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Abstract: Attribute reduction of a decision information system (DIS) using multi-granulation rough
sets is one of the important applications of granular computing. Constructing discernibility matrices
by rough sets to get attribute reducts of a DIS is an important reduction method. By analyzing the
commonalities between the multi-granulation reduction structure of decision multi-granulation spaces
and that of incomplete DISs based on discernibility tool, this paper explored a general model for
the multi-granulation reduction of DISs by the discernibility technique. First, the definition of the
generalized neighborhood decision information system (GNDIS) was presented. Second, knowledge
reduction of GNDISs by multi-granulation rough sets was discussed, and discernibility matrices and
discernibility functions were constructed to characterize multi-granulation reduction structures of
GNDISs. Third, the multi-granulation reduction structures of decision multi-granulation spaces and
incomplete DISs were characterized by the reduction theory of GNDISs based on discernibility. Then,
the multi-granulation reduction of GNDISs by the discernibility tool provided a theoretical foundation
for designing algorithms of multi-granulation reduction of DISs.
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1. Introduction

With the development of information technology, the datasets with lots of features have been
collected in many application fields. However, datasets usually contain many redundant features, which

https://www.aimspress.com/journal/Math
https://dx.doi.org/ 10.3934/math.20241684


35472

may affect the classification ability of datasets and increase the complexity of learning algorithms.
Feature selection is a data preprocessing technology which selects a subset from the original feature
set to improve the performance of learning algorithms. So far, feature selection has been applied to
rule extraction [1], decision-making [4, 24], and data mining [30].

Rough set theory [12] is a typical granular computing model and a meaningful mathematical tool
for feature selection, which is also called attribute reduction in rough set theory. In rough set theory, the
datasets are represented as information systems. Due to the diversity of the datasets, different types of
information systems are discussed, whose attribute reduction structures are explored by different rough
set models. For example, the attribute reduction of a complete decision information system (CDIS)
was investigated based on the classical Pawlak rough set model, which is defined by equivalence
(indiscernibility) relations or partitions [13, 16, 31]. The attribute reduction of an incomplete decision
information system (IDIS) was discussed by relation rough sets [3,9,17,23]. The neighborhood rough
set model, defined on neighborhood granularies, was used to attribute reduction of neighborhood
DISs [5, 6, 33]. The covering rough sets defined on coverings were utilized for reducing covering
DISs [2, 22, 25, 26]. The rough set models mentioned above are constructed by a single granular
knowledge. However, in real-world applications, more and more datasets should be described via
multiple granular structures. Qian et al. proposed the concepts of multi-granulation rough sets in
CDISs and discussed attribute reduction of CDISs based on multi-granulation rough sets [14, 18].
Kong et al. explored multi-granulation reduction of information systems [8]. Attribute reduction of
IDISs based on multi-granulation rough sets was explored in [15]. Zhang et al. defined a generalized
multi-granulation fuzzy neighborhood rough set model and discussed a feature selection method by
the model [34].

The technique of constructing discernibility matrices and discernibility functions, proposed by
Skowron and Rauszer [20] and Skowron [19], is an important attribute reduction method. Yao and Zhao
defined a minimal family of discernibility sets based on the family of discernibility sets to compute the
reducts of CDISs [29]. Zhao et al. constructed the relative discernibility matrix of a CDIS to get
relative reducts [35]. Jiang and Yu proposed a compactness discernibility information tree to obtain
the minimal attribute reduction of a CDIS [7]. Ma et al. introduced a compressed binary discernibility
matrix and designed an incremental attribute reduction algorithm for getting an attribute reduction set
of a dynamic CDIS [10]. A binary discernibility matrix was designed to get attribute relative reducts
of an IDIS [11]. Chen et al. [2], Wang et al. [22] and Yang et al. [25] constructed discernibility
matrices to obtain the reducts of covering DISs. The discernibility techniques are also used to achieve
the knowledge reduction of information systems based on multi-granulation rough sets. Tan et al.
constructed discenibility matrices and discernibility functions to calculate the attribute reducts of a
decision multi-granulation space (DMS) [21] and verified the effectiveness of the reduction methods
by numerical experiments. However, the optimistic lower reducts are not calculated by discenibility
matrices in [21]. Zhang et al. explored the attribute reduction of an IDIS by the discernibility approach
in multi-granulation rough set theory [32] and presented numerical experiments to show the feasibility
and effectiveness of the algorithms to get reducts. However, the attribute reduction of IDISs based on
optimistic multi-granulation rough sets is not considered in [32].

The purpose of this paper is to analyze and compare the multi-granulation reduction theory of
DMSs [21] and IDISs [32] from discernibility, and to present a general model for the multi-granulation
reduction of DISs by the discernibility technique, which can provide a theoretical basis for the multi-
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granulation reduction of DISs based on discernibility. The notation of a GNDIS is introduced in
this paper, the multi-granulation reductions of GNDISs based on the multi-granulation rough set are
discussed, and discernibility matrices are constructed to compute the multi-granulation reducts of
GNDISs. Then, the pessimistic (or optimistic) approximations in DMSs and IDISs can be changed
into the multi-granulation pessimistic (or optimistic) approximations in GNDISs. Moreover, the
pessimistic multi-granulation reducts and the optimistic multi-granulation reducts of DMSs discussed
in [21] can be computed by the discernibility matrices and discernibility functions based on the multi-
granulation reduction theory of GNDISs. Additionally, the pessimistic multi-granulation reduction
structures of IDISs discussed in [32] are characterized by the reduction theory of GNDISs based on
discernibility technique.

The remaining structure of this paper is organized as follows. In Section 2, the definitions about
multi-granulation rough sets are reviewed. In Section 3, we introduce the definition of the multi-
granulation rough sets in a GNDIS and discuss knowledge reduction of a GNDIS based on the multi-
granulation rough sets. The discernibility matrices and discernibility functions are constructed to
characterize the multi-granulation reducts of a GNDIS. In Section 4, relationships between the multi-
granulation reduction of DMSs and that of GNDISs are discussed. Moreover, the optimistic lower
reducts of DMSs are discussed by the discernibility matrices in this section. Section 5 explores
relationships between the multi-granulation reduction of IDISs and that of GNDISs. Then, the
optimistic multi-granulation reductions of IDISs from the discernibility technique are presented in
this section. Section 6 concludes this study.

2. Preliminary knowledge on multi-granulation rough sets

In this section, we review some basic concepts about multi-granulation rough sets, which were
proposed by Qian et al. [18] to approximate a target concept using multiple binary relations.

2.1. Multi-granulation rough sets in DMSs

Suppose that (U, A, d) is a DIS, in which U is the universe, A is a family of condition attributes
where a : U → Va for any a ∈ A, Va is the value set of a, and d : U → Vd is a decision attribute where
Vd is the value set of d.

In a DIS (U, A, d), A = {Ak|Ak ⊆ A, k = 1, 2, · · · ,m} is a family of attribute subsets. Then,
(U,A, d) is called an DMS [28]. Each Ak ∈ A induces an equivalent relation RAk = {(x, y) ∈
U × U |∀a ∈ Ak(a(x) = a(y))} and generates a granular structure U/RAk = {[x]Ak |x ∈ U}, in which
[x]Ak = {y ∈ U |(x, y) ∈ RAk}. The decision attribute d generates a partition U/Rd = {[x]d|x ∈ U} ,
{X1, X2, · · · , Xn}, each of which is the decision class with the same decision attribute values. The
pessimistic multi-granulation lower and upper approximations and optimistic multi-granulation lower
and upper approximations were discussed by Qian et al. [14, 18].

Definition 1. [14] Given a DMS (U,A, d) withA = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, let X ⊆ U. Define the
pessimistic multi-granulation lower and upper approximations of X as∑

A

AP
k (X) = {x ∈ U |([x]A1 ⊆ X) ∧ ([x]A2 ⊆ X) ∧ · · · ∧ ([x]Am ⊆ X)},∑

A

AP
k (X) =∼

∑
A

AP
k (∼ X).
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One calls (
∑
A

AP
k (X),

∑
A

AP
k (X)) a pessimistic multi-granulation rough set.

For each x ∈ U, H ⊆ A, denote ∪A∈H [x]A by NH (x). Then, it is easy to get that
∑
A

AP
k (X) = {x ∈

U |NA(x) ⊆ U}.

Definition 2. [18] Given a DMS (U,A, d) withA = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, let X ⊆ U. Define the
optimistic multi-granulation lower and upper approximations of X as∑

A

AO
k (X) = {x ∈ U |([x]A1 ⊆ X) ∨ ([x]A2 ⊆ X) ∨ · · · ∨ ([x]Am ⊆ X)},∑

A

AO
k (X) =∼

∑
A

AO
k (∼ X).

(
∑
A

AP
k (X),

∑
A

AP
k (X)) is called an optimistic multi-granulation rough set.

2.2. Multi-granulation rough sets in IDISs

If some attribute values of attributes in A of a DIS (U, A, d) are are missing or unknown, then the
missing attribute value is expressed by special symbol ‘∗’ and (U, A, d) is termed as an IDIS. For any
Ak ⊆ A, a tolerance relation is defined by Kryszkiewicz as [9]:

S IM(Ak) = {(x, y) ∈ U × U |∀a ∈ Ak(a(x) = a(y) ∨ a(x) = ∗ ∨ a(y) = ∗)}.
A granular structure is induced by Ak as U/S IM(Ak) = {S Ak(x)|x ∈ U}, where S Ak(x) = {y ∈ U |(x, y) ∈
S IM(Ak)}.

The multi-granulation rough sets in IDISs were introduced by Qian et al. [15].

Definition 3. [15] Given an IDIS (U, A, d) with AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, let X ⊆ U. Define
the pessimistic multi-granulation lower and upper approximations of X as∑
AI

AP
k (X) = {x ∈ U |(S A1(x) ⊆ X) ∧ (S A2(x) ⊆ X) ∧ · · · ∧ (S Am(x) ⊆ X)},∑

AI
AP

k (X) =∼
∑
AI

AP
k (∼ X).

Define the optimistic multi-granulation lower and upper approximations of X∑
AI

AO
k (X) = {x ∈ U |(S A1(x) ⊆ X) ∨ (S A2(x) ⊆ X) ∨ · · · ∨ (S Am(x) ⊆ X)},∑

AI
AO

k (X) =∼
∑
AI

AO
k (∼ X).

(
∑
AI

AP
k (X),

∑
AI

AP
k (X)) and (

∑
AI

AO
k (X),

∑
AI

AO
k (X)) are, respectively, the pessimistic multi-granulation rough

set and optimistic multi-granulation rough set of X.

For each x ∈ U,H ⊆ AI , denote ∪A∈HS A(x) by INH (x). It is clear that
∑
AI

AP
k (X) = {x ∈ U |INAI (x) ⊆

U}.

3. Multi-granulation reduction of GNDISs

In this section, we present the definitions of multi-granulation rough sets in GNDISs and explore
multi-granulation reduction of GNDISs. Throughout this paper, the universe of discourse U is
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nonempty and finite. The family of all subsets of U is denoted by P(U). For X ⊆ U, ∼ X is the
complementary set of X.

3.1. Multi-granulation rough sets in GNDISs

Some basic concepts about the neighborhood operator is presented in [27].

Definition 4. [27] Let U be the universe. A mapping N : U → P(U) is called a neighborhood
operator. If x ∈ N(x) for all x ∈ U, N is a reflexive neighborhood operator. If x ∈ N(y) ⇒ y ∈ N(x)
for all x, y ∈ U, N is a symmetric neighborhood operator. If [y ∈ N(x), z ∈ N(y)] ⇒ z ∈ N(x) for
all x, y, z ∈ U, N is a transitive neighborhood operator. If the neighborhood operator N is reflexive,
symmetric and transitive, N is called a Pawlak neighborhood operator.

Clearly, {N(x)|x ∈ U} of a Pawlak neighborhood operator N forms a partition of U.

Definition 5. Let N be a reflexive neighborhood operator on U. Denote {N(x)|x ∈ U} by CN . The
ordered pair (U,N) is called a generalized neighborhood approximation space.

Clearly, CN from (U,N) is a covering. We introduce the generalized neighborhood multi-granulation
rough sets now.

