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Abstract: The integration of internationally sustainable practices into supply chain management 

methodologies is known as “green supply chain management”. Reducing the supply chain’s overall 

environmental impact is the main objective in order to improve corporate connections and the social, 

ecological, and economic ties with other nations. To accomplish appropriate and accurate measures to 

address the issue of emergency decision-making, the paper is divided into three major sections. First, 

the (𝑝, 𝑞)-fractional linear Diophantine fuzzy set represents a new generalization of several fuzzy set 

theories, including the Pythagorean fuzzy set, 𝑞-rung orthopair fuzzy set, linear Diophantine fuzzy set, 

and 𝑞 -rung linear Diophantine fuzzy set, with its key features thoroughly discussed. Additionally, 

aggregation operators are crucial for handling uncertainty in decision-making scenarios. Consequently, 

algebraic norms for (𝑝, 𝑞) -fractional linear Diophantine fuzzy sets were established based on 

operational principles. In the second part of the study, we introduced a range of geometric aggregation 

operators and a series of averaging operators under the (𝑝, 𝑞)-fractional linear Diophantine fuzzy set, 

all grounded in established operational rules. We also explained some flexible aspects for the invented 

operators. Furthermore, using the newly developed operators for (𝑝, 𝑞)-fractional linear Diophantine 

fuzzy information, we constructed the multi-attribute decision-making (𝑀𝐴𝐷𝑀) technique to assess 

the green supply chain management challenge. Last, we compared the ranking results of the produced 
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approaches with the obtained ranking results of the techniques using several numerical instances to 

demonstrate the validity and superiority of the developed techniques. Finally, a few comparisons 

between the findings were made. 

Keywords: (𝑝, 𝑞) -fractional linear Diophantine fuzzy set; operations and relations; sensitivity and 

comparison analysis; averaging and geometric aggregation operators; 𝑀𝐴𝐷𝑀 problem 
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1. Introduction  

Classical mathematics often falls short in addressing the complexity and ambiguity inherent in 

real-world situations. Zadeh [1] introduced the concept of a fuzzy set, which grades possibilities within 

the range [0, 1]. Since then, fuzzy logic has been employed to describe imprecision, ambiguity, and 

vagueness across domains [2−4]. Decision-makers frequently encounter uncertainty-related challenges 

that are difficult to predict and manage due to the intricate modeling and control conditions associated 

with these uncertainties. 

Atanassov [5] expanded on the concept of fuzzy sets (𝐹𝑆) by introducing intuitionistic fuzzy sets 

(𝐼𝐹𝑆s), which incorporate membership degrees (𝑀𝐷) and non-membership degrees (𝑁𝑀𝐷) summing 

to unity. Atanassov [6] used intuitionistic fuzzy components in a geometric context, while Xu [7] 

represented weighted geometric notations for intuitionistic fuzzy numbers (𝐼𝐹𝑁s). Recently, Khan et 

al. [8] introduced the concept of diamond 𝐼𝐹𝑆 and discussed some basic properties. Garg [9] applied 

Einstein’s t-norm principles to 𝐼𝐹𝑆. Additionally, researchers have developed a practical method for 

determining 𝑂𝑊𝐴 weights. Using this method, the aim is to mitigate the impact of biased arguments 

on the decision outcome by assigning them lower weights. Xue [10] explores this method by applying 

Choquet’s integral, measure, and representative payoffs, effectively addressing problems in 

intuitionistic and uncertain contexts. Khalil [11] examines two novel distance metrics: The absolute 

normalized Euclidean distance and the square Hamming distance. Both metrics are employed as 𝐼𝐹𝑆s 

in decision-making processes. Yager [12] developed the Pythagorean fuzzy set (𝑃𝑦𝐹𝑆), an extension 

of the 𝐼𝐹𝑆 concept, where the sum of the squares of the membership degree (𝑀𝐷) and non-membership 

degree (𝑁𝑀𝐷 ) does not exceed one. For further study, see [13−15] and the references therein. 

Farhadinia [16] introduced a decision-making technique using 𝑃𝑦𝐹𝑆 based on similarity measures. 

Yager [17] incorporated multiple aggregate operators (𝐴𝑂s) into the 𝑃𝑦𝐹𝑆 framework, and Garg [33] 

enhanced 𝑃𝑦𝐹𝑆 s with more comprehensive operational rules and aggregation operators. In [18], 

various Pythagorean fuzzy Dombi aggregation operators were proposed and analyzed. Garg applied 

Einstein t-norm operating principles to 𝑃𝑦𝐹𝑁s in [19, 20] and developed two symmetric 𝑃𝑦𝐹𝐴𝑂s in [21]. 

Zeng [22] provided information on ordered weighted averaging (OWA) and probabilistic averaging. 

Deqing [23] proposed several distance measures that consider the four parameters of 𝑃𝑦𝐹𝑆 s and 

𝑃𝑦𝐹𝑁s. Firozja [24] introduced a novel similarity measure for 𝑃𝑦𝐹𝑆s (S-norm) using triangle conorms. 

For further details, please refer to [25−30].  

The 𝐼𝐹𝑆s and 𝑃𝑦𝐹𝑆 serve as the basis for various applications across many real-world industries. 

While the concepts of 𝐹𝑆 s, 𝐼𝐹𝑆 s, and 𝑃𝑦𝐹𝑆 s have diverse applications, they each possess unique 

limitations related to membership degrees (𝑀𝐷) and non-membership degrees (𝑁𝑀𝐷). To address 

these limitations, Riaz [31] introduced the concept of the Linear Diophantine Fuzzy Set (𝐿𝐷𝐹𝑆), which 
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incorporates control factors ( 𝐶𝐹 s). The inclusion of 𝐶𝐹 s causes the 𝐿𝐷𝐹𝑆  model to be more 

comprehensive and effective than previous models (see [32−34]). This innovation adds control 

parameters (𝐶𝑃s) and fills gaps left by existing structures, thereby expanding the scope for 𝑀𝐷 and 

𝑁𝑀𝐷 applications. Additionally, 𝐿𝐷𝐹𝑆s assign two grades to information, where the total of these 

grades, such as the product of control factors with 𝑀𝐷  and 𝑁𝑀𝐷 , cannot exceed one. uumerous 

researchers have contributed to the study of 𝐿𝐷𝐹𝑆 s. For instance, Iampan [35] introduced linear 

Diophantine fuzzy Einstein aggregation operators for multi-criteria decision-making problems within 

the post-acute care (𝑃𝐴𝐶) model network for patients with cerebrovascular disorders (𝐶𝑉𝐷s). Ayub [36] 

was the first to define decision-making using linear Diophantine fuzzy relations and their algebraic 

properties. Mahmood [37] proposed generalized Hamacher aggregation operators based on linear 

Diophantine uncertain linguistic settings and explored their applications in decision-making scenarios. 

Additionally, Khan et al. [38−42] apply fuzzy theory in calculus to establish various types of fuzzy 

inequalities as well their applications in field of optimization. For further study see [43−45] and the 

references therein. 

The 𝑞-rung linear Diophantine fuzzy set (𝑞-𝑅𝐿𝐷𝐹𝑆) is an advanced generalization of the 𝑃𝑦𝐹𝑆, 

𝑞-𝑅𝑂𝐹𝑆, and 𝐿𝐷𝐹𝑆. Almagrabi [46] introduced this concept and highlighted its significant features. 

Aggregation operators are crucial for effectively aggregating uncertainty in decision-making scenarios 

using Yager approach [47]. The 𝑞-𝐿𝐷𝐹𝑆 incorporates 𝑀𝐷 (a) and 𝑁𝑀𝐷 (F) with control factors (𝛼, 

𝛽), adhering to the constraints 0 ≤ (𝛼)𝑞𝛹(𝑥) + (𝛽)𝑞𝜕(𝑥) ≤ 1, ∀ 𝑥 ∈ 𝐸, 𝑞 ⩾ 1, with 0 ≤ 𝛼𝑞 + 𝛽𝑞 ≤

1. This enables the flexible selection of 𝑀𝐷 and 𝑁𝑀𝐷 values. Using 𝑞-𝑅𝐿𝐷𝐹𝑆, Qiyas [48] proposed 

novel distance and similarity metrics. Even though the 𝑞-𝑅𝐿𝐷𝐹 handles 𝑁𝑀𝐷 and 𝑀𝐷, there remains 

a gap regarding the neutral degree (uD). To address this, the fuzzy set theory must incorporate new 

fuzzy numbers. Gulistan and Pedrycz [49] created a new version of fuzzy set, which is known as 𝑞-

fractional fuzzy sets, and they found some application using the 𝑀𝐴𝐷𝑀  technique. For more 

information, see [50−54] and the references therein. 

We ask the following question: Why do we need a (𝑝, 𝑞)-fractional linear Diophantine fuzzy set? 

