations of all vertices w.r.t. resolving partition set Γ are following.
The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If β + 2 ≤ α ≤ 2β, then r(uβ|Γ) =

(2β − α + 1, 2β − α + 2, α − β − 1, 0). There are no two vertices have same representation in inner
cycle of Rp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(vβ|Γ) = (1, 1, β, 0). If 2 ≤ α ≤ β, then r(vβ|Γ) = (α, α − 1, β − α + 1, 0). If

α = β+1, then r(vβ|Γ) = (β, β, 1, 0). If β+2 ≤ α ≤ 2β, then r(vβ|Γ) = (2β−α+1, 2β−α+2, α−β, 0).
There are also no two vertices have same representation in interior cycle of Rp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
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If α = 1, then r(wβ|Γ) = (2, 2, β+ 1, 0). If 2 ≤ α ≤ β+ 1, then r(wβ|Γ) = (α+ 1, α, β−α+ 2, 0). If
α = β + 2, then r(wβ|Γ) = (β + 1, β + 1, 2, 0). If β + 3 ≤ α ≤ 2β, then r(wβ|Γ) = (2β − α + 2, 2β − α +

3, α − β + 1, 0). Again there are no two vertices have same representation also in exterior cycle of Rp
n .

The representations of pendant vertices w.r.t. Γ are shown in Table 1. Again we can see that there are
no two vertices have same representation of pendant vertices of Rp

n .

Table 1. Representations of the pendant vertices w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

xα : α = 1 3 3 β + 2 0
xα : 2 ≤ α ≤ β α + 2 α + 1 β − α + 3 0
xα : α = β + 1 β + 2 β + 2 3 0

xα : β + 2 ≤ α ≤ 2β 2β − α + 3 2β − α + 4 α − β + 2 0

It is easy to verify that all the vertices of Rp
n have unique representation w.r.t. resolving partition Γ.

Its means we can resolve the vertices of Rp
n into four partition resolving sets, when n is even.

Case 2: When n = 2β+1, β ≥ 3, β ∈ N.Again we resolve the vertices of Rp
n into four partition resolving

sets Γ = {Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Rp
n)| < {Γ1,Γ2,Γ3}}.

It suffice to show that if every vertices of Rp
n have different representation w.r.t. resolving set Γ, then

pd(Rp
n) ≤ 4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.

The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If α = β + 2, then r(uβ|Γ) = (β, β, 1, 0).

If β + 3 ≤ α ≤ 2β + 1, then r(uβ|Γ) = (2β − α + 2, 2β − α + 3, α − β − 1, 0). There are no two vertices
have same representation in inner cycle of Rp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(vβ|Γ) = (1, 1, β, 0). If 2 ≤ α ≤ β, then r(vβ|Γ) = (α, α−1, β−α+1, 0). If α = β+1,

then r(vβ|Γ) = (β + 1, β, 1, 0). If β + 2 ≤ α ≤ 2β + 1, then r(vβ|Γ) = (2β − α + 2, 2β − α + 3, α − β, 0).
There are also no two vertices have same representation in interior cycle of Rp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are: If α = 1, then r(wβ|Γ) =

(2, 2, β + 1, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α + 1, α, β − α + 2, 0). If α = β + 1, then
r(wβ|Γ) = (β+2, β+1, 2, 0). If β+2 ≤ α ≤ 2β+1, then r(wβ|Γ) = (2β−α+3, 2β−α+4, α−β+1, 0).
Again there are no two vertices have same representation also in exterior cycle of Rp

n .
The pendant vertices having the representations w.r.t. Γ shown in Table 2 . Again we can see that

there are no two vertices have same representation of pendant vertices of Rp
n .

Table 2. Representations of the pendant vertices w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

xα : α = 1 3 3 β + 2 0
xα : 2 ≤ α ≤ β α + 2 α + 1 β − α + 3 0
xα : α = β + 1 β + 3 β + 2 3 0

xα : β + 2 ≤ α ≤ 2β + 1 2β − α + 4 2β − α + 5 α − β + 2 0

It is easy to verify that all the vertices of Rp
n have unique representation w.r.t. resolving partition Γ.

Its means we can also resolve the vertices of Rp
n into four partition resolving sets, when n is odd.
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We note that from Case 1 and 2, there are no two vertices having the same representations implying
that pd(Rp

n) ≤ 4. �

3. Results on planer graph DP
n

The convex polytope DP
n is a planar graph and if we attach a pendant edge at each vertex of outer

cycle of Dn [2] then we obtained a new plane graph DP
n as shown in Figure 2. The vertex and edge

set V(DP
n ) = {V(Dn)} ∪ {yα : 1 ≤ α ≤ n}, E(DP

n ) = {E(Dn)} ∪ {xαyα : 1 ≤ α ≤ n} are respectively.
For calculation, {uα : 1 ≤ α ≤ n} represents the inner cycle, the cycle induced by {vα : 1 ≤ α ≤ n} is
interior cycle, exterior cycle containing {wα : 1 ≤ α ≤ n} set of vertices, {xα : 1 ≤ α ≤ n} labeled as
outer cycle and pendant vertices named for {yα : 1 ≤ α ≤ n}.
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Figure 2. Convex polytope graph DP
n .