Definition 6. Let N1,N2, · · · ,Nm(m ≥ 2) be reflexive neighborhood operators on U and N =

{N1,N2, · · · , Nm}, Nd : U → P(U) be a Pawlak neighborhood operator, then (U,N ,Nd) is called a
GNDIS. For X ⊆ U, define the generalized neighborhood pessimistic lower approximation

∑
N

NP
k (X)

and pessimistic upper approximation
∑
N

NP
k (X) by∑

N

NP
k (X) = {x ∈ U |(N1(x) ⊆ X) ∧ (N2(x) ⊆ X) ∧ · · · ∧ (Nm(x) ⊆ X)},∑

N

NP
k (X) =∼

∑
N

NP
k (∼ X).

(
∑
N

NP
k (X),

∑
N

NP
k (X)) is the generalized neighborhood pessimistic multi-granulation rough set of X.

For H ⊆ N and x ∈ U, denote GNH (x) =
⋃

N∈H N(x). Then, it is clear that
∑
N

NP
k (X) = {x ∈

U |GNN (x) ⊆ X}.

Proposition 1. Let (U,N ,Nd) be a GNDIS, X,Y ⊆ U,H ⊆ N andH , ∅, then:
(1)
∑
N

NP
k (∅) = ∅,

∑
N

NP
k (U) = U,

∑
N

NP
k (∅) = ∅,

∑
N

NP
k (U) = U.

(2)
∑
N

NP
k (X) ⊆ X ⊆

∑
N

NP
k (X).

(3) X ⊆ Y ⇒
∑
N

NP
k (X) ⊆

∑
N

NP
k (Y),

∑
N

NP
k (X) ⊆

∑
N

NP
k (Y).

(4)
∑
N

NP
k (X ∩ Y) =

∑
N

NP
k (X) ∩

∑
N

NP
k (Y),

∑
N

NP
k (X ∪ Y) =

∑
N

NP
k (X) ∪

∑
N

NP
k (Y).

(5)
∑
N

NP
k (
∑
N

NP
k (X)) ⊆

∑
N

NP
k (X),

∑
N

NP
k (X) ⊆

∑
N

NP
k (
∑
N

NP
k (X)).

(6)
∑
N

NP
k (X) ⊆

∑
H

NP
k (X),

∑
H

NP
k (X) ⊆

∑
N

NP
k (X).
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Proof. It is verified by Definition 6. �

Definition 7. Given a GNDIS (U,N ,Nd) withN = {N1,N2, · · · ,Nm}, let X ⊆ U. Define the generalized
neighborhood optimistic lower approximation

∑
N

NO
k (X) and optimistic upper approximation

∑
N

NO
k (X)

of X as∑
N

NO
k (X) = {x ∈ U |(N1(x) ⊆ X) ∨ (N2(x) ⊆ X) ∨ · · · ∨ (Nm(x) ⊆ X)},∑

N

NO
k (X) =∼

∑
N

NO
k (∼ X).

(
∑
N

NO
k (X),

∑
N

NO
k (X)) is the generalized neighborhood optimistic multi-granulation rough set of X.

Proposition 2. Let (U,N ,Nd) be a GNDIS, X,Y ⊆ U,H ⊆ N andH , ∅, then:
(1)
∑
N

NO
k (∅) = ∅,

∑
N

NO
k (U) = U,

∑
N

NO
k (∅) = ∅,

∑
N

NO
k (U) = U.

(2)
∑
N

NO
k (X) ⊆ X ⊆

∑
N

NO
k (X).

(3) X ⊆ Y ⇒
∑
N

NO
k (X) ⊆

∑
N

NO
k (Y),

∑
N

NO
k (X) ⊆

∑
N

NO
k (Y).

(4)
∑
N

NO
k (X ∩ Y) ⊆

∑
N

NO
k (X) ∩

∑
N

NO
k (Y),

∑
N

NO
k (X) ∪

∑
N

NO
k (Y) ⊆

∑
N

NO
k (X ∪ Y).

(5)
∑
N

NO
k (
∑
N

NO
k (X)) ⊆

∑
N

NO
k (X),

∑
N

NO
k (X) ⊆

∑
N

NO
k (
∑
N

NO
k (X)).

(6)
∑
H

NO
k (X) ⊆

∑
N

NO
k (X),

∑
N

NO
k (X) ⊆

∑
H

NO
k (X).

Proof. It is easy to obtain the conclusion by Definition 7. �

3.2. Pessimistic multi-granulation reduction of GNDISs

In a GNDIS (U,N ,Nd), CNd = {Nd(y)|y ∈ U} is a partition of U. In the following, the GNDIS
mentioned satisfies |CNd | ≥ 2. In this subsection, we present pessimistic multi-granulation reduction
of GNDISs.

Definition 8. Given a GNDIS (U,N ,Nd), letH ⊆ N .
(1) If

∑
N

NP
k (Nd(y)) =

∑
H

NP
k (Nd(y)) for all y ∈ U, then we say thatH is a generalized neighborhood

pessimistic lower consistent set (GNPL-consistent set). Denote the family of all GNPL-consistent sets
by ConsP

L(N). If H ∈ ConsP
L(N), and H ′ < ConsP

L(N) whenever H ′ ⊂ H , then H is called a GNPL-
reduct. Denote the set of all GNPL-reducts by RedP

L (N), the core w.r.t. GNPL-reducts is defined as
CoreP

L(N) =
⋂
{H|H ∈ RedP

L (N)}.
(2) If

∑
N

NP
k (Nd(y)) =

∑
H

NP
k (Nd(y)) for all y ∈ U, then we say thatH is a generalized neighborhood

pessimistic upper consistent set (GNPU-consistent set). Denote the family of all GNPU-consistent sets
by ConsP

U(N). IfH ∈ ConsP
U(N), andH ′ < ConsP

U(N) wheneverH ′ ⊂ H , thenH is called a GNPU-
reduct. Denote the set of all GNPU-reducts as RedP

U(N), the core w.r.t. GNPU-reducts is defined by
CoreP

U(N) =
⋂
{H|H ∈ RedP

U(N)}.
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From Definition 8, we can see that a GNPL-reduct (or a GNPU-reduct) is a minimal subset of N ,
which preserves the pessimistic lower approximations (or the pessimistic upper approximations) of all
sets in CNd . The pessimistic lower and upper reducts of a GNDIS are different, which are illustrated by
an example in the following.

Example 1. (1) A GNDIS (U,N ,Nd) is presented in Table 1, where U = {x1, x2, · · · , x6} and N =

{N1,N2, · · · ,N5}. The generalized neighborhood granules of x ∈ U are presented in Table 2.

Table 1. A GNDIS.

∗ x1 x2 x3 x4 x5 x6

N1(xi) {x1, x2} {x2, x3, x4} {x3, x5} {x1, x4} {x2, x4, x5} {x2, x6}

N2(xi) {x1, x3} {x2, x5} {x2, x3} {x1, x3, x4} {x3, x5} {x1, x6}

N3(xi) {x1, x2} {x2, x4} {x3, x6} {x1, x2, x4} {x4, x5} {x3, x6}

N4(xi) {x1, x2} {x2, x3} {x2, x3} {x1, x2, x4} {x2, x5} {x1, x6}

N5(xi) {x1, x3} {x2, x4} {x3, x6} {x1, x4} {x3, x5} {x3, x6}

Nd(xi) {x1, x2, x3} {x1, x2, x3} {x1, x2, x3} {x4, x5} {x4, x5} {x6}

Table 2. The generalized neighborhood granules of x ∈ U w.r.t. N in Example 1.

∗ x1 x2 x3 x4 x5 x6

GNN (xi) {x1, x2, x3} {x2, x3, x4, x5} {x2, x3, x5, x6} {x1, x2, x3, x4} {x2, x3, x4, x5} {x1, x2, x3, x6}

By Definition 6, we get that
∑
N

NP
k ({x1, x2, x3}) = {x1},

∑
N

NP
k ({x4, x5}) = ∅,

∑
N

NP
k ({x6}) = ∅,∑

N

NP
k ({x1, x2, x3}) = U,

∑
N

NP
k ({x4, x5}) = {x2, x3, x4, x5},

∑
N

NP
k ({x6}) = {x3, x6}.

Let H = {N3,N4}. We compute that
∑
H

NP
k (Nd(xi)) =

∑
N

NP
k (Nd(xi)) for i = 1, 2, · · · , 6. Thus, H

is a GNPL-consistent set. Let H1 = {N3}. We get that
∑
H1

NP
k ({x4, x5}) = {x5} ,

∑
N

NP
k ({x4, x5}), which

follows that H1 is not a GNPL-consistent set. Let H2 = {N4}. We obtain that
∑
H2

NP
k ({x1, x2, x3}) =

{x1, x2, x3} ,
∑
N

NP
k ({x1, x2, x3}), which implies thatH2 is not a GNPL-consistent set. SoH is a GNPL-

reduct. Due to
∑
H

NP
k ({x4, x5}) = {x2, x4, x5} ,

∑
N

NP
k ({x4, x5}), H is not a GNPU-consistent set, then

H is not a GNPU-reduct. At the same time, we get a conclusion: A GNPL-reduct is not necessarily a
GNPU-reduct.

(2) The operator Nd : U → P(U) in (1) is changed by: Nd(x1) = Nd(x2) = Nd(x3) = {x1, x2, x3},
Nd(x4) = Nd(x5) = Nd(x6) = {x4, x5, x6}. Then, we get another GNDIS (U,N ,Nd). By Definition 6, we
have that

∑
N

NP
k ({x1, x2, x3}) = {x1},

∑
N

NP
k ({x4, x5, x6}) = ∅,

∑
N

NP
k ({x1, x2, x3}) = U,

∑
N

NP
k ({x4, x5, x6}) =

{x2, x3, x4, x5, x6}.
Let H = {N2}. We obtain that

∑
H

NP
k (Nd(xi)) =

∑
N

NP
k (Nd(xi)) for i = 1, 2, · · · , 6. Thus, H is a

GNPU-reduct. It follows from
∑
H

NP
k ({x1, x2, x3}) = {x1, x3} ,

∑
N

NP
k ({x1, x2, x3}) thatH is not a GNPL-
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consistent set, then H is not a GNPL-reduct. Hence, we obtain a conclusion: A GNPU-reduct is not
necessarily a GNPL-reduct.

A matrix is constructed to compute all the GNPL-reducts.

Definition 9. Consider that (U,N ,Nd) is a GNDIS, where N = {N1,N2, · · · ,Nm}. Letting x ∈
U,Nd(y) ∈ CNd , define

GDP
L(x,Nd(y)) =

{
{Nk ∈ N|Nk(x) * Nd(y)}, GNN (x) * Nd(y),

N , else.

GD
P
L = {GDP

L(x,Nd(y))|x ∈ U,Nd(y) ∈ CNd} is called a GNPL-discernibility matrix (GNPL-D matrix)
of (U,N ,Nd).

Proposition 3. Let (U,N ,Nd) be a GNDIS, whose GNPL-D matrix is GDP
L = {GDP

L(x,Nd(y))|x ∈
U,Nd(y) ∈ CNd}. Then,

(1) ∀x ∈ U, GDP
L(x,Nd(x)) , ∅.

(2) ∀x ∈ U, Nd(y) ∈ CNd with x < Nd(y), GDP
L(x,Nd(y)) = N .

Proof. (1) ∀x ∈ U, if GNN (x) * Nd(x), then there is an Nk ∈ N satisfying Nk(x) * Nd(x). Hence
Nk ∈ GDP

L(x,Nd(x)), which implies that GDP
L(x,Nd(x)) , ∅. If GNN (x) ⊆ Nd(x), by Definition 9, then

GDP
L(x,Nd(x)) = N , ∅.
(2) For any x ∈ U, Nd(y) ∈ CNd with x < Nd(y), we get that GNN (x) * Nd(y) and Nk(x) * Nd(y) for

all Nk ∈ N . Thus, GDP
L(x,Nd(y)) = {Nk ∈ N|Nk(x) * Nd(y)} = N . �

By Proposition 3, ∀x ∈ U, Nd(y) ∈ CNd , GDP
L(x,Nd(y)) , ∅. Utilizing the GNPL-D matrix, the

GNPL-reducts can be characterized.

Theorem 1. Suppose that (U,N ,Nd) is a GNDIS, where N = {N1,N2, · · · ,Nm}. Letting H ⊆ N and
Nk ∈ N ,

(1)H ∈ ConsP
L(N)⇔H ∩GDP

L(x,Nd(y)) , ∅ for all x ∈ U,Nd(y) ∈ CNd .
(2)H ∈ RedP

L (N)⇔H ∩GDP
L(x,Nd(y)) , ∅ for all x ∈ U,Nd(y) ∈ CNd , and for anyH0 ⊂ H , there

exists a GDP
L(x,Nd(y)) such that GDP

L(x,Nd(y)) ∩H0 = ∅.
(3) Nk ∈ CoreP

L(N)⇔ ∃x ∈ U,Nd(y) ∈ CNd , GDP
L(x,Nd(y)) = {Nk}.