In real-world scenarios, the total of membership grades (𝑀𝐺) and non-membership grades (𝑁𝑀𝐺) 

in all forms of 𝐹𝑆 can occasionally exceed 1, as in the case of 0.9 + 0.7 > 1, and the square sum can 

also exceed 1, as in the case of (0.9)2 + (0.7)2 > 1. 𝐼𝐹𝑆 and 𝑃𝑦𝐹𝑆 have failed in these situations. To 

address these shortcomings, the constraints on 𝑀𝐺 and 𝑁𝑀𝐺 in the case of 𝑞-𝑅𝑂𝐹𝑆 are changed to 

0 ≤ 𝛹(𝑥)𝑞 + 𝜕(𝑥)𝑞 ≤ 1. With extraordinarily high numbers, we can handle 𝑀𝐺 and 𝑁𝑀𝐺. If both 

𝑀𝐺 𝜕(𝑥) and 𝑁𝑀𝐺 𝛹(𝑥) are equal to 1 (i.e., 𝛹(𝑥) = 𝜕(𝑥) = 1), then in some actual problems we 

have 1𝑞 + 1𝑞 > 1, which violates the restriction of 𝑞-𝑅𝑂𝐹𝑆. The notion of 𝐿𝐷𝐹𝑆 was then proposed 

by Riaz and Hashmi (2019), who also discussed the importance of reference parameters (𝑅𝑃𝑠). These 

parameters hold the requirement 0 ≤ 𝛼𝛹(𝑥) + 𝛽𝜕(𝑥) ≤ 1 with 0 ≤ 𝛼 + 𝛽 ≤ 1. However, in this case 

as well, the decision makers’ (𝐷𝑀) total of 𝑅𝑃s could be greater than one, i.e., 𝛼 + 𝛽 > 1, which goes 

against the 𝐿𝐷𝐹𝑆  restriction. Thus, 𝐿𝐷𝐹𝑆 ’s objective concerning 𝑅𝑃 s was not met. In ordered to 

overcome such condition, (Almagrabi et al. 2021) introduced 𝑞-𝑅𝐿𝐷𝐹𝑆 using 𝑞-𝑅𝑂𝐹𝑆 approach over 

𝑅𝑃s which hold the condition 0 ≤ 𝛼𝑞𝛹(𝑥) + 𝛽𝑞𝜕(𝑥) ≤ 1 with 0 ≤ 𝛼𝑞 + 𝛽𝑞 ≤ 1. In the case of 𝑞-

𝑅𝐿𝐷𝐹𝑆, some certain practical issues we obtain 1𝑞 + 1𝑞 > 1 or 1𝑞 + (0.7)2 > 1 or (0.7)2+1𝑞 > 1, 

which violates the restriction on 𝑅𝑃s. This causes the multi attribute decision makings (MADM) to be 

limited and affects the optimum decision. To evaluate the optimal choice based on attribute records, 

we introduce a novel hybrid structure called the (𝑝, 𝑞)-fractional linear Diophantine fuzzy set ((𝑝, 𝑞)-

 𝐹𝐿𝐷𝐹𝑆 ), which integrates both 𝐿𝐷𝐹𝑆  and 𝑞 -𝐿𝐷𝐹𝑆 . This collection offers an overview of generic 



35506 

AIMS Mathematics  Volume 9, Issue 12, 35503–35532. 

forms of 𝐿𝐷𝐹𝑆. We also explore specific aggregation procedures for integrating fuzzy (𝑝, 𝑞)-fractional 

linear Diophantine information in uncertain emergency situations. These operators are unique due to 

their ability to synthesize (𝑝, 𝑞)-fractional linear Diophantine fuzzy information, which enhances the 

concept of (𝑝, 𝑞)-fractional linear Diophantine fuzzy aggregation operators. Additionally, the proposed 

aggregation operators support multiple-attribute decision-making in the (𝑝, 𝑞)- 𝐹𝐿𝐷𝐹 context, serving 

as valuable tools for decision-makers. The major contributions of this study are highlighted in the 

following areas (see [55−58]): 

(1) In order to close this knowledge gap, our first goal is to implement the new (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 technique 

with 𝑝, 𝑞 > 1. 

(2) The implementation of the 𝑞th and 𝑝th fractional value of 𝐶𝐹s capabilities in 𝐿𝐷𝐹𝑆 is the second 

goal, as 𝑝th and 𝑞th values are not manageable by 𝐼𝐹𝑆s, 𝑃𝑦𝐹𝑆s, 𝑞- 𝑅𝑂𝐹𝑆 s, and 𝐿𝐷𝐹𝑆s. The system 

as conceived is better than the existing methods, and 𝐷𝑀 has total control over grade selection. This 

model also describes the issue by altering the bodily sensation of connection. The corresponding 

assemblage is changed to 𝐿𝐷𝐹𝑆 when 𝑝 = 𝑞 = 1. Moreover, the (𝑝, 𝑞)-fractional Diophantine space 

expands as the 𝑝th and 𝑞th values rise, providing border boundaries with a bigger search space to 

convey a wider range of fuzzy data. Consequently, we could be able to characterize a wider variety of 

fuzzy data using (𝑝, 𝑞)- 𝐹𝐿𝐷𝐹𝑆s. 

(3) Establishing a direct link between the current studies and 𝑀𝐴𝐷𝑀  issues is our third goal. We 

developed parametric decision support strategies to address multi-attribute problems. 

To accomplish these objectives, the primary framework of this document is presented below. In 

Section 2, the basic notions of 𝐹𝑆 and generalized 𝐹𝑆s are presented. In Section 3, we develop a certain 

class of new 𝐹𝑆s that is known as (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s. Additionally, analysis over (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s is also 

given as well as interpretation of sensitivity and comparison is also discussed. Some basic operations 

and relations are also proved. We build the (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 , (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 , and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operators in Section 4 and thoroughly investigate several well-known and 

practicable properties and exceptional outcomes. In Section 5, We present the (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴 , 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴, and (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 operators and also characterize the properties of these 

operators. In Section 6, we suggest multi-attribute decision-making techniques for assessing green 

supply chain management in the context of the (𝑝, 𝑞)-fractional linear Diophantine fuzzy information. 

The comparison analysis highlights the benefits of these techniques. In Section 7, we provide an 

explanation of our closing remarks.  

2. Preliminaries 

In this section, we first go over the fundamental idea and its understanding-related features before 

developing a new one. uow, we start with the basic definition of 𝐼𝐹𝑆 such that: 

Definition 1. Zadeh (1965) Suppose an arbitrary nonempty set 𝐸. A fuzzy set ℒ is characterized on 𝐸 as; 

ℒ = {(𝑥, 𝛹(𝑥)) ∣ 𝑥 ∈ 𝐸}. 

In this case, function 𝛹 transforms 𝐸 to [0,1], and function 𝛹(𝑥) is considered the membership 

grade (𝑀𝐺) of 𝑥 in 𝐸 for any 𝑥 that is in 𝐸 such that 𝑥 ∈ 𝐸, 0 ≤ 𝛹(𝑥) ≤ 1. 

Definition 2. (Atanassov 1986) Let us have a fixed universe 𝐸 and its sub-set ℒ. The set 

ℒ = {〈𝑥, 𝛹(𝑥), 𝜕(𝑥)〉 ∶ for all 𝑥 ∈ 𝐸},  
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where 0 ≤ 𝛹(𝑥) + 𝜕(𝑥) ≤ 1, is called intuitionistic fuzzy set and functions 𝛹, 𝜕: 𝐸 → [0, 1] indicate 

the degree of membership (validity, etc.) and non-membership grades (𝑁𝑀𝐺) (non-validity, etc.) of 

element 𝑥 ∈ 𝐸 to a fixed set ℒ ⊆ 𝐸. uow, we can define also function 𝜋: 𝐸 →  [0, 1] by means of  

𝜋(𝑥) = 1 − 𝛹(𝑥) − 𝜕(𝑥). 

and it corresponds to degree of indeterminacy (uncertainty, etc.), see Figure 1. 

Definition 3. (Yager 2013a, b) Consider a fixed set 𝐸 and the Pythagorean fuzzy set (𝑃𝑦𝐹𝑆) 𝐴𝑃 on 𝐸 

have the following mathematical symbol: 

𝐴𝑃 = {(𝑥, 𝛹(𝑥), 𝜕(𝑥)) ∣ 𝑥 ∈ 𝐸}, 

where 𝛹(𝑥)  and 𝜕(𝑥) ∈ [0,1]  are 𝑀𝐺  and 𝑁𝑀𝐺  functions with subject to (𝛹(𝑥))
2

+ (𝜕(𝑥))
2

≤ 1 , 

see Figure 1. The hesitancy 𝑀𝐺 is characterized by 

𝜋(𝑥) = √1 − (𝛹(𝑥))
2

− (𝜕(𝑥))
2
. 