Theorem 3.1. Let DP
n be a polytopes with n ≥ 6. Then pd(DP

n ) ≤ 4.

Proof. We split the proof of above theorem into following two cases.
Case 1: When n = 2β, β ≥ 3, β ∈ N. We partition the vertices of Dp

n into four partition sets Γ =

{Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Dp
n)| < {Γ1,Γ2,Γ3}}. It suffice to

show that if every vertices of Dp
n have different representation w.r.t. resolving set Γ, then pd(Dp

n) ≤ 4.
We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.

The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If β + 2 ≤ α ≤ 2β, then r(uβ|Γ) =

(2β − α + 1, 2β − α + 2, α − β − 1, 0). There are no two vertices have same representation in inner
cycle of Dp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(vβ|Γ) = (1, 2, β + 1, 0). If 2 ≤ α ≤ β, then r(vβ|Γ) = (α, α − 1, β − α + 2, 0). If

α = β+1, then r(vβ|Γ) = (β, β, 1, 0). If β+2 ≤ α ≤ 2β, then r(vβ|Γ) = (2β−α+2, 2β−α+3, α−β, 0).
There are also no two vertices have same representation in interior cycle of Dp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(wβ|Γ) = (2, 2, β + 1, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α + 1, α, β − α + 2, 0). If

α = β + 1, then r(wβ|Γ) = (β + 1, β + 1, 2, 0). If β + 2 ≤ α ≤ 2β, then r(wβ|Γ) = (2β − α + 2, 2β − α +

3, α − β + 1, 0). Again there are no two vertices have same representation also in exterior cycle of Dp
n .
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The vertices on outer cycle and pendant vertices having the representations w.r.t. Γ as shown in
Tables 3 and 4. Again we can see that there are no two vertices have same representation in outer cycle
and pendant vertices of Dp

n .

Table 3. Representations of the vertices on outer cycle w.r.t. resolving set Γ.

Representation Γ1 Γ2 Γ3 Γ4

xα : α = 1 3 3 β + 2 0
xα : 2 ≤ α ≤ β α + 2 α + 1 β − α + 3 0
xα : α = β + 1 β + 2 β + 2 3 0

xα : β + 2 ≤ α ≤ 2β 2β − α + 3 2β − α + 4 α − β + 2 0

Table 4. Representations of the pendant vertices w.r.t. resolving set Γ.

Representation Γ1 Γ2 Γ3 Γ4

yα : α = 1 4 4 β + 3 0
yα : 2 ≤ α ≤ β α + 3 α + 2 β − α + 4 0
yα : α = β + 1 β + 3 β + 3 4 0

yα : β + 2 ≤ α ≤ 2β − 1 2β − α + 4 2β − α + 5 α − β + 3 0

It is easy to verify that all the vertices of Dp
n have unique representation w.r.t. resolving partition Γ.

Its means we can resolve the vertices of Dp
n into four partition resolving sets, when n is even.

Case 2: When n = 2β+1, β ≥ 3, β ∈ N.Again we resolve the vertices of Dp
n into four partition resolving

sets Γ = {Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Dp
n)| < {Γ1,Γ2,Γ3}}.

It suffice to show that if every vertices of Dp
n have different representation w.r.t. resolving set Γ, then

pd(Dp
n) ≤ 4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.

The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If α = β + 2, then r(uβ|Γ) = (β, β, 1, 0).

If β + 3 ≤ α ≤ 2β + 1, then r(uβ|Γ) = (2β − α + 1, 2β − α + 2, α − β − 1, 0). There are no two vertices
have same representation in inner cycle of Dp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(vβ|Γ) = (1, 2, β+1, 0). If 2 ≤ α ≤ β+1, then r(vβ|Γ) = (α, α−1, β−α+2, 0). If α =

β+2, then r(vβ|Γ) = (β+1, β+1, 2, 0). If β+3 ≤ α ≤ 2β+1, then r(vβ|Γ) = (2β−α+2, 2β−α+3, α−β, 0).
There are also no two vertices have same representation in interior cycle of Dp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If α = 1, then r(wβ|Γ) = (2, 2, β + 1, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α + 1, α, β − α + 2, 0). If