Proof. (1) “⇒”. ∀x ∈ U, Nd(y) ∈ CNd , if GNN (x) * Nd(y), then x <
∑
N

NP
k (Nd(y)). Since H is a

GNPL-consistent set,
∑
N

NP
k (Nd(y)) =

∑
H

NP
k (Nd(y)). Hence, x <

∑
H

NP
k (Nd(y)). It implies that GNH (x) =

∪Nk∈HNk(x) * Nd(y). Then, we can find an Nk ∈ H such that Nk(x) * Nd(y). Therefore, H ∩
GDP

L(x,Nd(y)) , ∅. If GNH (x) ⊆ Nd(y), then GDP
L(x,Nd(y)) = N . It is clear thatH ∩GDP

L(x,Nd(y)) ,
∅.

“⇐”. ∀y ∈ U, by Proposition 1(6),
∑
N

NP
k (Nd(y)) ⊆

∑
H

NP
k (Nd(y)). ∀x <

∑
N

NP
k (Nd(y)), we get that

GNN (x) * Nd(y). Since H ∩ GDP
L(x,Nd(y)) , ∅, let Nk ∈ H ∩ GDP

L(x,Nd(y)). Thus, according
to Definition 9, Nk(x) * Nd(y). It follows that GNH (x) = ∪Nk∈HNk(x) ⊆ Nd(y). Therefore,
x <

∑
H

NP
k (Nd(y)), which implies that

∑
H

NP
k (Nd(y)) ⊆

∑
N

NP
k (Nd(y)). We can get that

∑
N

NP
k (Nd(y))

=
∑
H

NP
k (Nd(y)).
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(2) It is verified from (1).
(3) “⇒”. If not, for every GDP

L(x,Nd(y)) ∈ GDP
L satisfying Nk ∈ GDP

L(x,Nd(y)), we have
|GDP

L(x,Nd(y))| ≥ 2. Let H = ∪{GDP
L(x,Nd(y)) − {Nk}|x, y ∈ U}, then H is a GNPL-consistent

set. Thus, there exists a GNPL-reduct H0 ⊆ H and Nk < H0, which contradicts the fact that Nk ∈

CoreP
L(N).

“⇐”. If not, we can find a reduct H such that Nk < H . Since GDP
L(x,Nd(y)) = {Nk}, we obtain

that y ∈ GNN (x), y ∈ Nk(x) and y < Nl(x) for all l , k(l ∈ {1, 2, · · · ,m}). Then, y < ∪l,kNl(x).
Since Nk < H , GNH (x) ⊆ ∪l,kNl(x). It implies that y < GNH (x). Hence GNN (x) , GNH (x), which
contradicts the fact thatH is a GNPL-consistent set. �

Definition 10. Let (U,N ,Nd) be a GNDIS, whose GNPL-D matrix is GDP
L = {GDP

L(x,Nd(y))|x ∈
U,Nd(y) ∈ CNd}. Define f (GDP

L) = ∧{∨GDP
L(x,Nd(y))| GDP

L(x,Nd(y)) ∈ GDP
L}.

∨GDP
L(x,Nd(y)) is the disjunction of all neighborhood operators in GDP

L(x,Nd(y)), and ∧{∨GDP
L(x,

Nd(y))|GDP
L(x,Nd(y)) ∈ GDP

L} is the conjunction of ∨GDP
L(x,Nd(y)).

Theorem 2. LetH = {N1,N2, · · · , Nk} ⊆ N . H ∈ RedP
L (N)⇔ N1 ∧ N2 ∧ · · · ∧ Nk is a prime implicant

of f (GDP
L).

Proof. It is trivial based on Definition 10. �

Remark 1. The GDP
L in Definition 9 can be simplified as (GDP

L)∗ = {GDP
L(x,Nd(x))|x ∈ U}.

In fact, due to Proposition 3, for any x ∈ U and Nd(y) ∈ CNd with x < Nd(y), ∅ , GDP
L(x,Nd(x)) ⊆

GDP
L(x,Nd(y)) = N . Then, by Definition 10, f ((GDP

L)∗) = f (GDP
L).

We employ Example 2 below to explain the discernibility method for calculating all the GNPL-
reducts of a GNDIS.

Example 2. Continued from Example 1(1). By Definition 9, we obtain that

GD
P
L =



GDP
L(xi,Nd(x j)) Nd(x1) = Nd(x2) = Nd(x3) Nd(x4) = Nd(x5) Nd(x6)

x1 N N N

x2 {N1,N2,N3,N5} N N

x3 {N1,N3,N5} N N

x4 N N N

x5 N {N1,N2,N4,N5} N

x6 N N N


.

From Remark 1, we have that

(GDP
L)∗ =



xi GDP
L(xi,Nd(xi))

x1 N

x2 {N1,N2,N3,N5}

x3 {N1,N3,N5}

x4 N

x5 {N1,N2,N4,N5}

x6 N


.
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Algorithm 1 A logic algorithm for calculating all the GNPL-reducts of a GNDIS
Input: A GNDIS (U,N ,Nd) with U = {x1, x2, · · · , xn} and N = {N1,N2, · · · , Nm}

Output: All the GNPL-reducts RedP
L (N)

1: for i = 1 : n do
2: Initialize GDP

L(xi,Nd(xi))← ∅;
3: for k = 1 : m do
4: if Nk(xi) * Nd(xi) then
5: GDP

L(xi,Nd(xi))← GDP
L(xi,Nd(xi)) ∪ {Nk}

6: end if
7: end for
8: if GDP

L(xi,Nd(xi)) = ∅ then
9: GDP

L(xi,Nd(xi))← N
10: end if
11: end for
12: Initialize RedP

L (N)← ∅;
13: for i = 1 : n do
14: RedP

L (N)← RedP
L (N) ∧ (∨GDP

L(xi,Nd(xi)))
15: end for
16: Compute RedP

L (N)← ∨t
l=1(∧sl

k=1)Nk;
17: Return RedP

L (N).

By Theorem 1(3), CoreP
L(N) = ∅. According to Definition 10, f (GDP

L) = f ((GDP
L)∗) = (N1 ∨ N2 ∨

N3∨N5)∧(N1∨N3∨N5)∧(N1∨N2∨N4∨N5) ∧(N1∨N2∨N3∨N4∨N5) = (N1)∨(N2∧N3)∨(N3∧N4)∨(N5).
Then, {N1}, {N2,N3}, {N3,N4} and {N5} are GNPL-reducts.

By the analysis above, we present Algorithm 1 to calculate all the GNPL-reducts of a GNDIS. In
Algorithm 1, the time complexity of Steps 1–11 is O(|U |2|N|), and the time complexity of Steps 2–17
is O(
∏

GD∈GDP
L
|GD|). The total time complexity of Algorithm 1 is O(|U |2|N| +

∏
GD∈GDP

L
|GD|).

We construct a discernibility matrix to get all the GNPU-reducts as follows:

Definition 11. Suppose that (U,N ,Nd) is a GNDIS, where N = {N1,N2, · · · ,Nm}. Letting x ∈ U and
Nd(y) ∈ CNd , define

GDP
U(x,Nd(y)) =

{
{Nk ∈ N|Nk(x) ∩ Nd(y) , ∅}, GNN (x) ∩ Nd(y) , ∅,

∅, else.

GD
P
U = {GDP

U(x,Nd(y))|x ∈ U,Nd(y) ∈ CNd} is called a GNPU-discernibility matrix (GNPU-D matrix)
of (U,N ,Nd).

Proposition 4. ∀x ∈ U, GDP
U(x,Nd(x)) = N .

Proof. ∀x ∈ U, GNN (x) ∩ Nd(x) , ∅, then GDP
U(x,Nd(x)) = {Nk ∈ N|Nk(x) ∩ Nd(x) , ∅} = N . �

Theorem 3. Consider that (U,N ,Nd) is a GNDIS, where N = {N1,N2, · · · ,Nm}. LettingH ⊆ N and
Nk ∈ N ,
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(1)H ∈ ConsP
U(N)⇔H ∩GDP

U(x,Nd(y)) , ∅ for all GDP
U(x,Nd(y)) , ∅.

(2)H ∈ RedP
U(N)⇔H∩GDP

U(x,Nd(y)) , ∅ for all GDP
U(x,Nd(y)) , ∅, and for anyH0 ⊂ H , there

exists a GDP
U(x,Nd(y)) , ∅ such that GDP

U(x,Nd(y)) ∩H0 = ∅.
(3) Nk ∈ CoreP

U(N)⇔ ∃x ∈ U,Nd(y) ∈ CNd , GDP
U(x,Nd(y)) = {Nk}.

Proof. (1) “⇒”. ∀x ∈ U,Nd(y) ∈ CNd , if GDP
U(x,Nd(y)) , ∅, then GNN (x) ∩ Nd(y) , ∅, which follows

that x ∈
∑
N

NP
k (Nd(y)). Since H is a GNPU-consistent set,

∑
N

NP
k (Nd(y)) =

∑
H

NP
k (Nd(y)). It implies

that x ∈
∑
H

NP
k (Nd(y)). Hence, there is an Nk ∈ H satisfying Nk(x) ∩ Nd(y) , ∅. By Definition 11,

Nk ∈ GDP
U(x,Nd(y)). Thus,H ∩GDP

U(x,Nd(y)) , ∅.
“⇐”. ∀y ∈ U, by Proposition 1(6),

∑
H

NP
k (Nd(y)) ⊆

∑
N

NP
k (Nd(y)). ∀x ∈

∑
N

NP
k (Nd(y)), GNN (x) ∩

Nd(y) , ∅. It follows from H ∩ GDP
U(x,Nd(y)) , ∅ that there exists an Nk ∈ N such that Nk ∈

H ∩ GDP
U(x,Nd(y)). Hence Nk(x) ∩ Nd(y) , ∅, which implies that GNH (x) ∩ Nd(y) , ∅. Then,

x ∈
∑
H

NP
k (Nd(y)). So

∑
N

NP
k (Nd(y)) ⊆

∑
H

NP
k (Nd(y)).

(2) It is easy to obtain (2) by (1).
(3) Similar to the proof of (3) in Theorem 1. �

Definition 12. Let (U,N ,Nd) be a GNDIS, whose GNPU-D matrix is GDP
U = {GDP

U(x,Nd(y))|x ∈
U,Nd(y) ∈ CNd}. Define f (GDP

U) = ∧{∨GDP
U(x,Nd(y))| GDP

U(x,Nd(y)) ∈ GDP
U , GDP

U(x,Nd(y)) , ∅}.

Theorem 4. LetH = {N1,N2, · · · , Nk} ⊆ N . H ∈ ConsP
U(N)⇔ N1∧N2∧· · ·∧Nk is a prime implicant

of f (GDP
U).

Proof. It is clear based on Definition 12. �

By Theorem 4, the set of all GNPU-reducts in a GNDIS and the set of all prime implicants of
f (GDP

U) are the one-to-one correspondence. Example 3 is employed to illustrate the above theorems.

Example 3. Continued from Example 1(1). By Definition 11, we get that

GD
P
U =



GDP
U(xi,Nd(x j)) Nd(x1) = Nd(x2) = Nd(x3) Nd(x4) = Nd(x5) Nd(x6)

x1 N ∅ ∅

x2 N {N1,N2,N3,N5} ∅

x3 N {N1} {N3,N5}

x4 N N ∅

x5 {N1,N2,N4,N5} N ∅

x6 N ∅ N


.

According to Theorem 3, CoreP
U(N) = {N1}. By Definition 12, f (GDP

U) = (N1)∧(N3 ∨ N5)∧ (N1 ∨

N2 ∨ N4 ∨ N5)∧(N1 ∨ N2 ∨ N3 ∨ N5)∧(N1 ∨ N2 ∨ N3 ∨ N4 ∨ N5) = (N1 ∧ N3) ∨(N1 ∧ N5).
Then, {N1,N3} and {N1,N5} are GNPU-reducts.

3.3. Optimistic multi-granulation reduction of GNDISs

In this subsection, we discuss optimistic multi-granulation reduction of GNDISs.