Definition 4. (Gulistan and Pedrycz) Let us have a fixed universe 𝐸 and its sub-set ℒ. The set 

ℒ = {(𝑥, 〈𝛹(𝑥), 𝜕(𝑥)〉𝑞): for all 𝑥 ∈ 𝐸}, 

where 0 ≤
𝛹(𝑥)

𝑞
+

𝜕(𝑥)

𝑞
≤ 1 with 2 ≤ 𝑞, is called 𝑞-fractional fuzzy set (𝑞-𝐹𝐹𝑆) and functions 𝛹, 𝜕 ∶

𝐸 → [0, 1] indicate the degree of membership (validity, etc.) and non-membership (non-validity, etc.) 

of element 𝑥 ∈ 𝐸 to a fixed set ℒ ⊆ 𝐸. uow, we can define also function 𝜋: 𝐸 →  [0, 1] by means of 

𝜋(𝑥) = 1 −
𝛹(𝑥)

𝑝
+

𝜕(𝑥)

𝑞
, 

and it corresponds to degree of indeterminacy (uncertainty, etc.).  

Definition 5. (Yager 2016) Suppose 𝐸 be a fixed set. A 𝑞-rung orthopair fuzzy set (𝑞- 𝑅𝑂𝐹𝑆) 𝐵 on 𝐸 

have the following mathematical symbol; 

𝐵 = {(𝑥, 𝛹(𝑥), 𝜕(𝑥)): 𝑥 ∈ 𝐸},  

where 𝛹(𝑥) and 𝜕(𝑥) ∈ [0,1] are 𝑀𝐺 and 𝑁𝑀𝐺 functions with subject to 0 ≤ (𝛹(𝑥))
𝑞

+ (𝜕(𝑥))
𝑞

≤

1; 𝑞 ≥ 1 (see Figure 1). The hesitancy part is characterized as 

𝜋(𝑥) = √1 − (𝛹(𝑥))
𝑞

− (𝜕(𝑥))
𝑞𝑞

, 

see Figure 1. 
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Figure 1. A comparison between intuitionistic fuzzy space, Pythagorean fuzzy space, and 

𝑞-rung orthopair fuzzy space. 

Definition 6. (Riaz and Hashmi 2019) Suppose 𝐸 be a fixed non-empty reference set and the linear 

Diophantine fuzzy set (𝐿𝐷𝐹𝑆) is characterized by 𝐺𝐷 and mathematical characterized as: 

𝐺𝐷 = {(𝑥, ⟨𝛹(𝑥), 𝜕(𝑥)⟩, ⟨𝛼, 𝛽⟩): 𝑥 ∈ 𝐸}, 

where 𝛹(𝑥), 𝜕(𝑥), 𝛼, 𝛽 ∈ [0,1] are 𝑀𝐺, 𝑁𝑀𝐺 and references parameters (𝑅𝑃s) respectively, and hold 

the condition 0 ≤ 𝛼𝛹(𝑥) + 𝛽𝜕(𝑥) ≤ 1,  ∀ 𝑥 ∈ 𝐸  with 0 ≤ 𝛼 + 𝛽 ≤ 1  (see Figure 2). These 𝑅𝑃 s 

could be useful in defining or characterizing a particular model. Indeterminacy degree can be 

characterized as 

ɤ𝜋(𝑥) = 1 − (𝛼)𝛹(𝑥) − (𝛽)𝜕(𝑥), 

where ɤ is the 𝑅𝑃 of the indeterminacy degree. 

Parameters satisfying 0 ≤ 𝛼 + 𝛽 ≤ 1 

 

Figure 2. Graphical representation of parameters of linear Diophantine fuzzy set. 

Definition 7. Suppose 𝐸 be a fixed non-empty reference set and the 𝑞-rung linear Diophantine fuzzy 

set (𝑞-𝑅𝐿𝐷𝐹𝑆) is characterized by ℒ𝐷𝑞 and mathematical characterized as 

ℒ𝐷𝑞 = {(𝑥, ⟨𝛹(𝑥), 𝜕(𝑥)⟩, ⟨𝛼, 𝛽⟩): 𝑥 ∈ 𝐸}, 
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where 𝛹(𝑥), 𝜕(𝑥), 𝛼, 𝛽 ∈ [0,1] . These functions fulfill the restriction 0 ≤ (𝛼)𝑞𝛹(𝑥) + (𝛽)𝑞𝜕(𝑥) ≤

1, ∀ 𝑥 ∈ 𝐸, 𝑞 ⩾ 1 ,with 0 ≤ 𝛼𝑞 + 𝛽𝑞 ≤ 1 , (see Figure 3). These 𝑅𝑃 s could be useful in defining or 

characterizing a particular model. The part of the hesitation may be calculated as 

ɤ𝜋(𝑥) = √1 − ((𝛼)𝑞𝛹(𝑥) + (𝛽)𝑞𝜕(𝑥))
𝑞

, 

where ɤ stand for the 𝑅𝑃s related to the level of uncertainty or hesitancy. 

Impact of shifting values of 𝑞 

 

Figure 3. Graphical representation of parameters of 𝑞-rung linear Diophantine fuzzy set 

for different values of 𝑞. 

3. The (𝒑, 𝒒)-fractional linear Diophantine fuzzy set 

In this section, we start with the novel idea of fuzzy set, which is known as (𝑝, 𝑞)-fractional linear 

Diophantine fuzzy set. 

Definition 8. Let us have a fixed universe 𝐸 and its sub-set ℒ. The set 

ℒ = {(𝑥, 〈𝛹(𝑥), 𝜕(𝑥)〉(𝑝,𝑞), 〈𝛼, 𝛽〉(𝑝,𝑞)): for all 𝑥 ∈ 𝐸}, 

where 0 ≤
𝛼𝛹(𝑥)

𝑝
+

𝛽𝜕(𝑥)

𝑞
≤ 1  with 0 ≤

𝛼

𝑝
+

𝛽

𝑞
≤ 1 , see Figure 4 and 𝑝, 𝑞 ≥ 2 , is called (𝑝, 𝑞) -

fractional linear Diophantine fuzzy set ((𝑝, 𝑞) -𝐹𝐿𝐷𝐹𝑆 ) and functions 𝛹, 𝜕 ∶ 𝐸 → [0, 1]  indicate the 

degree of membership (validity, etc.) and non-membership (non-validity, etc.) of element 𝑥 ∈ 𝐸 to a fixed 

set ℒ ⊆ 𝐸, where 𝛼 and 𝛽 are 𝑅𝑃s that support in the identification or description of a particular model. 

uow, we can define also function 𝜋: 𝐸 →  [0, 1] by means of  

ɤ𝜋(𝑥) = 1 −
𝛼𝛹(𝑥)

𝑝
+

𝛽𝜕(𝑥)

𝑞
. 
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and it corresponds to degree of indeterminacy (uncertainty, etc.), where ɤ is 𝑅𝑃 is a direct link with 

degree of indeterminacy.  

3.1. Analysis 

The 𝑅𝑃s serve to define and classify a given system, and they also alter the system’s physical 

meaning or sense. They do away with limitations and increase the grade space utilized in (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆. 

The proposed method of (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 is more efficient and flexible than other approaches due to the 

addition of values (𝑝, 𝑞) in the fraction of 𝑅𝑃s (see Figure 4). This method constructs strong relation 

with multi-attribute decision making (𝑀𝐴𝐷𝑀) problems. 

Representation of curve 0 ≤
𝛼

𝑝
+

𝛽

𝑞
≤ 1, 𝑝, 𝑞 ≥ 2 

 

Figure 4. Curve representation of parameters of (𝑝, 𝑞) -fractional linear Diophantine 

fuzzy set for different values of 𝑝 and 𝑞. 

For convenience, we can write ℒ = (〈𝛹, 𝜕〉(𝑝,𝑞), 〈𝛼, 𝛽〉(𝑝,𝑞)) to represent a (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆. 

3.2. Interpretation of sensitivity analysis and comparison 

Definition 9. For each value of 𝑝, 𝑞 ≥ 2 , the complete square with vertices ((𝛹, 𝜕), (0, 0)) , 

((𝛹, 𝜕), (0, 1)), ((𝛹, 𝜕), (1, 1)) and ((𝛹, 𝜕), (1, 0)) is achieved. Therefore, there is no sensitivity of 

the values in the 𝑅𝑃s of (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 to (𝑝, 𝑞). All points within the square that meet the criterion 
𝛼

𝑝
+

𝛽

𝑞
≤ 1 and 𝑝, 𝑞 ≥ 2, as shown in Figure 5. uote that the dark blue shading covering the region 

inside the square. For 𝑝, 𝑞 ≥ 2, the graph is illustrated in Figures 3−5. 
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Graph of  0 ≤
𝛼

𝑝
+

𝛽

𝑞
≤ 1, 𝑝, 𝑞 ≥ 2 

 

Figure 5. Sensitivity analysis of parameters of (𝑝, 𝑞)-fractional linear Diophantine fuzzy set. 

In Figure 6, the dotted lines depict the curves for the condition 
𝛼

𝑝
+

𝛽

𝑞
≤ 1 with varying 𝑝 = 𝑞 values, 

while the solid lines represent the curves for the condition 𝛼𝑞 + 𝛽𝑞 ≤ 1 with constant 𝑞 values.  