α = β + 1, then r(wβ|Γ) = (β + 2, β + 1, 2, 0). If β + 2 ≤ α ≤ 2β + 1, then r(wβ|Γ) = (2β − α + 3, 2β −
α + 4, α − β + 1, 0). Again there are no two vertices have same representation also in exterior cycle of
Dp

n .
The vertices on outer cycle and pendant vertices having the representations w.r.t. Γ as shown in

Tables 5 and 6. Again we can see that there are no two vertices have same representation in outer cycle
and pendant vertices of Dp

n .
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Table 5. Representations of the vertices on exterior cycle w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

xα : α = 1 3 3 β + 2 0
xα : 2 ≤ α ≤ β α + 2 α + 1 β − α + 3 0
xα : α = β + 1 β + 2 β + 2 3 0

xα : β + 2 ≤ α ≤ 2β + 1 2β − α + 4 2β − α + 5 α − β + 2 0

Table 6. Representations of the pendant vertices w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

xα : α = 1 4 4 β + 3 0
xα : 2 ≤ α ≤ β α + 3 α + 2 β − α + 4 0
xα : α = β + 1 β + 3 β + 3 4 0

xα : β + 2 ≤ α ≤ 2β + 1 2β − α + 5 2β − α + 6 α − β + 3 0

It is easy to verify that all the vertices of Dp
n have unique representation w.r.t. resolving partition Γ.

Its means we can also resolve the vertices of Dp
n into four partition resolving sets, when n is odd.

We note that from Case 1 and 2, there are no two vertices having the same representations implying
that pd(Tp

n) ≤ 4. �

4. Results on planer graph QP
n

The convex polytope QP
n is a planar graph and If we attach a pendant edge at each vertex of outer

cycle of Qn [3] then we obtained a new plane graph QP
n as shown in Figure 3. The vertex and edge set

V(QP
n ) = {V(αn)} ∪ {yα : 1 ≤ α ≤ n}, E(QP

n ) = {E(Qn)} ∪ {xαyα : 1 ≤ α ≤ n} are respectively.
For convenience, {uα : 1 ≤ α ≤ n} represents the inner cycle, the cycle induced by {vα : 1 ≤ α ≤ n}

is interior cycle, exterior cycle containing {wα : 1 ≤ α ≤ n} set of vertices, {xα : 1 ≤ α ≤ n} are exterior
vertices, and pendant vertices named for {yα : 1 ≤ α ≤ n}.
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Figure 3. Convex polytope graph Qp
n .
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Theorem 4.1. Let QP
n be a polytopes with n ≥ 6. Then pd(QP

n ) ≤ 4.

Proof. Case 1: When n = 2β, β ≥ 3, β ∈ N. We partition the vertices of Qp
n into four partition resolving

sets Γ = {Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Qp
n)| < {Γ1,Γ2,Γ3}}.

It suffice to show that if every vertices of Qp
n have different representation w.r.t. resolving set Γ, then

pd(Qp
n) ≤ 4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.

The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If β + 2 ≤ α ≤ 2β, then r(uβ|Γ) =

(2β − α + 1, 2β − α + 2, α − β − 1, 0). There are no two vertices have same representation in inner
cycle of Qp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:
If β = 1, then r(vβ|Γ) = (1, 2, α + 1, 0). If 2 ≤ α ≤ β, then r(vβ|Γ) = (α, α − 1, β − α + 2, 0). If

β + 2 ≤ α ≤ 2β, then r(vβ|Γ) = (2β − α + 2, 2β − α + 3, α − β, 0). There are also no two vertices have
same representation in interior cycle of Qp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β = 1, then r(vβ|Γ) = (2, 2, α + 1, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α + 1, α, β − α + 2, 0). If

α = β + 1, then r(vβ|Γ) = (α + 1, α + 1, 2, 0). If β + 2 ≤ α ≤ 2β, then r(wβ|Γ) = (2β − α + 2, 2β − α +

3, α − β + 1, 0). Again there are no two vertices have same representation also in exterior cycle of Qp
n .

The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β = 1, then r(vβ|Γ) = (3, 3, α+ 2, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α+ 2, α+ 1, β−α+ 3, 0). If

α = β + 1, then r(vβ|Γ) = (α + 2, α + 2, 3, 0). If β + 2 ≤ α ≤ 2β, then r(wβ|Γ) = (2β − α + 3, 2β − α +

4, α − β + 2, 0). Again there are no two vertices have same representation also in exterior cycle of Qp
n .

The pendant vertices having the representations w.r.t. Γ as shown in Table 7. Again we can see that
there are no two vertices have same representation in pendant vertices of Qp

n .

