In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order $ 1 < \varrho\leq 2 $ subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.
Citation: Mohammed A. Almalahi, Satish K. Panchal, Tariq A. Aljaaidi, Fahd Jarad. New results for a coupled system of ABR fractional differential equations with sub-strip boundary conditions[J]. AIMS Mathematics, 2022, 7(3): 4386-4404. doi: 10.3934/math.2022244
In this article, we investigate sufficient conditions for the existence, uniqueness and Ulam-Hyers (UH) stability of solutions to a new system of nonlinear ABR fractional derivative of order $ 1 < \varrho\leq 2 $ subjected to multi-point sub-strip boundary conditions. We discuss the existence and uniqueness of solutions with the assistance of Leray-Schauder alternative theorem and Banach's contraction principle. In addition, by using some mathematical techniques, we examine the stability results of Ulam-Hyers (UH). Finally, we provide one example in order to show the validity of our results.
[1] | I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999. |
[2] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives, Gordon & Breach, Yverdon, 1993. |
[3] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006. |
[4] | R. Hilfer, Applications of fractional calculus in physics, World Scientific, Singapore, 35 (2000). |
[5] | M. Caputo, M. Fabrizio, A new definition of fractional derivative without singular kernel, Prog. Fract. Differ. Appl., 1 (2015), 73–85. |
[6] | A. Atangana, D. Baleanu, New fractional derivative with non-local and non-singular kernel, Therm. Sci., 20 (2016), 757–763. |
[7] | T. Abdeljawad, A Lyapunov type inequality for fractional operators with nonsingular Mittag-Leffler kernel, J. Inequal. Appl., 1 (2017), 130. https://doi.org/10.1186/s13660-017-1400-5 doi: 10.1186/s13660-017-1400-5 |
[8] | A. Atangana, Fractal-fractional differentiation and integration: Connecting fractal calculus and fractional calculus to predict complex system, Chaos Soliton. Fract., 102 (2017), 396–406. https://doi.org/10.1016/j.chaos.2017.04.027 doi: 10.1016/j.chaos.2017.04.027 |
[9] | A. Atangana, J. F. Gómez-Aguilar, Fractional derivatives with no-index law property: Application to chaos and statistics, Chaos Soliton. Fract., 114 (2018), 516–535. https://doi.org/10.1016/j.chaos.2018.07.033 doi: 10.1016/j.chaos.2018.07.033 |
[10] | F. Jarad, T. Abdeljawad, Z. Hammouch, On a class of ordinary differential equations in the frame of Atangana-Baleanu fractional derivative, Chaos Soliton. Fract., 117 (2018), 16–20. https://doi.org/10.1016/j.chaos.2018.10.006 doi: 10.1016/j.chaos.2018.10.006 |
[11] | M. A. Almalahi, S. K. Panchal, On the theory of $\psi $-Hilfer nonlocal Cauchy problem, J. Sib. Fed. Univ.-Math., 14 (2021), 159–175. https://doi.org/10.17516/1997-1397-2021-14-2-161-177 doi: 10.17516/1997-1397-2021-14-2-161-177 |
[12] | M.S. Abdo, T. Abdeljawad, K. D. Kucche, M. A. Alqudah, S. M. Ali, M. B. Jeelani, On nonlinear pantograph fractional differential equations with Atangana-Baleanu-Caputo derivative, Adv. Differ. Equ., 1 (2021), 1–17. https://doi.org/10.1186/s13662-021-03229-8 doi: 10.1186/s13662-021-03229-8 |
[13] | M. S. Abdo, T. Abdeljawad, S. M. Ali, K. Shah, On fractional boundary value problems involving fractional derivatives with Mittag-Leffler kernel and nonlinear integral conditions, Adv. Differ. Equ., 37 (2021). https://doi.org/10.1186/s13662-020-03196-6 doi: 10.1186/s13662-020-03196-6 |