Comparison of 0 ≤
𝛼

𝑝
+

𝛽

𝑞
≤ 1 & 0 ≤ 𝛼𝑞 + 𝛽𝑞 ≤ 1, 𝑝 = 𝑞 ≥ 2 

 

Figure 6. Comparison analysis between parameters of two fuzzy sets. 

Definition 10. A (𝑝, 𝑞)-fractional linear Diophantine fuzzy number ((𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑁) is denoted and 

defined as 

ℒ = {〈𝛹, 𝜕〉(𝑝,𝑞), 〈𝛼, 𝛽〉(𝑝,𝑞)}, 

where ℒ represent the (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑁 with conditions; 

(i) 0 ≤
𝛼

𝑝
+

𝛽

𝑞
≤ 1, 𝑝, 𝑞 ⩾ 2, 

(ii) 0 ≤
𝛼𝛹(𝑥)

𝑝
+

𝛽𝜕(𝑥)

𝑞
≤ 1, 
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(iii) 0 ≤ 𝛼, 𝛹(𝑥), 𝛽, 𝜕(𝑥) ≤ 1. 

For the sake of simplicity, the set of (𝑝, 𝑞) -fractional linear Diophantine fuzzy numbers 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠). 

uext definition is about absolute (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 and null or empty (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆. 

Definition 11. A (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 on 𝐸 of the form 

 1ℒ = {(𝑥, (1,1), (1,1)): 𝑥 ∈ 𝐸} is called absolute (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 and 

 0ℒ = {(𝑥, (0,0), (0,0)): 𝑥 ∈ 𝐸} is called empty or null (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆. 

It is noteworthy to notice that these definitions differ from the one given in [Riaz and Hashim] for 

absolute and null (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s.  

It is important to remember that the (𝑝, 𝑞)-fractional linear Diophantine space grows as the rung q 

increases. As a result, the boundary limits have a larger search space that can represent a wider range 

of the fuzzy data. 

3.3. Basic operations on (𝑝, 𝑞)-fractional linear Diophantine fuzz sets 

In this section, we propose some of the basic operations on (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s like inclusion, union, 

intersection, complement, and some compositions as well as some properties are also illustrated. For 

the sake of easy understanding, we will take the following three (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s over fixed universe 𝐸: 

ℒ = {(𝑥, 〈𝛹ℒ(𝑥), 𝜕ℒ(𝑥)〉(𝑝,𝑞), 〈𝛼ℒ , 𝛽ℒ〉(𝑝,𝑞)) ∶ for all 𝑥 ∈ 𝐸}, 

𝑌 = {(𝑥, 〈𝛹𝑌(𝑥), 𝜕𝑌(𝑥)〉(𝑝,𝑞), 〈𝛼𝑌, 𝛽𝑌〉(𝑝,𝑞)) ∶ for all 𝑥 ∈ 𝐸}, 

𝑍 = {(𝑥, 〈𝛹𝑍(𝑥), 𝜕𝑍(𝑥)〉(𝑝,𝑞), 〈𝛼𝑍 , 𝛽𝑍〉(𝑝,𝑞)) ∶ for all 𝑥 ∈ 𝐸}. 

Definition 12. Let ℒ and 𝑌 be two (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s. Then, 

o ℒ ⊆ 𝑌 iff 𝛹ℒ(𝑥) ≼ 𝛹𝑌(𝑥), 𝜕ℒ(𝑥) ≽ 𝜕𝑌(𝑥), 𝛼ℒ ≼ 𝛼𝑌 and 𝛽ℒ ≽ 𝛽𝑌, 

o ℒ = 𝑌 iff ℒ ⊆ 𝑌 and ℒ ⊇ 𝑌, 

o ℒ ∪ 𝑌 = {(𝑥, 〈⋎ (𝛹ℒ(𝑥), 𝛹𝑌(𝑥)),⋏ (𝜕ℒ(𝑥), 𝜕𝑌(𝑥))〉(𝑝,𝑞), 〈⋎ (𝛼ℒ, 𝛼𝑌),⋏ (𝛽ℒ, 𝛽𝑌)〉(𝑝,𝑞)) ∶

for all 𝑥 ∈ 𝐸}, 

o ℒ ∩ 𝑌 = {(𝑥, 〈⋏ (𝛹ℒ(𝑥), 𝛹𝑌(𝑥)),⋎ (𝜕ℒ(𝑥), 𝜕𝑌(𝑥))〉(𝑝,𝑞), 〈⋏ (𝛼ℒ, 𝛼𝑌),⋎ (𝛽ℒ, 𝛽𝑌)〉(𝑝,𝑞)) ∶

for all 𝑥 ∈ 𝐸},  

o ℒ𝑐 = {(𝑥, 〈𝜕ℒ(𝑥), 𝛹ℒ(𝑥)〉(𝑝,𝑞), 〈 𝛽ℒ, 𝛼ℒ〉(𝑝,𝑞)) ∶ for all 𝑥 ∈ 𝐸}. 

Proposition 1. Let ℒ, 𝑌 and 𝑍 be three (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s. Then, following properties holds such that 

1) ℒ ⊆ 𝑌 and 𝑌 ⊆ 𝑍 implies ℒ ⊆ 𝑍; (Inclusion property), 

2) ℒ ∪ 𝑌 = 𝑌 ∪ ℒ and ℒ ∩ 𝑌 = 𝑌 ∩ ℒ; (Commutative law), 



35513 

AIMS Mathematics  Volume 9, Issue 12, 35503–35532. 

3) ℒ ∪ (𝑌 ∪ 𝑍) = (ℒ ∪ 𝑌) ∪ 𝑍 and ℒ ∩ (𝑌 ∩ 𝑍) = (ℒ ∩ 𝑌) ∩ 𝑍; (Associative law) 

4) ℒ ∪ (𝑌 ∩ 𝑍) = (ℒ ∪ 𝑌) ∩ (ℒ ∪ 𝑍) and ℒ ∩ (𝑌 ∪ 𝑍) = (ℒ ∩ 𝑌) ∪ (ℒ ∩ 𝑍); (Distributive laws), 

5) De-Morgan’s Laws holds for ℒ and 𝑌. 

Proof. (1) Consider ℒ ⊆ 𝑌 and 𝑌 ⊆ 𝑍, then by Definition 12, we have  

𝛹ℒ(𝑥) ≼ 𝛹𝑌(𝑥) , 𝜕ℒ(𝑥) ≽ 𝜕𝑌(𝑥),
𝛼ℒ ≼ 𝛼𝑌 , 𝛽ℒ ≽ 𝛽𝑌,

         (1) 

and  

𝛹𝑌(𝑥) ≼ 𝛹𝑍(𝑥), 𝜕𝑌(𝑥) ≽ 𝜕𝑍(𝑥),
𝛼𝑌 ≼ 𝛼𝑍, 𝛽𝑌 ≽ 𝛽𝑍.

         (2) 

Combining (1) and (2), we have 

𝛹ℒ(𝑥) ≼ 𝛹𝑌(𝑥) ≼  𝛹𝑍(𝑥), 𝜕ℒ(𝑥) ≽ 𝜕𝑌(𝑥) ≽ 𝜕𝑍(𝑥),
𝛼ℒ ≼ 𝛼𝑌 ≼ 𝛼𝑍, 𝛽ℒ ≽ 𝛽𝑌 ≽ 𝛽𝑍.

     (3) 

From (3), we conclude that  

𝛹ℒ(𝑥) ≼  𝛹𝑍(𝑥), 𝜕ℒ(𝑥) ≽ 𝜕𝑍(𝑥),
𝛼ℒ ≼  𝛼𝑍, 𝛽ℒ ≽ 𝛽𝑍.

 

Hence, ℒ ⊆ 𝑍. 

Similarly, the remailing results 2)−5) can be proved easily. 

3.4. Comparison between two (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁s 

It is well known fact that comparison laws in fuzzy theory play a critical role, especially in the 

field of decision making and some other optimization problems. These laws enable us to differentiate 

the two (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s as well as sometime these rules tell us the worth of the relation between these 

two (𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆s that this relation is how much strong. 

Definition 13. Let ℒ = {〈𝛹ℒ, 𝜕ℒ〉(𝑝,𝑞), 〈𝛼ℒ, 𝛽ℒ〉(𝑝,𝑞)}  be a (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁 . Then, score function 

(𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ)) and accuracy functions (𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ)) of ℒ are characterized and characterized 

as 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) =
1

2
[𝛹ℒ(𝑥) −  𝜕ℒ(𝑥) + 𝛼 − 𝛽],      (4) 

where, −1 ≤ 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) ≤ 1 and 𝑝, 𝑞 ≥ 2. 

𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) =
1

2
[

𝛹ℒ(𝑥)+ 𝜕ℒ(𝑥)

2
+

𝛼+𝛽

2
],      (5) 

where, 0 ≤ 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) ≤ 1. 

The following rules define the comparison between two (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 ℒ1 and ℒ2 such that 

▪ ℒ1 is higher ranked than ℒ2 if 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) > 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2). 