AIMS Mathematics Volume 9, Issue 12, 35471–35502.



35482

Definition 13. Let (U,N ,Nd) be a GNDIS.
(1) H ⊆ N is a generalized neighborhood optimistic lower consistent set (GNOL-consistent set)

if
∑
N

NO
k (Nd(y)) =

∑
H

NO
k (Nd(y)) for every y ∈ U. Denote the family of all GNOL-consistent sets by

ConsO
L (N). IfH ∈ ConsO

L (N), andH ′ < ConsO
L (N) wheneverH ′ ⊂ H , thenH is said to be a GNOL-

reduct. Denote the set of all GNOL-reducts as RedO
L (N), the core w.r.t. GNOL-reducts is defined by

CoreO
L (N) =

⋂
{H|H ∈ RedO

L (N)}.
(2) H ⊆ N is a generalized neighborhood optimistic upper consistent set (GNOU-consistent set)

if
∑
N

NO
k (Nd(y)) =

∑
H

NO
k (Nd(y)) for all y ∈ U. Denote the family of all GNOU-consistent sets by

ConsO
U(N). If H ∈ ConsO

U(N), and H ′ < ConsO
U(N) whenever H ′ ⊂ H , then H is said to be a

GNOU-reduct. Denote the set of all GNOU-reducts by RedO
U(N), the core w.r.t. GNOU-reducts is

defined as CoreO
U(N) =

⋂
{H|H ∈ RedO

U(N)}.

By Definition 13, a GNOL-reduct (or GNOU-reduct) is a minimal subset of N that maintains the
optimistic lower approximations (or optimistic upper approximations) of all Nd(y) ∈ CNd . The GNOL-
reduct and GNOU-reduct are different as illustrated by the next example.

Example 4. Continued from Example 1(1). Change the Pawlak neighborhood operator Nd : U →
P(U) in Example 1(1) by: Nd(x1) = Nd(x3) = {x1, x3}, Nd(x2) = Nd(x4) = Nd(x5) = Nd(x6) = {x2, x4,
x5, x6}. Then, we get a new GNDIS (U,N ,Nd). According to Definition 7,

∑
N

NO
k ({x1, x3}) =

{x1},
∑
N

NO
k ({x2, x4, x5, x6}) = {x2, x5, x6},

∑
N

NO
k ({x1, x3}) = {x1, x3, x4, x6},

∑
N

NO
k ({x2, x4, x5, x6}) =

{x2, x4, x5, x6}.
LetH = {N1,N5}. We compute that

∑
H

NO
k (Nd(xi)) =

∑
N

NO
k (Nd(xi)) for i = 1, 2, · · · , 6. Thus, H is a

GNOL-consistent set. Let H1 = {N1}. We get that
∑
H1

NO
k ({x1, x3}) = ∅ ,

∑
N

NO
k ({x1, x3}), which follows

that H1 is not a GNOL-consistent set. Let H2 = {N5}. We obtain that
∑
H2

NO
k ({x2, x4, x5, x6}) = {x2} ,∑

N

NO
k ({x2, x4, x5, x6}), which implies that H2 is not a GNOL-consistent set. So, H is a GNOL-reduct.

Due to
∑
H

NP
k ({x4, x5}) = {x2, x4, x5} ,

∑
N

NP
k ({x4, x5}),H is not a GNOU-consistent set, thenH is not a

GNOU-reduct.
Let H = {N2,N3}. We obtain that

∑
H

NO
k (Nd(xi)) =

∑
N

NO
k (Nd(xi)) for i = 1, 2, · · · , 6. Thus, H is

a GNOU-consistent set. Let H1 = {N2}. Then,
∑
H1

NO
k ({x1, x3}) = {x1, x3, x4, x5, x6} ,

∑
N

NO
k ({x1, x3}),

which implies thatH1 is not a GNOU-consistent set. LetH2 = {N3}. Then,
∑
H2

NO
k ({x2, x4, x5, x6}) = U ,∑

N

NO
k ({x1, x3}), which follows that H2 is not a GNOU-consistent set. Hence, H is a GNOU-reduct. It

follows from
∑
H

NO
k ({x2, x4, x5, x6}) = {x2, x5} ,

∑
N

NO
k ({x2, x4, x5, x6}) thatH is not a GNOL-consistent

set, thenH is not a GNOL-reduct.

Hence, we get that a GNOU-reduct is not necessarily a GNOL-reduct, and a GNOL-reduct is not
necessarily a GNOU-reduct. In the following, we calculate GNOL-reducts and GNOL-reducts of a
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GNDIS by the discernibility technique.

Definition 14. Consider a GNDIS (U,N ,Nd), where N = {N1,N2, · · · ,Nm}. ∀x ∈ U,Nd(y) ∈ CNd ,
and define

GDO
L (x,Nd(y)) =

 {Nk ∈ N|Nk(x) ⊆ Nd(y)}, x ∈
∑
N

NO
k (Nd(y)),

N , else.

GD
O
L = {GDO

L (x,Nd(y))|x ∈ U,Nd(y) ∈ CNd} is called a GNOL-discernibility matrix (GNOL-D matrix)
of (U,N ,Nd).

Theorem 5. In a GNDIS (U,N ,Nd) with N = {N1,N2, · · · ,Nm}, let ∅ , H ⊆ N , Nk ∈ N , then
(1)H ∈ ConsO

L (N)⇔H ∩GDO
L (x,Nd(y)) , ∅ for each GDO

L (x,Nd(y)) ∈ GDO
L .

(2) H ∈ RedO
L (N)⇔H ∩GDP

L(x,Nd(y)) , ∅ for all GDO
L (x,Nd(y)) ∈ GDO

L , and for any H0 ⊂ H ,
there exist some GDO

L (x,Nd(y)) ∈ GDO
L such that GDO

L (x,Nd(y)) ∩H0 = ∅.
(3) Nk ∈ CoreO

L (N)⇔ ∃x ∈ U,Nd(y) ∈ CNd , GDO
L (x,Nd(y)) = {Nk}.

Proof. (1) “⇒”. ∀x ∈ U,Nd(y) ∈ CNd , if x ∈
∑
N

NO
k (Nd(y)) =

∑
H

NO
k (Nd(y)), according to Definition 7,

we can find an Nk ∈ H such that Nk(x) ⊆ Nd(y). Thus, Nk ∈ GDO
L (x,Nd(y)). It follows that H ∩

GDO
L (x,Nd(y)) , ∅. If x <

∑
N

NO
k (Nd(y)), then GDO

L (x,Nd(y)) = N . It is clear thatH ∩GDP
L(x,Nd(y)) ,

∅.
“⇐”. ∀y ∈ U, by Proposition 2(6),

∑
H

NO
k (Nd(y)) ⊆

∑
N

NO
k (Nd(y)). ∀x ∈

∑
N

NO
k (Nd(y)), we obtain that

GDO
L (x,Nd(y)) , ∅. Since H ∩ GDO

L (x,Nd(y)) , ∅, let Nk ∈ H ∩ GDO
L (x,Nd(y)), then Nk(x) ⊆ Nd(y).

Hence, x ∈
∑
N

NO
k (Nd(y)). It implies that

∑
N

NO
k (Nd(y)) ⊆

∑
H

NO
k (Nd(y)).

(2) It is verified by (1).
(3) With the reference to the proof of (3) in Theorem 1. �

Proposition 5. ∀x ∈ U,Nd(y) ∈ CNd , if x < Nd(y), then GDO
L (x,Nd(y)) = N .

Proof. ∀Nd(y) ∈ CNd ,
∑
N

NO
k (Nd(y)) ⊆ Nd(y). If x < Nd(y), then x <

∑
N

NO
k (Nd(y)). Hence, according to

Definition 14, GDO
L (x,Nd(y)) = N . �

Remark 2. The GDO
L in Definition 14 can be simplified as (GDO

L )∗ = {GDO
L (x,Nd(x))|x ∈ U}.

In fact, by Proposition 5, for every x ∈ U and Nd(y) ∈ CNd with x < Nd(y), GDP
L(x,Nd(y)) = N .

Then, the GDO
L in Theorem 5 can be changed into (GDO

L )∗.

Definition 15. Assume that (U,N ,Nd) is a GNDIS, whose GNOL-D matrix is (GDO
L )∗ =

{GDO
L (x,Nd(x))|x ∈ U}. Define f ((GDO

L )∗) = ∧{∨GDO
L (x,Nd(x))|x ∈ U}.

Theorem 6. LetH = {N1,N2, · · · , Nk} ⊆ N . H ∈ RedO
L (N)⇔ N1 ∧N2 ∧ · · · ∧Nk is a prime implicant

of f ((GDO
L )∗).

Proof. It can be obtained by Definition 15. �
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Algorithm 2 A logic algorithm for computing all the GNOL-reducts of a GNDIS
Input: A GNDIS (U,N ,Nd) with U = {x1, x2, · · · , xn} and N = {N1,N2, · · · , Nm}

Output: All the GNPL-reducts RedO
L (N)

1: for i = 1 : n do
2: Initialize GDO

L (xi,Nd(xi))← ∅;
3: for k = 1 : m do
4: if Nk(xi) ⊆ Nd(xi) then
5: GDO

L (xi,Nd(xi))← GDO
L (xi,Nd(xi)) ∪ {Nk}

6: end if
7: end for
8: if GDO

L (xi,Nd(xi)) = ∅ then
9: GDO

L (xi,Nd(xi))← N
10: end if
11: end for
12: Initialize RedO

L (N)← ∅;
13: for i = 1 : n do
14: RedO

L (N)← RedO
L (N) ∧ (∨GDO

L (xi,Nd(xi)))
15: end for
16: Compute RedO

L (N)← ∨t
l=1(∧sl

k=1)Nk;
17: Return RedO

L (N).

By means of Theorem 6, all GNOL-reducts of a GNDIS can be obtained by f ((GDO
L )∗). An

algorithm for calculating all the GNOL-reducts of a GNDIS is presented as Algorithm 2. The total
time complexity of Algorithm 2 is O(|U |2|N| +

∏
GD∈(GDO

L )∗ |GD|). Example 5 is employed to state the
calculation process.

Example 5. Continued from Example 1(1). We have that
∑
N

NO
k ({x1, x2, x3}) = {x1, x2, x3},∑

N

NO
k ({x4, x5}) = {x5},

∑
N

NO
k ({x6}) = ∅. According to Definition 14, we get that

GD
O
L =



GDO
L (xi,Nd(x j)) Nd(x1) = Nd(x2) = Nd(x3) Nd(x4) = Nd(x5) Nd(x6)

x1 N N N

x2 {N4} N N

x3 {N2,N4} N N

x4 N N N

x5 N {N3} N

x6 N N N


,
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and

(GDO
L )∗ =



xi GDO
L (xi,Nd(xi))

x1 N

x2 {N4}

x3 {N2,N4}

x4 N

x5 {N3}

x6 N


.

By Definition 15, f ((GDO
L )∗) = (N2 ∨ N4) ∧(N4)∧(N3) ∧(N1 ∨ N2 ∨ N3 ∨ N4 ∨ N5) = N3 ∧ N4.

Hence, {N3,N4} is the GNOL-reduct. We also get that CoreO
L (N) = {N3,N4}.

Now, we construct a discernibility matrix to calculate GNOU-reducts.

Definition 16. Let (U,N ,Nd) be a GNDIS, where N = {N1,N2, · · · ,Nm}. ∀x ∈ U,Nd(y) ∈ CNd , define

GDO
U(x,Nd(y)) =

 {Nk ∈ N|Nk(x) ∩ Nd(y) = ∅}, x <
∑
N

NO
k (Nd(y)),

N , else.

GD
O
U = {GDO

U(x,Nd(y))|x ∈ U,Nd(y) ∈ CNd} is called a GNOU-discernibility matrix (GNOU-D matrix)
of (U,N ,Nd).

It is easy to get that GDO
U(x,Nd(y)) , ∅ for all x ∈ U,Nd(y) ∈ CNd .

Theorem 7. Given a GNDIS (U,N ,Nd), letH ⊆ N and Nk ∈ N , then
(1)H ∈ ConsO

U(N)⇔H ∩GDO
U(x,Nd(y)) , ∅ for all GDO

U(x,Nd(y)) ∈ GDO
U .

(2)H ∈ RedO
U(N)⇔H∩GDO

U(x,Nd(y)) , ∅ for all GDO
U(x,Nd(y)) , ∅, and for anyH0 ⊂ H , there

exists a GDO
U(x,Nd(y)) ∈ GDO

U such that GDO
U(x,Nd(y)) ∩H0 = ∅.