[14] | M. A. Almalahi, S. K. Panchal, W. Shatanawi, M. S. Abdo, K. Shah, K. Abodayeh, Analytical study of transmission dynamics of 2019-nCoV pandemic via fractal fractional operator, Results Phys., 24 (2021), 104045. https://doi.org/10.1016/j.rinp.2021.104045 doi: 10.1016/j.rinp.2021.104045 |
[15] | S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, Interscience, New York, 8 (1960). |
[16] | D. H. Hyers, G. Isac, T. Rassias, Stability of functional equations in several variables, Spring, Boston, 1998. |
[17] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. |
[18] | B. Ahmad, S. K. Ntouyas, Existence results for a coupled system of Caputo type sequential fractional differential equations with nonlocal integral boundary conditions, Appl. Math. Comput., 266 (2015), 615–622. https://doi.org/10.1016/j.amc.2015.05.116 doi: 10.1016/j.amc.2015.05.116 |
[19] | B. Ahmad, S. K. Ntouyas, A. Alsaedi, On a coupled system of fractional differential equations with coupled nonlocal and integral boundary conditions, Chaos Soliton. Fract., 83 (2016), 234–241. https://doi.org/10.1016/j.chaos.2015.12.014 doi: 10.1016/j.chaos.2015.12.014 |
[20] | M. A. Almalahi, M. S. Abdo, S. K. Panchal, Existence and Ulam-Hyers stability results of a coupled system of $\psi $ -Hilfer sequential fractional differential equations, Results Appl. Math., 10 (2021), 100142. https://doi.org/10.1016/j.rinam.2021.100142 doi: 10.1016/j.rinam.2021.100142 |
[21] | M. A. Almalahi, S. K. Panchal, F. Jarad, Stability results of positive solutions for a system of $\psi $-Hilfer fractional differential equations, Chaos Soliton. Fract., 147 (2021), 110931. https://doi.org/10.1016/j.chaos.2021.110931 doi: 10.1016/j.chaos.2021.110931 |
[22] | A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, On Caputo-Riemann-Liouville type fractional integro-differential equations with multi-point sub-strip boundary conditions, Mathematics, 8 (2020), 1899. https://doi.org/10.3390/math8111899 doi: 10.3390/math8111899 |
[23] | A. Alsaedi, A. F. Albideewi, S. K. Ntouyas, B. Ahmad, Existence results for a coupled system of Caputo type fractional integro-differential equations with multi-point and sub-strip boundary conditions, Adv. Differ. Equ., 19 (2021). https://doi.org/10.1186/s13662-020-03174-y doi: 10.1186/s13662-020-03174-y |
[24] | B. Ahmad, A. Alsaedi, B. S. Alghamdi, Analytic approximation of solutions of the forced Duffing equation with integral boundary conditions, Nonlinear Anal.-Real, 9 (2008), 1727–1740. https://doi.org/10.1016/j.nonrwa.2007.05.005 doi: 10.1016/j.nonrwa.2007.05.005 |
[25] | R. Ciegis, A. Bugajev, Numerical approximation of one model of the bacterial self-organization, Nonlinear Anal.-Model., 17 (2012), 253–270. https://doi.org/10.15388/NA.17.3.14054 doi: 10.15388/NA.17.3.14054 |
[26] | B. Ahmad, S. Asghar, T. Hayat, Diffraction of a plane wave by an elastic knife-edge adjacent to a rigid strip, Canad. Appl. Math. Quart., 9 (2001), 303–316. |
[27] | E. Yusufoglu, I. Turhan, A mixed boundary value problem in orthotropic strip containing a crack, J. Franklin Inst., 349 (2012), 2750–2769. https://doi.org/10.1016/j.jfranklin.2012.09.001 doi: 10.1016/j.jfranklin.2012.09.001 |
[28] | K. Deimling, Nonlinear functional analysis, Springer, New York, 1985. |
[29] | A. Granas, J. Dugundji, Fixed point theory, Springer Science & Business Media, 2013. |