▪ ℒ1 is lower ranked than ℒ2 if 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) < 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2). 

When 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) = 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2) for two (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠, then 
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▪ ℒ1 is higher ranked than ℒ2 if 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) > 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2). 

▪ ℒ1 is lower ranked than ℒ2 if 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) < 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2). 

▪ ℒ1 is similar ℒ2 if 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) = 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2). 

Example 1. Let ℒ1 = (〈1, .9〉(2,2), 〈1,1〉(2,2))  and ℒ2 = (〈. 4, .9〉(3,3), 〈1,1〉(3,3))  be two alternatives 

with (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠. Then, score function is utilized to determine the preferred option such that 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) =
1

2
[1 − .9 + 0] = .05, 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2) =
1

2
[. 4 − .9 + 0] = −.25. 

Hence, option ℒ2 is preferable to option ℒ1. 

Example 2. If (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠  for two alternative are ℒ2 = (〈1, .5〉(2,2), 〈1,1〉(2,2))  and ℒ2 =

(〈. 9, .4〉(2,2), 〈1,1〉(2,2)), then score function is utilized to determine the preferred option such that 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) =
1−.5

2
= .25, 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2) =
.9−.4

2
= .25. 

Thus, we are unsure of which option is preferable in this situation. However, using Eq (5), we can get 

𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ1) =
1+.5

4
+

1

2
= .88, 

𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ2) =
.9+.4

4
+

1

2
= .83.  

As a result, alternative ℒ1 is superior to alternative ℒ2. 

4. The (𝒑, 𝒒)-fractional linear Diophantine fuzzy weighted averaging aggregation operators 

In this section, we propose some types of (𝑝, 𝑞)-fractional linear Diophantine fuzzy weighted 

averaging aggregation operators. First, we define the (𝑝, 𝑞) -fractional linear Diophantine fuzzy 

weighted averaging aggregation operator.  

Definition 14. Let ℒ1 = {〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)}  and ℒ2 = {〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)}  be two 

(𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑁s and 𝜆 > 0 

ℒ1⨁ℒ2

= (〈〈 √(𝛹1)𝑝 + (𝛹2)𝑝 − (𝛹1)𝑝(𝛹2)𝑝
𝑝

, 𝛽1𝛽2 〉 , 𝜕1𝜕2〉(𝑝,𝑞) , 〈 √(𝛼1)𝑝 + (𝛼2)𝑝 − (𝛼1)𝑝(𝛼2)𝑝
𝑝

, 𝛽1𝛽2 〉(𝑝,𝑞) ), 

𝜆ℒ1 = (〈 √1 − (1 − (𝛹1)𝑝)𝜆
𝑝

, 𝜕1
𝜆〉(𝑝,𝑞) , 〈 √1 − (1 − (𝛼1)𝑝)𝜆

𝑝
, 𝛽1

𝜆〉(𝑝,𝑞)).  

For the sake of simplicity, the set of (𝑝, 𝑞) -fractional linear Diophantine fuzzy numbers 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠) on 𝐸 is characterized by (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸). 
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Definition 15. The (𝑝, 𝑞) -fractional linear Diophantine fuzzy weighted averaging aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 on the set 𝐸 is characterized with the 

help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with weight vector 

𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1    and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) = ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝑗. 

Theorem 1. The (𝑝, 𝑞) -fractional linear Diophantine fuzzy weighted averaging aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 on the set 𝐸 is characterized with the 

help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with weight vector 

𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝑗  

= (〈 √1 − ∏ (1 − (𝛹𝑗)
𝑝

)
𝜔𝑗𝑛

𝑗=1

𝑝

, ∏ 𝜕𝑗
𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞) , 〈 √1 − ∏ (1 − (𝛼𝑗)
𝑝

)
𝜔𝑗𝑛

𝑗=1

𝑝

, ∏ 𝛽𝑗
𝜔𝑗𝑛

𝑗=1  〉(𝑝,𝑞)). 

This operator can easily be proved with support of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠  operations and mathematical -

induction. Here, 𝜇 and 𝜈 are representing the membership and non-membership function. 𝜔 is called 

weight function, ℒ𝑗  are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠, where 𝑗 ∈ 𝑁. 

Proof. The demonstration of the proof is similar to the operators of intuitionistic fuzzy sets, so it is omitted. 

Definition 16. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy ordered weighted averaging aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with the help of 

this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 𝜔 =
(𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛

𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … , ℒ𝑛) = ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝜎(𝑗),  

where (𝜎(1), 𝜎(2), 𝜎(3), … … … … , 𝜎(𝑛)) is the arrangement of 𝑗 ∈ 𝑁, for which ℒ𝜎(𝑗−1) ≥ ℒ𝜎(𝑗), for 

all 𝑗 ∈ 𝑁. 

Theorem 5. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy ordered weighted averaging aggregation 
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((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with the help of 

this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 𝜔 =
(𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛

𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … , ℒ𝑛) 

= ∏ 𝜔𝑗

𝑛

𝑗=1

ℒ𝜎(𝑗) 

= (〈 √1 − ∏(1 − (𝛹𝜎(𝑗))
𝑝

)
𝜔𝑗

𝑛

𝑗=1

𝑝

, ∏ 𝜕𝜎(𝑗)
𝜔𝑗

𝑛

𝑗=1

〉(𝑝,𝑞) , 〈 √1 − ∏(1 − (𝛼𝜎(𝑗))
𝑝

)
𝜔𝑗

𝑛

𝑗=1

𝑝

, ∏ 𝛽𝜎(𝑗)
𝜔𝑗

𝑛

𝑗=1

 〉(𝑝,𝑞)), 

where (𝜎(1), 𝜎(2), 𝜎(3), … … … … , 𝜎(𝑛)) is the arrangement of 𝑗 ∈ 𝑁, for which ℒ𝜎(𝑗−1) ≥ ℒ𝜎(𝑗), for 

all 𝑗 ∈ 𝑁. 

Proof. The demonstration of the proof is similar to the operators of intuitionistic fuzzy sets, so it is omitted. 

Definition 17. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy hybrid weighted averaging aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with the help of 

this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 𝜔 =
(𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛

𝑗=1   , and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … , ℒ𝑛 = (〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} 

are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝜎(𝑗)

⋆ , 

where ℒ𝜎(𝑗)
⋆   is biggest 𝑗 th weighted (𝑝, 𝑞) -fractional linear Diophantine fuzzy values ℒ𝑗

⋆ (ℒ𝑗
⋆ =

(ℒ𝑗)
𝑛𝜔𝑗

, 𝑗 ∈ 𝑁)  and 𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  be the weights of ℒ𝑗
⋆  by means of 𝜔 > 0  with 

∑ 𝜔𝑗 = 1𝑛
𝑗=1 . 

Theorem 10. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy hybrid weighted averaging aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴 ) operator on "𝑛"  numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠  is characterized with the help of 

this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 𝜔 =
(𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛

𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … , ℒ𝑛 = (〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} 

are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝜎(𝑗)

⋆   

=(〈 √1 − ∏ (1 − (𝛹𝜎(𝑗)
⋆ )

𝑝
)

𝜔𝑗𝑛
𝑗=1

𝑝

, ∏ 𝜕𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞) , 〈 √1 − ∏ (1 − (𝛼𝜎(𝑗)
⋆ )

𝑝
)

𝜔𝑗𝑛
𝑗=1

𝑝

, ∏ 𝛽𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1  〉(𝑝,𝑞)), 
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where ℒ𝜎(𝑗)
⋆   is biggest 𝑗 th weighted (𝑝, 𝑞) -fractional linear Diophantine fuzzy values ℒ𝑗

⋆ (ℒ𝑗
⋆ =

𝑛𝜔𝑗ℒ𝑗 , 𝑗 ∈ 𝑁)  and 𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  be the weights of ℒ𝑗
⋆  by means of 𝜔 > 0  with 

∑ 𝜔𝑗 = 1𝑛
𝑗=1 . 

Proof. The demonstration of the proof is similar to the operators of intuitionistic fuzzy sets, so it is omitted. 

It is interesting to note that if 𝜔 = (
1

𝑛
,

1

𝑛
,

1

𝑛
, … … … ,

1

𝑛
),  then (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴  and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 operators are considered to be exceptional cases of(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴 operator. 

Thus, it concludes that (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operators are the extension of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴  and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 operators. 

5. The (𝒑, 𝒒)-fractional linear Diophantine fuzzy weighted geometric aggregation operators 

In this section, we propose some (𝑝, 𝑞)-fractional linear Diophantine fuzzy weighted geometric 

aggregation operators. First, we define the (𝑝, 𝑞) -fractional linear Diophantine fuzzy weighted 

geometric aggregation operator.  