(3) Nk ∈CoreO
U(N)⇔ ∃x ∈ U,Nd(y) ∈ CNd , GDO

U(x,Nd(y)) = {Nk}.

Proof. (1) “⇒”. ∀x ∈ U, Nd(y) ∈ CNd , if x <
∑
N

NO
k (Nd(y)), we get that x <

∑
H

NO
k (Nd(y)). Then,

∃Nk ∈ H , Nk(x) ∩ Nd(y) = ∅. It implies that Nk ∈ GDO
U(x,Nd(y)). Therefore,H ∩GDO

U(x,Nd(y)) , ∅.
If x ∈

∑
N

NO
k (Nd(y)), then GDO

U(x,Nd(y)) = N . It is verified thatH ∩GDO
U(x,Nd(y)) , ∅.

“⇐”. ∀y ∈ U, by Proposition 2(6),
∑
N

NO
k (Nd(y)) ⊆

∑
H

NO
k (Nd(y)). For any x <

∑
N

NO
k (Nd(y)),

GDO
U(x,Nd(y)) , ∅. Due to H ∩ GDO

U(x,Nd(y)) , ∅, let Nk ∈ H ∩ GDO
U(x,Nd(y)). Then, Nk(x) ∩

Nd(y) = ∅. Thus, x <
∑
H

NO
k (Nd(y)). It follows that

∑
H

NO
k (Nd(y)) ⊆

∑
N

NO
k (Nd(y)). We conclude that∑

H

NO
k (Nd(y)) =

∑
N

NO
k (Nd(y)).

(2) It is easy to obtain (2) by (1).
(3) By reference to the proof of (3) in Theorem 1. �

Definition 17. Let (U,N ,Nd) be a GNDIS, whose GNOU-D matrix is GDO
U = {GDO

U(x,Nd(y))|x ∈
U,Nd(y) ∈ CNd}. Define f (GDO

U) = ∧{∨GDO
U(x,Nd(y))| GDO

U(x,Nd(y)) ∈ GDO
U}.

Theorem 8. LetH = {N1,N2, · · · , Nk} ⊆ N . H ∈ RedO
U(N)⇔ N1 ∧N2 ∧ · · · ∧Nk is a prime implicant

of f (GDO
U).
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Proof. It is trivial based on Definition 17. �

By Theorem 8, all the GNOU-reducts can be obtained by the conjunctive and disjunctive operations
of GDO

U .

Example 6. Continued from Example 2. We have that
∑
N

NO
k ({x1, x2, x3}) = {x1, x2, x3, x4, x6},∑

N

NO
k ({x4, x5}) = {x4, x5},

∑
N

NO
k ({x6}) = {x6}. By Definition 16, we deduce that

GD
O
U =



GDO
U(xi,Nd(x j)) Nd(x1) = Nd(x2) = Nd(x3) Nd(x4) = Nd(x5) Nd(x6)

x1 N N N

x2 N {N4} N

x3 N {N2,N3,N4,N5} {N1,N2,N4}

x4 N N N

x5 {N3} N N

x6 N N N


.

Then, f (GDO
U) = (N2∨N3∨N4∨N5)∧ (N4)∧ (N1∨N2∨N4) ∧(N3)∧(N1∨N2∨N3∨N4∨N5) = N3∧N4.

It follows from Theorem 8 that {N3,N4} is the one and only one GNOU-reduct.

Remark 3. (1) There is no necessary association between the GNPL-reduct and GNOL-reduct.
From Examples 2 and 5, {N5} is a GNPL-reduct. However, {N5} is not a GNOL-reduct.
Continued from Example 1(1). A Pawlak neighborhood operator Nd : U → P(U) is defined by:

Nd(x1) = Nd(x6) = {x1, x6}, Nd(x2) = Nd(x3) = Nd(x4) = Nd(x5) = {x2, x3, x4, x5}. Then, we get a
GNDIS (U,N ,Nd). By Definition 7,

∑
N

NO
k ({x1, x6}) = {x6},

∑
N

NO
k ({x2, x3, x4, x5}) = {x2, x3, x5}. Let

H = {N2}. Then
∑
N

NO
k (Nd(xi)) =

∑
H

NO
k (Nd(xi))(i = 1, 2, · · · , 6), which follows that H is a GNOL-

reduct. Since
∑
N

NP
k ({x2, x3, x4, x5}) = {x2, x5} and

∑
N

NP
k ({x2, x3, x4, x5}) = {x2, x3, x5},H is not a GNPL-

reduct.
(2) There is no necessary association between the GNPU-reduct and GNOU-reduct.
By Examples 3 and 6, {N1,N3} is a GNPU-reduct but not a GNOU-reduct, and {N3,N4} is a GNOU-

reduct instead of a GNPU-reduct.

4. Relationships between the multi-granulation reduction of DMSs and that of GNDISs

In a DMS (U,A, d) withA = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m} and U/Rd = {[y]d|y ∈ U}, define a mapping
Nk : U → P(U) by Nk(x) = [x]Ak for all x ∈ U (k = 1, 2, · · · ,m) and a mapping Nd : U → P(U) by
Nd(y) = [y]d for all y ∈ U. Thus, Nk(k = 1, 2, · · · ,m) is a reflexive neighborhood operator on U and
Nd is a Pawlak neighborhood operator, and we get a GNDIS (U,NC,Nd) withNC = {N1,N2, · · · ,Nm},
which is a GNDIS induced by the DMS (U,A, d). Define a mapping I : A → NC by I(Ak) = Nk for
all Ak ∈ A. From the definition of NC, it is easy to get that I is a bijection.

Proposition 6. Suppose that (U,A, d) is a DMS and A = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces
the GNDIS (U,NC,Nd) with NC = {N1,N2, · · · ,Nm}. Then, for each X ⊆ U,
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A

AP
k (X) =

∑
NC

NP
k (X),

∑
A

AP
k (X) =

∑
NC

NP
k (X),∑

A

AO
k (X) =

∑
NC

NO
k (X),

∑
A

AO
k (X) =

∑
NC

NO
k (X).

Proof. Since Nk(x) = [x]Ak for all x ∈ U (k = 1, 2, · · · ,m), it is directly according to Definitions 6
and 7, Definitions 1 and 2. �

From Proposition 6, the generalized neighborhood pessimistic rough set model in Definition 6
is a general model of the pessimistic multi-granulation rough set model defined in [14], and the
generalized neighborhood optimistic approximations in Definition 7 is an expansion of the optimistic
multi-granulation approximations proposed in [18].

4.1. Pessimistic multi-granulation reduction of DMSs

Pessimistic multi-granulation reduction of DMSs are explored in [14, 18, 21].

Definition 18. [14, 18, 21] Assume that (U,A, d) is a DMS, where A = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}.
LetH ⊆ A andH , ∅.

(1) H is called a complete pessimistic lower consistent set (CPL-consistent set) if
∑
A

AP
k ([y]d) =∑

H

AP
k ([y]d) for all y ∈ U. Denote the family of all CPL-consistent sets by ConsP

L(A). Moreover, if

H ∈ ConsP
L(A), and H ′ < ConsP

L(A) whenever H ′ ⊂ H , then H is a CPL-reduct of (U,A, d).
Denote the family of all CPL-reducts of (U,A, d) by RedP

L (A), and CoreP
L(A) =

⋂
H∈RedP

L (A)H is said
to be a CPL-core.

(2) H is called a complete pessimistic upper consistent set (CPU-consistent set) if
∑
A

AP
k ([y]d) =∑

H

AP
k ([y]d) for all y ∈ U. Denote the family of all CPU-consistent sets by ConsP

U(A). Moreover, if

H ∈ ConsP
U(A), and H ′ < ConsP

U(A) whenever H ′ ⊂ H , then H is a CPU-reduct of (U,A, d).
Denote the family of all CPU-reducts of (U,A, d) by RedP

U(A), and CoreP
U(A) =

⋂
H∈RedP

U (A)H is said
to be a CPU-core.

The relationships between the pessimistic multi-granulation reduction of (U,A, d) and the
pessimistic multi-granulation reduction of the GNDIS (U,NC,Nd) induced by (U,A, d) are presented
as follows:

Theorem 9. Let (U,A, d) be a DMS with A = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces the GNDIS
(U,NC,Nd) with NC = {N1,N2, · · · ,Nm}. Then, forH ⊆ A, Ak ∈ A,
(1)H ∈ ConsP

L(A)⇔ I(H) ∈ ConsP
L(NC).

(2)H ∈ RedP
L (A)⇔ I(H) ∈ RedP

L (NC).
(3) Ak ∈ CoreP

L(A)⇔ I(Ak) ∈ CoreP
L(NC).

(4)H ∈ ConsP
U(A)⇔ I(H) ∈ ConsP

U(NC).
(5)H ∈ RedP

U(A)⇔ I(H) ∈ RedP
U(NC).

(6) Ak ∈ CoreP
U(A)⇔ I(Ak) ∈ CoreP

U(NC).

Proof. (1) Due to Definitions 8 and 18, and Proposition 6,
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H ∈ ConsP
L(A)⇔

∑
A

AP
k ([y]d) =

∑
H

AP
k ([y]d) for all y ∈ U

⇔
∑
NC

NP
k (Nd(y)) =

∑
I(H)

NP
k (Nd(y)) for all y ∈ U

⇔ I(H) ∈ ConsP
L(NC).

(2) and (3). According to (1), Definitions 8 and 18, the conclusions are obtained.
(4)–(6). Similar to the proof of (1)–(3), the conclusions can be obtained by Definitions 8 and 18,

and Proposition 6. �

To characterize the knowledge reduction of DMSs, discernibility matrices are designed by Tan el
al. [21]. For any H ⊆ A, define the decision function by fH (xi) = {d(x j)|x j ∈ NH (xi)}. For each
x ∈ U, define

P(x) =

{
{Ak ∈ A|| f{Ak}(x)| > 1}, | fA(x)| > 1,

A, | fA(x)| = 1.

P = {P(x)|x ∈ U} is called a CPL-discernibility matrix. For any (x, y) ∈ U × U, define

Q(x, y) =

{
{Ak ∈ A|d(x) ∈ f{Ak}(y)}, | fA(y)| > 1,

A, | fA(y)| = 1.

Q = {Q(x, y)|x ∈ U} is called a CPU-discernibility matrix.
Due to Definitions 9 and 11, and Theorems 1 and 3, we obtain

Corollary 1. [21] For anyH ⊆ A, Ak ∈ A,
(1)H ∈ ConsP

L(A)⇔H ∩ P(x) , ∅ for all x ∈ U.
(2)H ∈ RedP

L (A)⇔H ∩ P(x) , ∅ for all x ∈ U, and for everyH0 ⊂ H , there exists an x ∈ U such
that P(x) ∩H0 = ∅.

(3) Ak ∈ CoreP
L(A)⇔ ∃x ∈ U, P(x) = {Ak}.

(4)H ∈ ConsP
U(A)⇔H ∩ Q(x, y) , ∅ for all Q(x, y) , ∅.

(5)H ∈ RedP
U(A) ⇔ H ∩ Q(x, y) , ∅ for all Q(x, y) , ∅, and for every H0 ⊂ H , there exists a

Q(x, y) ∈ Q such that Q(x, y) ∩H0 = ∅.
(6) Ak ∈ CoreP

U(A)⇔ there exist some (x, y) ∈ U × U such that Q(x, y) = {Ak}.

Proof. (1)–(3). According to Theorem 9,H is a CPL-consistent set (CPL-reduct) of (U,A, d)⇔ I(H)
is a GNPL-consistent set (GNPL-reduct) of (U,NC,Nd). By Property 4 in [21], for any x ∈ U,H ⊆ A,
| fH (x)| > 1 if NH (x) * [x]d. Then, by Definition 9, I(P(x)) = GDP

L(x,Nd(x)) for all x ∈ U.
According to Theorem 1, H ∈ ConsP

L(A)⇔ I(H) ∈ ConsP
L(NC)⇔ I(H) ∩GDP

L(x,Nd(x)) , ∅ for
each x ∈ U ⇔H ∩ P(x) , ∅ for each x ∈ U. Then, we get (1). We can obtain (2) and (3) similarly.