Table 7. Representations of pendant vertices w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

yα : α = 1 4 4 β + 3 0
yα : 2 ≤ α ≤ β α + 3 α + 2 β − α + 4 0
yα : α = β + 1 β + 3 β + 3 4 0

yα : β + 2 ≤ α ≤ 2β 2β − α + 4 2β − α + 5 α − β + 3 0

It is easy to verify that all the vertices of Qp
n have unique representation w.r.t. resolving partition Γ.

Its means we can resolve the vertices of Qp
n into four partition resolving sets, when n is even.

Case 2: When n = 2β+1, β ≥ 3, β ∈ N.Again we resolve the vertices of Qp
n into four partition resolving

sets Γ = {Γ1,Γ2,Γ3,Γ4} where Γ1 = {u1}, Γ2 = {u2}, Γ3 = {uβ+1} and Γ4 = {∀ V(Qp
n)| < {Γ1,Γ2,Γ3}}.

It suffice to show that if every vertices of Qp
n have different representation w.r.t. resolving set Γ, then

pd(Qp
n) ≤ 4. We give the representations of all vertices Γ4 w.r.t. resolving set Γ are following.

The vertices on inner cycle having the representations w.r.t. Γ which are:
If 3 ≤ α ≤ β, then r(uβ|Γ) = (α − 1, α − 2, β − α + 1, 0). If α = β + 2, then r(uβ|Γ) = (β, β, 1, 0).

If β + 3 ≤ α ≤ 2β + 1, then r(uβ|Γ) = (2β − α + 1, 2β − α + 2, α − β − 1, 0). There are no two vertices
have same representation in inner cycle of Qp

n .
The vertices on interior cycle having the representations w.r.t. Γ which are:

AIMS Mathematics Volume 7, Issue 3, 4405–4415.
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If β = 1, then r(vβ|Γ) = (1, 2, α+ 1, 0). If 2 ≤ α ≤ β, then r(vβ|Γ) = (α, α− 1, β−α+ 2, 0). If α =

β+2, then r(vβ|Γ) = (β+1, β+1, 2, 0). If β+3 ≤ α ≤ 2β+1, then r(vβ|Γ) = (2β−α+2, 2β−α+3, α−β, 0).
There are also no two vertices have same representation in interior cycle of Qp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β = 1, then r(vβ|Γ) = (2, 2, α + 1, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α + 1, α, β − α + 2, 0). If

α = β + 1, then r(wβ|Γ) = (β + 2, β + 1, 2, 0). If β + 2 ≤ α ≤ 2β + 1, then r(wβ|Γ) = (2β − α + 3, 2β −
α + 4, α − β + 1, 0). Again there are no two vertices have same representation also in exterior cycle of
Qp

n .
The vertices on exterior cycle having the representations w.r.t. Γ which are:
If β = 1, then r(vβ|Γ) = (3, 3, α+ 2, 0). If 2 ≤ α ≤ β, then r(wβ|Γ) = (α+ 2, α+ 1, β−α+ 3, 0). If

α = β + 1, then r(wβ|Γ) = (β + 2, β + 2, 3, 0). If β + 2 ≤ α ≤ 2β + 1, then r(wβ|Γ) = (2β − α + 4, 2β −
α + 5, α − β + 2, 0). Again there are no two vertices have same representation also in exterior cycle of
Qp

n .
The pendant vertices having the representations w.r.t. Γ as shown in Table 8. Again we can see that

there are no two vertices have same representation in pendant vertices of Qp
n .

Table 8. Representations of the pendant vertices w.r.t. Γ.

Representation Γ1 Γ2 Γ3 Γ4

yα : α = 1 4 4 β + 3 0
yα : 2 ≤ α ≤ β α + 3 α + 2 β − α + 4 0
yα : α = β + 1 β + 4 β + 3 4 0

yα : β + 2 ≤ α ≤ 2β + 1 2β − α + 5 2β − α + 6 α − β + 3 0

It is easy to verify that all the vertices of Qp
n have unique representation w.r.t. resolving partition Γ.

Its means we can also resolve the vertices of Qp
n into four partition resolving sets, when n is odd.

We note that from Case 1 and 2, there are no two vertices having the same representations implying
that pd(Up

n) ≤ 4. �

5. Conclusions

The core of the problem of the partition dimension is deciding the resolving partition set for a graph.
In this paper, we have studies the partition dimension of some families of convex polytopes graph such
as Rp

n , Dp
n and Qp

n , which are obtained from the convex polytopes by adding a pendant edge at each
vertex of outer cycle. In this research work, we have proved that partition dimension of these convex
polytopes are bounded. Consequently, we propose the following open problems.

Conjecture 5.1. The following equalities hold:

pd(Rp
n) = pd(Dp

n) = pd(Qp
n) = 4
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