Definition 18. Let ℒ1 = {〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)}  and ℒ2 = {〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)}  be two 

(𝑝, 𝑞)-fractional linear Diophantine numbers and 𝜆 > 0 

ℒ1⨂ℒ2 = (〈𝛹1𝛹2, √(𝜕1)𝑞 + (𝜕2)𝑞 − (𝜕1)𝑞(𝜕2)𝑞𝑞
〉(𝑝,𝑞), 〈𝛼1𝛼2, √(𝛽1)𝑞 + (𝛽2)𝑞 − (𝛽1)𝑞(𝛽2)𝑞𝑞

〉(𝑝,𝑞)), 

ℒ1
𝜆 = (〈𝛹1

𝜆, √1 − (1 − (𝜕1)𝑞)𝜆
𝑞

〉(𝑝,𝑞) , 〈(𝛼1)𝜆, √1 − (1 − (𝛽1)𝑞)𝜆
𝑞

〉(𝑝,𝑞)). 

Definition 19. The (𝑝, 𝑞) -fractional linear Diophantine fuzzy weighted geometric aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 on the set 𝐸 is characterized with the 

help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with weight vector 

𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1   and it can be computed as follows: When 

{ℒ1 = (〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) = ∏ ℒ𝑗
𝜔𝑗

𝑛

𝑗=1

. 

Theorem 11. The (𝑝, 𝑞) -fractional linear Diophantine fuzzy weighted geometric aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 on the set 𝐸 is characterized with the 

help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with weight vector 

𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ ℒ𝑗
𝜔𝑗𝑛

𝑗=1   
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= (〈∏ 𝛹𝑗
𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝜕𝑗)
𝑞

)
𝜔𝑗𝑛

𝑗=1

𝑞

〉(𝑝,𝑞) , 〈∏ 𝛼𝑗
𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝛽𝑗)
𝑞

)
𝜔𝑗𝑛

𝑗=1

𝑞

〉(𝑝,𝑞)). 

This operator can be proven with support of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠  operations and mathematical 

induction. Here, 𝜇 and 𝜈 are representing the membership and non-membership function. 𝜔 is called 

weight function and ℒ𝑗  is (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠, where 𝑗 ∈ 𝑁. 

Proof. The demonstration of the proof is similar to the operators of intuitionistic fuzzy sets, so it is omitted. 

Definition 20. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy ordered weighted geometric aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝑂𝑊𝐺𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with the help of this 

transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with 𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇 

with ∑ 𝜔𝑗 = 1𝑛
𝑗=1  and it can be computed as follows: When {ℒ1 = (〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 =

(〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 = (〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … , ℒ𝑛) 

= ∏ ℒ𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1   

where (𝜎(1), 𝜎(2), 𝜎(3), … … … , 𝜎(𝑛)) is the arrangement of 𝑗 ∈ 𝑁, for which ℒ𝜎(𝑗−1) ≥ ℒ𝜎(𝑗), for all 

𝑗 ∈ 𝑁. 

Theorem 15. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy ordered weighted geometric aggregation 

((𝑝, 𝑞)‑𝐹𝐿𝐷𝑂𝑊𝐺𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with the help of this 

transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) associated with 𝜔 = (𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇 

with ∑ 𝜔𝑗 = 1𝑛
𝑗=1  and it can be computed as follows: When {ℒ1 = (〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 =

(〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 = (〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … , ℒ𝑛) 

= ∏ ℒ𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1   

= (〈∏ 𝛹𝜎(𝑗)
𝜔𝑗

𝑛

𝑗=1

, √1 − ∏(1 − (𝜕𝜎(𝑗))
𝑞

)
𝜔𝑗

𝑛

𝑗=1

𝑞

〉(𝑝,𝑞) , 〈∏ 𝛼𝜎(𝑗)
𝜔𝑗

𝑛

𝑗=1

, √1 − ∏(1 − (𝛽𝜎(𝑗))
𝑞

)
𝜔𝑗

𝑛

𝑗=1

𝑞

 〉(𝑝,𝑞)), 

where (𝜎(1), 𝜎(2), 𝜎(3), … … … , 𝜎(𝑛)) is the arrangement of 𝑗 ∈ 𝑁, for which ℒ𝜎(𝑗−1) ≥ ℒ𝜎(𝑗), for all 

𝑗 ∈ 𝑁. 

Proof. The demonstration of the proof is similar to the operators of intuitionistic fuzzy sets, so it is omitted. 

Definition 21. The (𝑝, 𝑞)-fractional linear Diophantine fuzzy hybrid weighted geometric averaging 

aggregation ((𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴) operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized with 

the help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 𝜔 =
(𝜔1, 𝜔2, 𝜔3, … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛

𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  
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(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) = ∏ ℒ𝜎(𝑗)
⋆ 𝜔𝑗 ,

𝑛

𝑗=1

 

where ℒ𝜎(𝑗)
⋆   is biggest 𝑗 th weighted (𝑝, 𝑞) -fractional linear Diophantine fuzzy values ℒ𝑗

⋆ (ℒ𝑗
⋆ =

(ℒ𝑗)
𝑛𝜔𝑗

, 𝑗 ∈ 𝑁)  and 𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  be the weights of ℒ𝑗
⋆  by means of 𝜔 > 0  with 

∑ 𝜔𝑗 = 1𝑛
𝑗=1 . 

Theorem 20. The (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 operator on “𝑛” numbers of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠 is characterized 

with the help of this transformation Ω: (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸) → (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸)  associated with 

𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1   and it can be computed as follows: When {ℒ1 =

(〈𝛹1, 𝜕1〉(𝑝,𝑞), 〈𝛼1, 𝛽1〉(𝑝,𝑞)), ℒ2 = (〈𝛹2, 𝜕2〉(𝑝,𝑞), 〈𝛼2, 𝛽2〉(𝑝,𝑞)), … … … , ℒ𝑛 =

(〈𝛹𝑛, 𝜕𝑛〉(𝑝,𝑞), 〈𝛼𝑛, 𝛽𝑛〉(𝑝,𝑞))} are (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁𝑠,  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ ℒ𝜎(𝑗)
⋆ 𝜔𝑗

𝑛

𝑗=1

 

= (〈∏ 𝛹𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝜕𝜎(𝑗)𝛹𝜎(𝑗)
⋆ )

𝑞
)

𝜔𝑗𝑛
𝑗=1

𝑞

〉(𝑝,𝑞) , 〈∏ 𝛼𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝛽𝜎(𝑗)
⋆ )

𝑞
)

𝜔𝑗𝑛
𝑗=1

𝑞

〉(𝑝,𝑞)), 

where ℒ𝜎(𝑗)
⋆   is biggest 𝑗 th weighted (𝑝, 𝑞) -fractional linear Diophantine fuzzy values ℒ𝑗

⋆ (ℒ𝑗
⋆ =

(ℒ𝑗)
𝑛𝜔𝑗

, 𝑗 ∈ 𝑁)  and 𝜔 = (𝜔1, 𝜔2, 𝜔3, … … … , 𝜔𝑛)𝑇  be the weights of ℒ𝑗
⋆  by means of 𝜔 > 0  with 

∑ 𝜔𝑗 = 1𝑛
𝑗=1 . 

It is interesting to note that if 𝜔 = (
1

𝑛
,

1

𝑛
,

1

𝑛
, … … … ,

1

𝑛
),  then (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴  and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴 operators are considered to be exceptional cases of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 operator. 

Thus, it concludes that (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴  operators are the extension of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴  and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴 operators. 

6. 𝑴𝑨𝑫𝑴 approach using suggested techniques 

The 𝑀𝐴𝐷𝑀 technique is highly effective and well-suited for selecting the optimal choice from a 

limited set of possibilities due to its structure. To enhance the effectiveness and quality of previously 

proposed methods, we introduce a section on the 𝑀𝐴𝐷𝑀  technique procedure incorporating four 

appropriate operators: The (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴  operator, and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operator. To assess some real-world issues, our objective is to calculate the 

decision-making process. 

As a collection of finite values of alternatives, we take into consideration 𝐸 = {𝐸1, 𝐸2, … , 𝐸𝑚}. In 

addition, we choose a finite set of attributes, including, 𝒟̌ = {𝒟̌1, 𝒟̌2, … , 𝒟̌𝑛} are chosen along with a 

weight vector 𝜔 = (𝜔1, 𝜔2, … , 𝜔𝑛)𝑇  such that 𝜔𝑗 > 0  with ∑ 𝜔𝑗 = 1𝑛
𝑗=1  , for every alternative. 

Additionally, in order to calculate the matrix that assesses the optimal choice after taking the decision-

making process into account, we hope to assign the (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹 values to each alternative, observed 

that 𝛹𝑗   and 𝜕𝑗  denote the positive and negative grades, where 𝛼𝑗  and 𝛽𝑗  are reference parameters 

corresponding to alternative (𝐸𝑗) that satisfy the attribute (𝒟̌𝑗) provided by the decision makers, where 
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0 ≤
𝛼𝑗𝛹𝑗(𝑥)

𝑝
+

𝛽𝑗𝜕𝑗(𝑥)

𝑞
≤ 1  and 0 ≤

𝛼𝑗

𝑝
+

𝛽𝑗

𝑞
≤ 1  with 𝑝, 𝑞 ≥ 2 . Additionally, we stated the refusal 

degree ɤ𝑗𝜋(𝑥) = 1 −
𝛼𝑗𝛹𝑗

𝑝
+

𝛽𝑗𝜕𝑗

𝑞
. As a result, in order to accomplish the aforementioned approach, we 

take into account a few real-world applications and attempt to assess them using theoretical 

frameworks. 