(4)–(6). By Property 4 in [21], for any x ∈ U, | fA(x)| > 1⇔ NA(x) * [x]d ⇔ GNNC (x) * Nd(x).
For any x, y ∈ U, d(y) ∈ f{Ak}(x) = {d(z)|z ∈ [x]Ak}

⇔ ∃z ∈ [x]Ak , d(y) = d(z)
⇔ ∃z ∈ [x]Ak , [y]d = [z]d

⇔ ∃z ∈ U, z ∈ [x]Ak ∩ [y]d

⇔ [x]Ak ∩ [y]d , ∅,
then {Ak ∈ A|d(y) ∈ f{Ak}(x)} = {Ak ∈ A|[x]Ak ∩ [y]d , ∅}. Hence,

Q(y, x) =

{
{Ak ∈ A|[x]Ak ∩ [y]d , ∅}, NA(x) * [x]d,

A, NA(x) ⊆ [x]d.
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For any x, y ∈ U, there are four cases. (a) GNNC (x) * Nd(x) and GNNC (x) ∩ Nd(y) , ∅, that is,
NA(x) * [x]d and NA(x) ∩ [y]d , ∅. By Definition 11, I(Q(y, x)) = GDP

U(x,Nd(y)). (b) GNNC (x) *
Nd(x) and GNNC (x) ∩ Nd(y) = ∅, namely, NA(x) * [x]d and NA(x) ∩ [y]d = ∅. From Definition 11,
I(Q(y, x)) = ∅ = GDP

U(x,Nd(y)). (c) GNNC (x) ⊆ Nd(x) and GNNC (x) ∩ Nd(y) , ∅, that is, NA(x) ⊆ [x]d

and NA(x) ∩ [y]d , ∅. Then Nd(x) ∩ Nd(y) , ∅, which follows that Nd(x) = Nd(y). According to
Definition 11, I(Q(y, x)) = I(A) = NC = GDP

U(x,Nd(x)) = GDP
U(x,Nd(y)). (d) GNNC (x) ⊆ Nd(x) and

GNNC (x) ∩ Nd(y) = ∅, i.e., NA(x) ⊆ [x]d and NA(x) ∩ [y]d = ∅. By Definition 11, I(Q(y, x)) = I(A) =

NC and GDP
U(x,Nd(y)) = ∅. In conclusion, {I(Q(y, x))|x, y ∈ U} = {GDP

U(x,Nd(y))|x, y ∈ U}.
Due to Theorem 3, H ∈ ConsP

U(A)⇔ I(H) ∈ ConsP
U(NC)⇔ I(H) ∩GDP

U(x,Nd(y)) , ∅ for each
GDP

U(x,Nd(y)) , ∅ ⇔ I(H) ∩ I(Q(x, y)) , ∅ for each I(Q(x, y)) , ∅ ⇔ H ∩ Q(x, y) , ∅ for each
Q(x, y) , ∅. Hence, (4) is found, and (5) and (6) are also obtained by Theorem 3. �

Remark 4. Let (U,A, d) be a DMS with A = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces a GNDIS
(U,NC,Nd) with NC = {N1,N2, · · · ,Nm}. From the proof of Corollary 1, {I(Q(y, x))|x, y ∈ U} =

{GDP
U(x,Nd(y))|x ∈ U,Nd(y) ∈ Cd}. However, the matrix {GDP

U(x,Nd(y))|x ∈ U,Nd(y) ∈ Cd} merges the
same elements and has more empty sets in comparison with {I(Q(y, x))|x, y ∈ U}.

4.2. Optimistic multi-granulation reduction of DMSs

Optimistic multi-granulation reduction of DMSs is also discussed in [14, 18, 21].

Definition 19. [14, 18, 21] Assume that (U,A, d) is a DMS, where A = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}.
LetH ⊆ A andH , ∅.

(1) H is called a complete optimistic lower consistent set (COL-consistent set) if
∑
A

AO
k ([y]d) =∑

H

AO
k ([y]d) for all y ∈ U. Denote the family of all COL-consistent sets by ConsO

L (A). Moreover, if

H ∈ ConsO
L (A), and H ′ < ConsO

L (A) whenever H ′ ⊂ H , then H is a COL-reduct of (U,A, d).
Denote the family of all COL-reducts of (U,A, d) by RedO

L (A), and CoreO
L (A) =

⋂
H∈RedO

L (A)H is
called a COL-core.

(2) H is called a complete optimistic upper consistent set (COU-consistent set) if
∑
A

AO
k ([y]d) =∑

H

AO
k ([y]d) for all y ∈ U. Denote the family of all COU-consistent sets by ConsO

U(A). Moreover, if

H ∈ ConsO
U(A), and H ′ < ConsO

U(A) whenever H ′ ⊂ H , then H is a COU-reduct of (U,A, d).
Denote the family of all COU-reducts of (U,A, d) by RedO

U(A), and CoreO
U(A) =

⋂
H∈RedO

U (A)H is
called a COU-core.

The optimistic multi-granulation reduction of (U,A, d) is closely associated with the optimistic
multi-granulation reduction of the GNDIS (U,NC,Nd) induced by (U,A, d).

Theorem 10. Let (U,A, d) be a DMS withA = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces the GNDIS
(U,NC,Nd) with NC = {N1,N2, · · · ,Nm}. Then, forH ⊆ A, Ak ∈ A,
(1)H ∈ ConsO

L (A)⇔ I(H) ∈ ConsO
L (NC).

(2)H ∈ RedO
L (A)⇔ I(H) ∈ RedO

L (NC).
(3) Ak ∈ CoreO

L (A)⇔ I(Ak) ∈ CoreO
L (NC).

(4)H ∈ ConsO
U(A)⇔ I(H) ∈ ConsO

U(NC).
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(5)H ∈ RedO
U(A)⇔ I(H) ∈ RedO

U(NC).
(6) Ak ∈ CoreO

U(A)⇔ I(Ak) ∈ CoreO
U(NC).

Proof. (1) By Definitions 13 and 19, and Proposition 6,
H ∈ ConsO

L (A)⇔
∑
A

AO
k ([y]d) =

∑
H

AO
k ([y]d) for all y ∈ U

⇔
∑
NC

NO
k (Nd(y)) =

∑
I(H)

NO
k (Nd(y)) for all y ∈ U

⇔ I(H) ∈ ConsO
L (NC).

(2) and (3). Due to (1) and Definitions 13 and 19, the conclusions are obtained.
(4)–(6). With reference to the proof of (1)–(3), the conclusions can be proved by Definitions 13

and 19, and Proposition 6. �

In [21], Tan et al. also presented a discenibility matrix to get COU-reducts. However, the optimistic
lower reduction was not characterized by discenibility matrices in [21]. We present a discernibility
matrix to compute COL-reducts.

Definition 20. Let (U,A, d) be a DMS. For each x ∈ U, define

MD(x) =

 {Ak ∈ A|| f{Ak}(x)| = 1}, x ∈
∑
A

AO
k ([x]d),

A, else.

MD = {MD(x)|x ∈ U} is called a COL-discernibility matrix.

For any x, y ∈ U, define G(x, y) = {Ak ∈ A|d(y) < f{Ak}(x)} [21]. G = {G(x, y)|(x, y) ∈ U × U} is
called a COU-discernibility matrix.

Remark 5. From the proof of Corollary 1, d(y) < f{Ak}(x) ⇔ [x]Ak ∩ [y]d = ∅. If
∑
A

AO
k ([y]d) = U for

all y ∈ U, then [x]Ak ∩ [y]d , ∅ for all x ∈ U and Ak ∈ A. It follows that G(x, y) = ∅ for all x, y ∈ U.
Hence, we cannot get the COU-reducts from G. Then, G(x, y) is defined by

G(x, y) =

 {Ak ∈ A|d(y) < f{Ak}(x)}, x <
∑
A

AO
k ([y]d),

A, else.

Corollary 2. For anyH ⊆ A, Ak ∈ A,
(1)H ∈ ConsO

L (A)⇔H ∩ MD(x) , ∅ for all MD(x) ∈ MD.
(2)H ∈ RedO

L (A)⇔H ∩MD(x) , ∅ for all MD(x) ∈ MD, and for everyH0 ⊂ H , there exists an
MD(x) ∈ MD such that MD(x) ∩H0 = ∅.

(3) Ak ∈ CoreO
L (A)⇔ ∃x ∈ U, MD(x) = {Ak}.

(4)H ∈ ConsO
U(A)⇔H ∩G(x, y) , ∅ for all G(x, y) ∈ G [21].

(5) H ∈ RedO
U(A) ⇔ H ∩ G(x, y) , ∅ for all G(x, y) ∈ G, and for every H0 ⊂ H , there exists a

G(x, y) ∈ G such that G(x, y) ∩H0 = ∅ [21].
(6) Ak ∈ CoreO

U(A)⇔ there exists a (x, y) ∈ U × U such that G(x, y) = {Ak} [21].

Proof. (1)–(3). By Theorem 10, H is a COL-consistent set (or COL-reduct) of (U,A, d) ⇔ I(H) is
a GNOL-consistent set (or GNOL-reduct) of (U,NC,Nd). For any x ∈ U, Ak ∈ A, | f{Ak}(x)| = 1 if
N{Ak}(x) ⊆ [x]d. It follows from Definitions 14 and 20 that I(MD(x)) = GDO

L (x,Nd(x)) for all x ∈ U.
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Due to Theorem 5,H ∈ ConsO
L (A)⇔ I(H) ∈ ConsO

L (NC)⇔ I(H) ∩GDO
L (x,Nd(x)) , ∅ for every

x ∈ U ⇔H ∩ MD(x) , ∅ for every MD(x) ∈ MD. Hence (1) is obtained. (2) and (3) can be deduced
from Theorem 5 analogously.

(4)–(6). According to Theorem 10, H is a COU-consistent set (or COU-reduct) of (U,A, d) ⇔
I(H) is a GNOU-consistent set (or GNOU-reduct) of (U,NC,Nd).

For any x, y ∈ U, if x <
∑
A

AO
k ([y]d) =

∑
NC

NO
k (Nd(y)), then

I(G(x, y)) = I({Ak ∈ A|d(y) < f{Ak}(x)})
= I({Ak ∈ A|[y]d ∩ [x]Ak = ∅})
= {Nk ∈ N

C |Nd(y) ∩ Nk(x) = ∅}

= GDO
U(x,Nd(y)).

If x ∈
∑
A

AO
k ([y]d) =

∑
NC

NO
k (Nd(y)), I(G(x, y)) = NC = GDO

U(x,Nd(y)). We can conclude that

I(G(x, y)) = GDO
U(x,Nd(y)) for all x, y ∈ U.

By Theorem 7,H ∈ ConsO
U(A)⇔ I(H) ∈ ConsO

U(NC)⇔ I(H)∩GDO
U(x,Nd(y)) , ∅ for all x, y ∈ U

⇔ I(H) ∩ I(G(x, y)) , ∅ for each G(x, y) ∈ G ⇔ H ∩G(x, y) , ∅ for each G(x, y) ∈ G. Hence, (4) is
proved. (5) and (6) are also proved by Theorem 7. �

We can see that a DMS is a GNDIS. Furthermore, due to Definition 10 and Theorem 2, a CPL-
reduct can be obtained by a prime implicant of f (P). According to Definition 12 and Theorem 4,
a CPU-reduct can be obtained by a prime implicant of f (Q). By Definition 15 and Theorem 6, the
COL-reducts can be found from the prime implicants of f (MD). By Definition 17 and Theorem 8, the
COU-reducts can be found from the prime implicants of f (G).

Example 7. A DMS (U,A, d) is present in Table 3, where A = {A1 = {a1, a2, a3}, A2 = {a4, a5}, A3 =

{a6, a7}, A4 = {a8, a9, a10}}. The granulars [xi]Ak , [xi]d, and NA(xi) (i = 1, · · · , 6; k = 1, · · · , 4) are
presented in Table 4. We obtain

Q =



Q(xi, x j) x1 x2 x3 x4 x5 x6

x1 A {A1, A2, A3} {A3} A A {A3, A4}

x2 {A3} A A {A3} {A1, A2, A3} {A1, A2, A3}

x3 {A3} A A {A3} {A1, A2, A3} {A1, A2, A3}

x4 A {A1, A2, A3} {A3} A A {A3, A4}

x5 A {A1, A2, A3} {A3} A A {A3, A4}

x6 {A3} ∅ {A1, A2, A3} ∅ {A4} A


.
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Table 3. A DMS
A1 A2 A3 A4 d

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

x1 2 2 1 2 1 3 1 0 2 1 1
x2 1 2 2 1 1 1 2 0 3 2 2
x3 2 0 3 1 2 3 1 1 3 2 2
x4 2 1 1 2 1 1 2 0 2 1 1
x5 1 2 2 1 1 1 2 1 2 1 1
x6 2 0 3 1 2 3 1 1 2 1 3

Table 4. The granulars of elements in Example 6.

∗ x1 x2 x3 x4 x5 x6

[xi]A1 {x1} {x2, x5} {x3, x6} {x4} {x2, x5} {x3, x6}

[xi]A2 {x1, x4} {x2, x5} {x3, x6} {x1, x4} {x2, x5} {x3, x6}

[xi]A3 {x1, x3, x6} {x2, x4, x5} {x1, x3, x6} {x2, x4, x5} {x2, x4, x5} {x1, x3, x6}

[xi]A4 {x1, x4} {x2} {x3} {x1, x4} {x5, x6} {x5, x6}

[xi]d {x1, x4, x5} {x2, x3} {x2, x3} {x1, x4, x5} {x1, x4, x5} {x6}

NA(xi) {x1, x3, x4, x6} {x2, x4, x5} {x1, x3, x6} {x1, x2, x4, x5} {x2, x4, x5, x6} {x1, x3, x5, x6}

By Corollary 1, CoreP
U(A) = {A3, A4}, andA0 = {A3, A4} is the one and only one CPU-reduct.

The DMS (U,A, d) induces a GNDIS (U,NC,Nd) with NC = {N1,N2, N3,N4}, where Ni(x) =

[x]Ai(i = 1, 2, 3, 4) and Nd(x) = [x]d for all x ∈ U. By Definition 11, the GNPU-D matrix of
(U,NC,Nd) is

GD
P
U =



GDP
U(xi,Nd(x j)) Nd(x1) = Nd(x4) = Nd(x5) Nd(x2) = Nd(x3) Nd(x6)

x1 NC {N3} {N3}

x2 {N1,N2,N3} NC ∅

x3 {N3} NC {N1,N2,N3}

x4 NC {N3} ∅

x5 NC {N1,N2,N3} {N4}

x6 {N3,N4} {N1,N2,N3} NC


.

By Theorem 1, the GNPU-reduct of (U,NC,Nd) isN0 = {N3,N4}, and CoreP
L(NC) = {N3,N4}. It is easy

to get that I(Q(x j, xi)) = GDP
U(xi,Nd(x j)). Moreover, I(A0) = N0 and I(CoreP

U(A)) = CoreP
U(NC).

By Definition 2,
∑
A

AO
k ({x1, x4, x5}) = {x1, x4},

∑
A

AO
k ({x2, x3}) = {x2, x3},

∑
A

AO
k ({x6}) = ∅. According

to Definition 20, we get

MD =



xi MD(xi)
x1 {A1, A2, A4}

x2 {A4}

x3 {A4}

x4 {A1, A2, A4}

x5 ∅

x6 ∅


.
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Due to Corollary 2, CoreO
L (A) = {A4}, and {A4} is the only COL-reduct of (U,A, d).

5. Relationships between multi-granulation reduction of IDISs and that of GNDISs

In an IDIS (U, A, d),AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, a mapping Nk : U → P(U) by Nk(x) = S Ak(x)
for all x ∈ U (k = 1, 2, · · · ,m) and a mapping Nd : U → P(U) by Nd(y) = [y]d for all y ∈ U.
Then, Nk(k = 1, 2, · · · ,m) is a reflexive neighborhood operator on U and Nd is a Pawlak neighborhood
operator, and we get a GNDIS (U,N I ,Nd) withN I = {N1,N2, · · · ,Nm}, which is a GNDIS induced by
the IDIS (U, A, d). Define a mapping I : AI → N I by I(Ak) = Nk for all Ak ∈ A

I . From the definition
of N I , it is easy to get that I is a bijection.

Proposition 7. Suppose that (U, A, d) is an IDIS and AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces
the GNDIS (U,N I ,Nd) with N I = {N1,N2, · · · ,Nm}. For each X ⊆ U,∑
AI

AP
k (X) =

∑
N I

NP
k (X),

∑
AI

AP
k (X) =

∑
N I

NP
k (X),∑

AI
AO

k (X) =
∑
N I

NO
k (X),

∑
AI

AO
k (X) =

∑
N I

NO
k (X).

Proof. It is directly by Definitions 3, 6 and 7. �

By Proposition 7, the generalized neighborhood multi-granulation rough set models are extension
models of the multi-granulation rough set models proposed in [15].

5.1. Pessimistic multi-granulation reduction of IDISs

Pessimistic multi-granulation reduction of an IDIS was discussed by Qian et. al. [14, 18, 32].

Definition 21. [14, 18, 32] Given an IDIS (U, A, d), letAI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m} andH ⊆ AI .
(1) AI is called an incomplete pessimistic lower consistent set (IPL-consistent set) if

∑
AI

AP
k ([y]d) =∑

H

AP
k ([y]d) for all y ∈ U. Denote the family of all IPL-consistent sets as ConsP

L(AI). Moreover, if

H ∈ ConsP
L(AI), andH ′ < ConsP

L(AI) wheneverH ′ ⊂ H , thenH is an IPL-reduct. Denote the family
of all IPL-reducts of (U, A, d) by RedP

L (AI), and CoreP
L(AI) =

⋂
H∈RedP

L (AI )H is said to be an IPL-core.

(2)AI is called an incomplete pessimistic upper consistent set (IPU-consistent set) if
∑
AI

AP
k ([y]d) =∑

H

AP
k ([y]d) for all y ∈ U. Denote the family of all IPU-consistent sets by ConsP

U(AI). Moreover, if

H ∈ ConsP
U(AI), and H ′ < ConsP

U(AI) whenever H ′ ⊂ H , then H is an IPU-reduct. Denote the
family of all IPU-reducts of (U, A, d) by RedP

U(AI), and CoreP
U(AI) =

⋂
H∈RedP

U (AI )H is said to be
an IPU-core.

The multi-granulation reduction of an IDIS (U, A, d) can be changed into the multi-granulation
reduction of the GNDIS (U,N I ,Nd) induced by (U, A, d).

Theorem 11. Consider an IDIS (U, A, d) with AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces a
GNDIS (U,N I ,Nd) with N I = {N1,N2, · · · ,Nm}. Then, forH ⊆ A, Ak ∈ A,
(1)H ∈ ConsP

L(AI)⇔ I(H) ∈ ConsP
L(N I).
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(2)H ∈ RedP
L (AI)⇔ I(H) ∈ RedP

L (N I).
(3) Ak ∈ CoreP

L(AI)⇔ I(Ak) ∈ CoreP
L(N I).

(4)H ∈ ConsP
U(AI)⇔ I(H) ∈ ConsP

U(N I).
(5)H ∈ RedP

U(AI)⇔ I(H) ∈ RedP
U(N I).

(6) Ak ∈ CoreP
U(AI)⇔ I(Ak) ∈ CoreP

U(N I).

Proof. (1) Due to Definitions 8 and 21, and Proposition 7,
H ∈ ConsP

L(AI)⇔
∑
AI

AP
k ([y]d) =

∑
H

AP
k ([y]d) for all y ∈ U

⇔
∑
N I

NP
k (Nd(y)) =

∑
I(H)

NP
k (Nd(y)) for all y ∈ U

⇔ I(H) ∈ ConsP
L(N I).

(2) and (3). By (1) and Definitions 8 and 21, the conclusions are proved.
(4)–(6). Similar to the proof of (1)–(3), the conclusions can be obtained by Definitions 13 and 19,

and Proposition 6. �

Discernibility matrices were defined by Zhang et al. [32] to compute the IPL-reducts and IPU-
reducts of an IDIS. For any H ⊆ AI , define the decision function by hH (xi) = {d(x j)|x j ∈ INH (xi)}.
For any x ∈ U, define

IP(x) =

{
{Ak ∈ A

I ||h{Ak}(x)| > 1}, |hAI (x)| > 1,
∅, |hAI (x)| = 1.

IP = {IP(x)|x ∈ U} is called an IPL-discernibility matrix. For (x, y) ∈ U × U, define

IQ(x, y) =

{
{Ak ∈ A

I |d(y) ∈ h{Ak}(x)}, d(y) ∈ hAI (x),
∅, d(y) < hAI (x),

IQ = {IQ(x, y)|(x, y) ∈ U × U} is called an IPU-discernibility matrix.

Remark 6. If |hAI (x)| = 1 for each x ∈ U in an IDIS (U, A, d) with AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m},
then each Ak ∈ A

I is an IPL-reduct. However, IP(x) = ∅ for all x ∈ U. In the following, IP(x) is
defined by

IP(x) =

{
{Ak ∈ A

I ||h{Ak}(x)| > 1}, |hAI (x)| > 1,
AI , |hAI (x)| = 1.

By Definition 9 and Theorem 1, as well as Definition 11 and Theorem 3, we obtain

Corollary 3. [32] Assume that (U, A, d) is an IDIS and AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}. For any
H ⊆ AI , Ak ∈ A

I ,
(1)H ∈ ConsP

L(AI)⇔H ∩ IP(x) , ∅ for all IP(x) ∈ IP.
(2) H ∈ RedP

L (AI) ⇔ H ∩ IP(x) , ∅ for all IP(x) ∈ IP, and for each H0 ⊂ H , there exists an
IP(x) ∈ IP such that IP(x) ∩H0 = ∅.

(3) Ak ∈ CoreP
L(AI)⇔ ∃x ∈ U, IP(x) = {Ak}.

(4)H ∈ ConsP
U(AI)⇔H ∩ IQ(x, y) , ∅ for all IQ(x, y) , ∅.

(5)H ∈ RedP
U(AI)⇔H ∩ IQ(x, y) , ∅ for all IQ(x, y) , ∅, and for each H0 ⊂ H , there exists an

IQ(x, y) such that IQ(x, y) ∩H0 = ∅.
(6) Ak ∈ CoreP

U(AI)⇔ there exist some (x, y) ∈ U × U such that IQ(x, y) = {Ak}.
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Proof. (1)–(3). By Theorem 11, H is an IPL-consistent set (or an IPL-reduct) of (U, A, d)⇔ I(H) is
a GNPL-consistent set (or a GNPL-reduct) of (U,N I ,Nd). According to Property 3 in [32], for any
x ∈ U,H ⊆ AI , |hH (x)| > 1 if INH (x) * [x]d. Then, I(IP(x)) = GDP

L(x,Nd(x)).
By Theorem 1, H ∈ ConsP

L(AI)⇔ I(H) ∈ ConsP
L(N I)⇔ I(H) ∩ I(IP(x)) , ∅ for each x ∈ U ⇔

H ∩ IP(x) , ∅ for each IP(x) ∈ IP.
Similar to the proof of (1), we can get (2) and (3) by Theorem 1.
(4)–(6). According to Theorem 11, H is an IPU-consistent set (or an IPU-reduct) of (U, A, d) ⇔

I(H) is a GNPU-consistent set (or a GNPU-reduct) of (U,N I ,Nd).
For x, y ∈ U, d(y) ∈ h{Ak}(x)⇔ S Ak(x) ∩ [y]d , ∅, and d(y) ∈ hAI (x)⇔ INAI (x) ∩ [y]d , ∅. Then,

IQ(x, y) =

{
{Ak ∈ A

I |S Ak(x) ∩ [y]d , ∅}, INAI (x) ∩ [y]d , ∅,

∅, INAI (x) ∩ [y]d = ∅.

According to Definition 11, I(IQ(x, y)) = GDP
U(x,Nd(y)). By Theorem 3, (4)–(6) hold. �

5.2. Optimistic multi-granulation reduction of IDISs

Optimistic multi-granulation reduction of IDIS was discussed by Qian et. al. [14, 18, 32].

Definition 22. [14, 18, 32] Given an IDIS (U, A, d), letAI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m} andH ⊆ AI .
(1) AI is called an incomplete optimistic lower consistent set (IOL-consistent set) if

∑
AI

AO
k ([y]d) =∑

H

AO
k ([y]d) for all y ∈ U. Denote the family of all IOL-consistent sets as ConsO

L (AI). Moreover, if

H ∈ ConsO
L (AI), and H ′ < ConsO

L (AI) whenever H ′ ⊂ H , then H is an IOL-reduct. Denote the
family of all IOL-reducts of (U, A, d) by RedO

L (AI), and CoreO
L (AI) =

⋂
H∈RedO

L (AI )H is said to be
an IOL-core.