6.1. The suggested algorithm 

The primary impact of this subsection is to assess a process for illustrating the problem that will be 

addressed in the following section. The primary steps of the decision-making approach are outlined below: 

Step 1. Determine a team matrix by incorporating their values into the (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁  form. 

Additionally, while we assign the values, we have two opinions “profit and cost”, such as if we have 

cost-type data, then our first priority is to normalize it otherwise not. 

Step 2. Using the six various types of operators “(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 

operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴  operator, 

and (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 operator” aggregate the collection of data into a singleton set such that 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝑗  

= (〈1 − ∏ (1 − 𝛹𝑗)
𝜔𝑗𝑛

𝑗=1 , ∏ 𝜕𝑗
𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞), 〈 √1 − ∏ (1 − (𝛼𝑗)
𝑞

)
𝜔𝑗𝑛

𝑗=1

𝑞

, ∏ 𝛽𝑗
𝜔𝑗𝑛

𝑗=1  〉(𝑝,𝑞)).  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝜎(𝑗)  

= (〈1 − ∏ (1 − 𝛹𝜎(𝑗))
𝜔𝑗𝑛

𝑗=1 , ∏ 𝜕𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞), 〈 √1 − ∏ (1 − (𝛼𝜎(𝑗))
𝑞

)
𝜔𝑗𝑛

𝑗=1

𝑞

, ∏ 𝛽𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1  〉(𝑝,𝑞)).  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ 𝜔𝑗
𝑛
𝑗=1 ℒ𝜎(𝑗)

⋆   

= (〈 √1 − ∏ (1 − (𝛹𝜎(𝑗)
⋆ )

𝑝
)

𝜔𝑗𝑛
𝑗=1

𝑝

, ∏ 𝜕𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞) , 〈 √1 − ∏ (1 − (𝛼𝜎(𝑗)
⋆ )

𝑝
)

𝜔𝑗𝑛
𝑗=1

𝑝

, ∏ 𝛽𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1  〉(𝑝,𝑞)). 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ ℒ𝑗
𝜔𝑗𝑛

𝑗=1   

= (〈∏ 𝛹𝑗
𝜔𝑗𝑛

𝑗=1 , 1 − ∏ (1 − 𝜕𝑗)
𝜔𝑗𝑛

𝑗=1 〉(𝑝,𝑞), 〈∏ 𝛼𝑗
𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝛽𝑗)
𝑝

)
𝜔𝑗𝑛

𝑗=1

𝑝

〉(𝑝,𝑞)).  
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(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … , ℒ𝑛) 

= ∏ ℒ𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1   

= (〈∏ 𝛹𝜎(𝑗)
𝜔𝑗𝑛

𝑗=1 , 1 − ∏ (1 −𝑛
𝑗=1

𝜕𝜎(𝑗))
𝜔𝑗〉(𝑝,𝑞), 〈∏ 𝛼𝜎(𝑗)

𝜔𝑗𝑛
𝑗=1 , √1 − ∏ (1 − (𝛽𝜎(𝑗))

𝑝
)

𝜔𝑗𝑛
𝑗=1

𝑝

 〉(𝑝,𝑞)).  

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴𝜔(ℒ1, ℒ2, ℒ3, … … … , ℒ𝑛) 

= ∏ ℒ𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1   

= (〈∏ 𝛹𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝜕𝜎(𝑗)𝛹𝜎(𝑗)
⋆ )

𝑞
)

𝜔𝑗𝑛
𝑗=1

𝑞

〉(𝑝,𝑞) , 〈∏ 𝛼𝜎(𝑗)
⋆ 𝜔𝑗𝑛

𝑗=1 , √1 − ∏ (1 − (𝛽𝜎(𝑗)
⋆ )

𝑞
)

𝜔𝑗𝑛
𝑗=1

𝑞

〉(𝑝,𝑞)).  

Step 3. Determine the aggregated theory’s score values, such as 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) =
1

2
[𝛹(𝑥) −  𝜕(𝑥) + 𝛼 − 𝛽], 

where, −1 ≤ 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) ≤ 1 and 𝑝, 𝑞 ≥ 2. 

In the event that the score function is not successful, then the accuracy function will be used like 

𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) =
1

2
[

𝛹(𝑥)+ 𝜕(𝑥)

2
+

𝛼+𝛽

2
], 

where, 0 ≤ 𝐻(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(ℒ) ≤ 1. 

Step 4. Try to identify the standout among the alternatives by analyzing the ranking values based on 

the score values. 

To improve the value of the assessed techniques and enable the practical application of the 

aforementioned procedure, we take into consideration a number of numerical examples that 

demonstrate the superiority and validity of the invented operators. The suggested algorithm’s 

geometrical interpretation is presented in the form of Figure 7. 
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Figure 7. Geometrical interpretation of the proposed algorithm. 

6.2. Numerical example 

In this section, we examine the green supply chain, also known as the sustainable supply chain or 

eco-friendly supply chain. This method is utilized to determine the optimal approach for import or 

export while considering environmental impact. In this example, we consider four green supply chains 

and evaluate the best one based on the proposed theory, for instance: 

𝐸1 : A Closed-Loop Supply Chain is a supply chain management system that integrates forward 

logistics with reverse logistics. It focuses on the lifecycle of a product, from design and manufacturing 

to consumption, disposal, and recycling. The aim is to create a sustainable and efficient process that 

minimizes waste, reduces environmental impact, and maximizes resource utilization. 

𝐸2: A Lean and Green Supply Chain combines the principles of lean manufacturing and supply chain 

management with sustainable and eco-friendly practices. The goal is to enhance efficiency, reduce 

waste, and minimize the environmental impact of supply chain operations. 

𝐸3:  A Low-Carbon Supply Chain focuses on reducing greenhouse gas emissions throughout the 

entire supply chain process. This approach aligns with global efforts to combat climate change by 

minimizing carbon footprints from production, transportation, and distribution activities. 

𝐸4: A Biomimicry-Inspired Supply Chain leverages the principles and strategies observed in nature 

to optimize supply chain processes. Biomimicry, the practice of learning from and emulating nature’s 

designs and processes, can lead to more efficient, sustainable, and resilient supply chains. 

We consider the four alternatives above, and to select the best one, we use the following 

attributes/criteria: 

𝒟̌1:  Growth analysis typically refers to the examination and evaluation of trends and patterns in 

various aspects of business or economic growth over time. It involves assessing factors that contribute 

to growth, understanding their impacts, and forecasting future trends. 

𝒟̌2: Social impact refers to the effect an organization’s actions and activities have on the surrounding 
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community and society at large. It goes beyond financial outcomes to include the positive or negative 

changes experienced by individuals, groups, or communities as a result of these actions. Social impact 

encompasses a wide range of dimensions, including economic, cultural, environmental, and health-

related aspects. 

𝒟̌3: Environmental impact refers to the effect of human activities on the environment, encompassing 

both the positive and negative consequences on ecosystems, natural resources, and overall ecological 

balance. It is crucial to assess and mitigate environmental impact to ensure sustainable development 

and the preservation of natural resources for future generations.  

𝒟̌4:  Political impact refers to the influence and consequences of political decisions, actions, and 

events on individuals, communities, organizations, and societies at large. It encompasses a wide range 

of effects on governance, policies, public opinion, and socio-economic conditions. 

𝒟̌5: Economic impact refers to the effect that an event, policy, decision, or action has on the economy 

of a region, country, or the global economy. It encompasses a wide range of consequences, both direct 

and indirect, on various economic indicators, sectors, and stakeholders. 

Furthermore, we apply the weight vector as (. 32, .27, .17, .14, .1)𝑇 with ∑ 𝜔𝑗 = 1𝑛
𝑗=1 ; hence, we 

utilize the aforementioned procedure to evaluate the optimal choice. The primary steps of the decision-

making technique are outlined below: 

Step 1. Determine a team matrix by incorporating their values into the (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑁 form, see Table 1. 

Additionally, while we assign the values, we have two opinions “same type of data and different type 

of data”, such as if we have different type of data, then our first priority is to normalize such that 

ℒ𝑗 = {
(〈𝛹𝑗 , 𝜕𝑗〉(𝑝,𝑞), 〈𝛼𝑗 , 𝛽𝑗〉(𝑝,𝑞)),                𝑠𝑎𝑚𝑒 𝑡𝑦𝑝𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎

(〈𝜕𝑗 , 𝛹𝑗〉(𝑝,𝑞), 〈𝛽𝑗, 𝛼𝑗〉(𝑝,𝑞)), 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑡𝑦𝑝𝑒 𝑖𝑛𝑝𝑢𝑡 𝑑𝑎𝑡𝑎.
 