(2) AI is called an incomplete optimistic upper consistent set (IOU-consistent set) if
∑
AI

AO
k ([y]d) =∑

H

AO
k ([y]d) for all x ∈ U. Denote the family of all IOU-consistent sets as ConsO

U(AI). Moreover, if

H ∈ ConsO
U(AI), and H ′ < ConsO

U(AI) whenever H ′ ⊂ H , then H is an IOU-reduct. Denote the
family of all IOU-reducts of (U, A, d) by RedO

U(AI), and CoreO
U(AI) =

⋂
H∈RedO

U (AI )H is said to be
an IOU-core.

The multi-granulation reduction of an IDIS (U, A, d) can be changed into the multi-granulation
reduction of the GNDIS (U,N I ,Nd) induced by (U, A, d).

Theorem 12. Consider an IDIS (U, A, d) with AI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}, which induces a
GNDIS (U,N I ,Nd) with N I = {N1,N2, · · · ,Nm}. Then, forH ⊆ A, Ak ∈ A,
(1)H ∈ ConsO

L (AI)⇔ I(H) ∈ ConsO
L (N I).

(2)H ∈ RedO
L (AI)⇔ I(H) ∈ RedO

L (N I).
(3) Ak ∈ CoreO

L (AI)⇔ I(Ak) ∈ CoreO
L (N I).

(4)H ∈ ConsO
U(AI)⇔ I(H) ∈ ConsO

U(N I).
(5)H ∈ RedO

U(AI)⇔ I(H) ∈ RedO
U(N I).

(6) Ak ∈ CoreO
U(AI)⇔ I(Ak) ∈ CoreO

U(N I).

Proof. It is verified according to Proposition 7, Definitions 13 and 22. �
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However, the optimistic multi-granulation reduction of IDISs was not considered in [32]. In the
following, we present two discernibility matrices to characterize the IOL-reducts and IOU-reducts of
an IDIS.

Definition 23. Given an IDIS (U, A, d), letAI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}. For any x ∈ U, define

IDO
L (x, [x]d) =


{Ak ∈ A

I |S Ak(x) ⊆ [x]d}, x ∈
∑
AI

AO
k ([x]d),

AI , else.

ID
O
L = {IDO

L (x, [x]d)|x ∈ U} is called an IOL-discernibility matrix. For any x ∈ U, [y]d ∈ U/Rd, define

IDO
U(x, [y]d) =

 {Ak ∈ A
I |S Ak(x) ∩ [y]d = ∅}, x <

∑
AI

AO
k ([y]d),

AI , else.

ID
O
U = {IDO

U(x, [y]d)|x ∈ U, [y]d ∈ U/Rd} is called an IOU-discernibility matrix.

Corollary 4. Suppose that (U, A, d) is an IDIS andAI = {Ak ⊆ A|k ∈ Z, 1 ≤ k ≤ m}. For anyH ⊆ AI ,
Ak ∈ A

I ,
(1)H ∈ ConsO

L (AI)⇔H ∩ IDO
L (x, [x]d) , ∅ for all IDO

L (x, [x]d) ∈ IDO
L .

(2)H ∈ RedO
L (AI)⇔H ∩ IDO

L (x, [x]d) , ∅ for all IDO
L (x, [x]d) ∈ IDO

L , and for anyH0 ⊂ H , there
exists an IDO

L (x, [x]d) ∈ IDO
L such that IDO

L (x, [x]d) ∩H0 = ∅.
(3) Ak ∈ CoreO

L (AI)⇔ there is some x ∈ U such that IDO
L (x, [x]d) = {Ak}.

(4)H ∈ ConsO
U(AI)⇔H ∩ IDO

U(x, [y]d) , ∅ for any IDO
U(x, [y]d) ∈ IDO

U .
(5) H ∈ RedO

U(AI) ⇔ H ∩ IDO
U(x, [y]d) , ∅ for any IDO

U(x, [y]d) ∈ IDO
U , and for each H0 ⊂ H ,

there exists an IDO
U(x, [y]d) ∈ IDO

U such that IDO
U(x, y) ∩H0 = ∅.

(6) Ak ∈ CoreO
U(AI)⇔ there exist x ∈ U, [y]d ∈ U/Rd such that IDO

U(x, [y]d) = {Ak}.

Proof. By Theorem 12, H is an IOL-consistent set (or IOL-reduct, IOU-consistent set, IOU-reduct,
respectively) of an IDIS (U, A, d) ⇔ I(H) is a GNOL-consistent set (or GNOL-reduct, GNOU-
consistent set, GNOU-reduct, respectively) of the GNDIS (U,N I ,Nd).

By Definitions 14 and 23, I(IDO
L (x, [x]d)) = GDO

L (x,Nd(x)) for all x ∈ U. From Remark 2 and
Theorem 5, (1)–(3) are obtained.

Due to Definitions 16 and 23, I(IDO
U(x, [y]d)) = GDO

U(x,Nd(y)) for all [y]d ∈ U/Rd, x ∈ U.
According to Theorem 7, (4)–(6) hold. �

By Definition 10 and Theorem 2, an IPL-reduct can be obtained by a prime implicant of f (IP).
According to Definition 12 and Theorem 4, an IPU-reduct can be obtained by a prime implicant of
f (IQ). By Definition 15 and Theorem 6, the IOL-reducts can be found from the prime implicants
of f ((IDO

L )∗). Due to Definition 17 and Theorem 8, the IOU-reducts can be found from the prime
implicants of f (IDO

U). We employ an example to illustrate the calculation method mentioned above.

Example 8. An IDIS (U, A, d) is presented in Table 5, and AI = {A1 = {a1, a2, a3}, A2 = {a4, a5}, A3 =

{a6, a7}, A4 = {a8, a9, a10}}. The granulars of elements are presented in Table 6.
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Table 5. An IDIS.

A1 A2 A3 A4 d
a1 a2 a3 a4 a5 a6 a7 a8 a9 a10

x1 2 1 2 1 1 3 1 1 2 1 1
x2 ∗ 1 3 2 1 1 2 ∗ 3 2 2
x3 1 0 3 1 2 1 2 1 ∗ 2 2
x4 2 2 ∗ 2 0 1 ∗ 0 2 1 2
x5 1 ∗ ∗ 1 ∗ 3 1 1 2 ∗ 1
x6 2 0 3 1 2 ∗ 1 1 2 1 3

Table 6. The granulars of elements in Example 8.
∗ x1 x2 x3 x4 x5 x6

S A1(xi) {x1} {x2, x5} {x3, x5} {x4} {x2, x3, x5} {x6}

S A2(xi) {x1, x5} {x2} {x3, x5, x6} {x4} {x1, x3, x5, x6} {x3, x5, x6}

S A3(xi) {x1, x5, x6} {x2, x3, x4} {x2, x3, x4} {x2, x3, x4, x6} {x1, x5, x6} {x1, x4, x5, x6}

S A4(xi) {x1, x5, x6} {x2, x3} {x2, x3, x5} {x4} {x1, x3, x5, x6} {x1, x5, x6}

INAI (xi) {x1, x5, x6} {x2, x3, x4, x5} {x2, x3, x4, x5, x6} {x2, x3, x4, x6} {x1, x2, x3, x5, x6} {x1, x3, x4, x5, x6}

We get that U/Rd = {{x1, x5}, {x2, x3, x4}, {x6}}. By Definition 3,
∑
AI

AO
k ({x1, x5}) = {x1},∑

AI
AO

k ({x2, x3, x4}) = {x2, x3, x4},
∑
AI

AO
k ({x6}) = {x6},

∑
AI

AO
k ({x1, x5}) = {x1, x5},

∑
AI

AO
k ({x2, x3, x4}) =

{x2, x3, x4},
∑
AI

AO
k ({x6}) = {x6}.

According to Definition 23, we have

ID
O
L =



xi IDO
L (xi,Nd(xi))

x1 {A1, A2}

x2 {A2, A3, A4}

x3 {A3}

x4 {A1, A2, A4}

x5 AI

x6 {A1}


.

Hence f (IDO
L ) = (A1∨A2)∧ (A2∨A3∨A4)∧ (A3)∧(A1∨A2∨A4)∧(A1)∧(A1∨A2∨A3∨A4) = A1∧A3,

then {A1, A3} is the IOL-reduct.
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By Definition 23, we get

ID
O
U =



ID
O
U(xi, [x j]d) [x1]d = [x5]d [x2]d = [x3]d = [x4]d [x6]d

x1 AI AI {A1, A2}

x2 {A2, A3, A4} AI AI

x3 {A3} AI {A1, A3, A4}

x4 AI AI {A1, A2, A4}

x5 AI {A3} {A1}

x6 {A1} {A1, A4} AI


.

Then, f (IDO
U) = (A2 ∨ A3 ∨ A4) ∧ (A3) ∧ (A1)∧(A1 ∨ A4)∧(A1 ∨ A2)∧(A1 ∨ A3 ∨ A4)∧(A1 ∨ A2 ∨

A4)∧(A1)∧(A1 ∨ A2 ∨ A3 ∨ A4) = A1 ∧ A3. Thus, {A1, A3} is the IOU-reduct.

6. Conclusions

The multi-granulation reduction structures of GNDISs based on multi-granulation rough sets have
been discussed in this paper, and the discernibility matrices and discernibility functions have been
constructed to calculate the multi-granulation reducts of GNDISs. Furthermore, the multi-granulation
reductions of DMSs and IDISs have been characterized by the discernibility matrices and discernibility
functions based on the reduction theory of GNDISs. Then, the multi-granulation reduction of GNDISs
could be a general model for the multi-granulation reduction of DISs by discernibility technique, which
provides a theoretical foundation for designing algorithms of multi-granulation reduction of DISs. We
summarize the multi-granulation reducts of three kinds of DISs in Table 7. The discernibility method is
a theoretical method for computing all the reducts, and the time consumption of the algorithm designed
by computing the discernibility matrices and discernibility functions to get all the reducts of a high
dimensional information system is high. Then, some heuristic reduction algorithms by discernibility
matrices can be designed to get a reduct. Matrix computation or dynamic redution algorithms based on
discernibility matrices could also be used to improve computational efficiency of reduction algorithms.
In our further work, we will explore the multi-granulation reduction of partially labelled DISs by the
discernibility technique.
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Table 7. The multi-granulation reductions of GNDISs, DMSs and IDISs.
Information system Granular structure Granularity transform GNIS or GNDIS Reduction Discernibility set
GNDIS (U,N ,Nd) N = {N1,N2, · · · ,Nm} ∗ ∗ GNPL-reduct GDP

L(x,Nd(y))
CNd = {Nd(y)|y ∈ U} ∗ ∗ GNPU-reduct GDP

U(x,Nd(y))
∗ ∗ GNOL-reduct GDO

L (x,Nd(y))
∗ ∗ GNOU-reduct GDO

U(x,Nd(y))
DMS (U,A, d) A = {Ak ⊆ A|k = 1, · · · ,m} Nk(x) = [x]Ak , (U,NC,Nd) CPL-reduct P(x) [21]

U/Rd = {[y]d|y ∈ U} Nd(y) = [y]d NC = {Nk|k = 1, · · · ,m} I(P(x)) = GDP
L(x,Nd(x))

I(Ak) = Nk CPU-reduct Q(x, y) [21]
{I(Q(y, x))|x, y ∈ U} =

{GDP
U(x,Nd(y))|x, y ∈ U}

COL-reduct MD(x)
I(MD(x)) = GDO

L (x,Nd(x))
COU-reduct G(x, y) [21]

I(G(x, y)) = GDO
U(x,Nd(y))

IDIS (U, A, d) AI = {Ak ⊆ A|k = 1, · · · ,m} Nk(x) = S Ak(x), (U,N I ,Nd) IPL-reduct IP(x) [32]
U/Rd = {[y]d|y ∈ U} Nd(y) = [y]d N I = {Nk|k = 1, · · · ,m} I(IP(x)) = GDP

L(x,Nd(x))
I(Ak) = Nk IPU-reduct IQ(x, y) [32]

I(IQ(x, y)) = GDP
U(x,Nd(y))

IOL-reduct IDO
L (x, [x]d)

I(IDO
L (x, [x]d)) = GDO

L (x,Nd(x))
IOU-reduct IDO

U(x, [y]d)
I(IDO

U(x, [y]d)) = GDO
U(x,Nd(y))
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