In this case, since the input data for all attributes is identical, there is no need to normalize the 

data. All alternatives and criteria in our specific problem are of the same nature. 

Table 1. Decision matrix of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹 information. 

𝑝 = 𝑞 = 3 𝐸1 𝐸2 𝐸3 𝐸4 

𝒟̆1 
(⟨1,0.959⟩, 
⟨0.798,0.733⟩) 

(⟨1,0.959⟩, 
⟨0.798,0.733⟩) 

(⟨1,0.959⟩, 
⟨0.798,0.733⟩) 

(⟨1,0.959⟩, 
⟨0.798,0.733⟩) 

𝒟̆2 
(⟨0.895,0.925⟩, 
⟨0.767,0.745⟩) 

(⟨0.895,0.925⟩, 
⟨0.767,0.745⟩) 

(⟨0.895,0.925⟩, 
⟨0.767,0.745⟩) 

(⟨0.895,0.925⟩, 
⟨0.767,0.745⟩) 

𝒟̆3 
(⟨1,0.92⟩, 

⟨0.7,0.812⟩) 

(⟨1,0.92⟩, 

⟨0.7,0.812⟩) 

(⟨1,0.92⟩, 

⟨0.7,0.812⟩) 

(⟨1,0.92⟩, 

⟨0.7,0.812⟩) 

 𝒟̆4 
(⟨0.882,0.949⟩, 
⟨0.836,0.691⟩) 

(⟨0.882,0.949⟩, 
⟨0.836,0.691⟩) 

(⟨0.882,0.949⟩, 
⟨0.836,0.691⟩) 

(⟨0.882,0.949⟩, 
⟨0.836,0.691⟩) 

 𝒟̆5 
(⟨0.862,0.9⟩, 
⟨0.7,0.837⟩) 

(⟨0.862,0.9⟩, 
⟨0.7,0.837⟩) 

(⟨0.862,0.9⟩, 
⟨0.7,0.837⟩) 

(⟨0.862,0.9⟩, 
⟨0.7,0.837⟩) 

Step 2. Using the six operators “ (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴  operator, 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴  operator, and 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 operator” aggregate the collection of data into a singleton set (Tables 2−7). 
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Table 2. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴. 

(⟨1,0.937735⟩, ⟨0.774703461,0.752904⟩) 

(⟨1,0.923953⟩, ⟨0.746329917,0.772672⟩) 

(⟨1,0.907838⟩, ⟨0.758168815,0.76754⟩) 

(⟨1,0.936066⟩, ⟨0.781357244,0.750463⟩) 

Table 3. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴. 

(⟨1,0.940863⟩, ⟨0.785099,0.745575⟩) 

(⟨1,0.91523⟩, ⟨0.748987,0.769711⟩) 

(⟨1,0.900818⟩, ⟨0.777094,0.745447⟩) 

(⟨1,0.940793⟩, ⟨0.800037,0.72855⟩) 

Table 4. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴. 

(⟨1,0.773252⟩, ⟨0.77068,0.321335⟩) 

(⟨1,0.728785⟩, ⟨0.738936,0.356436⟩) 

(⟨1,0.679256⟩, ⟨0.724187,0.347059⟩) 

(⟨1,0.767761⟩, ⟨0.767278,0.317188⟩) 

Table 5. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴. 

(⟨0.939525,0.940481⟩, ⟨0.767045,0.759433⟩) 

(⟨0.971579,0.933439⟩, ⟨0.734517,0.785833⟩) 

(⟨0.915158,0.926687⟩, ⟨0.745576,0.779970⟩) 

(⟨0.989593,0.944710⟩, ⟨0.77555,0.755742⟩) 

Table 6. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴. 

(⟨0.928775,0.942870⟩, ⟨0.779625,0.749449⟩) 

(⟨0.971579,0.929937⟩, ⟨0.745711,0.773024⟩) 

(⟨0.919911,0.952039⟩, ⟨0.78401,0.737912⟩) 

(⟨0.989593,0.94452⟩, ⟨0.791188,0.735606⟩) 

Table 7. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴. 

(⟨0.348342,0.948012⟩, ⟨0.77068,0.321335⟩) 

(⟨0.717301,0.93901⟩, ⟨0.738936,0.356436⟩) 

(⟨0.31178,0.936147⟩, ⟨0.724187,0.347059⟩) 

(⟨0.770857,0.955213⟩, ⟨0.767278,0.317188⟩) 

Step 3. Refer to Tables 8 and 9 to find the aggregated theory’s score values. 
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Table 8. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 score values. 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁 

𝑝 = 3, 𝑞 = 2 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸1) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸2) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸3) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸4) 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 -0.01982 -0.05263 -0.03057 -0.01111 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 -0.01704 -0.04376 -0.00636 0.23004 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴 0.290618 0.273823 0.290046 0.29167 

Table 9. (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴 score values. 

𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁 

𝑝 = 3, 𝑞 = 2 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸1) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸2) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸3) 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁(𝐸4) 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴 -0.0632 -0.09156 -0.10271 -0.02989 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴 -0.05095 -0.07062 -0.04737 -0.00039 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 -0.12259 0.027361 -0.18251 0.083372 

Step 4. Analyze the ranking values based on the score values and look for the standout alternative 

among the four; refer to Tables 10 and 11. 

Table 10. Ranking of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 operator. 

𝑝 = 3, 𝑞 = 2 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 𝐸4 > 𝐸1 > 𝐸3 > 𝐸2 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐴𝐴 𝐸4 > 𝐸3 > 𝐸1 > 𝐸2 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴 𝐸4 > 𝐸1 > 𝐸3 > 𝐸2 

Table 11. Ranking of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴 operator. 

𝑝 = 3, 𝑞 = 2 𝑆(𝑝,𝑞)‑𝐹𝐿𝐷𝐹𝑁 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴 𝐸4 > 𝐸1 > 𝐸2 > 𝐸3 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴 𝐸4 > 𝐸3 > 𝐸1 > 𝐸2 

(𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴 𝐸4 > 𝐸2 > 𝐸1 > 𝐸3 

The geometrically representation of Table 8 with respect to Table 10 (see Figure 8), we have,  
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Figure 8. Scores of alternatives based on the three (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐴𝐴 operators. 
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Figure 9. Scores of alternatives based on the three (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴. 
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operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐴𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑊𝐺𝐴  operator, (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑂𝑊𝐺𝐴  operator, 

and (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝐻𝑊𝐺𝐴  operator we found that the most desirable decision is 𝐸4 . uote that each 

operator receives the same rating results, these operators are also steady. 

In Table 12, the comparative study of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑆 is discussed with classical fuzzy sets. 
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Table 12. The comparative study of (𝑝, 𝑞)‑𝐹𝐿𝐷𝐹𝑆’s with fuzzy approaches. 

Collections Remarks Parameterization Fractional Property 

FS (Zadeh 1965) 
Unable to handle non-

membership 𝜕(𝑥) 
uo uot satisfied 

𝐼𝐹𝑆 (Atanassov 1986) 

cannot deal with the 

condition, 𝛹(𝑥) +
𝜕(𝑥) > 1 

uo uot satisfied 

𝑃𝑦𝐹𝑆 (Yager 2013a, b) 

cannot deal with the 

condition, 

(𝛹(𝑥))
2

+ (𝜕(𝑥))
2

> 1 

uo uot satisfied 

𝑞-𝑅𝑂𝐹𝑆 (Yager 2016) 

Unable to deal with 

smaller “𝑞” values with 

the condition, 

(𝛹(𝑥))
𝑞

+ (𝜕(𝑥))
𝑞

>

1 and for 𝛹(𝑥) =
1, 𝜕(𝑥) = 1 

uo uot satisfied 

𝐿𝐷𝐹𝑆 (Riaz 2019) 

This collection covers 

upon this situation, 0 ≤
(𝛼)𝛹(𝑥) + (𝛽)𝜕(𝑥) ≤
1, and don’t work 

under the influence of 

reference parameters 

(𝛼, 𝛽). 

𝛼 + 𝛽 > 1 

Yes uot satisfied 

𝑞-𝑅𝑂𝐿𝐷𝐹𝑆 (Almagrabi 

2021) 

This collection covers 

upon this situation, 0 ≤
𝛼𝑞𝛹(𝑥) + 𝛽𝑞𝜕(𝑥) ≤
1, and don’t work 

under the influence of 

reference parameters 

⟨𝛼, 𝛽). 

𝛼𝑞 + 𝛽𝑞 > 1 and for 

𝛼 = 1, 𝛽 = 1 

Yes uot satisfied 

(𝑝, 𝑞)-𝐹𝐿𝐷𝐹𝑆 (Present 

work) 

This collection covers 

upon this situation, 0 ≤
𝛼𝑞𝛹(𝑥) + 𝛽𝑞𝜕(𝑥) ≤
1, and work under the 

influence of reference 

parameters ⟨𝛼, 𝛽). 
𝛼

𝑝
+

𝛽

𝑞
≤ 1 and for 𝛼 =

1, 𝛽 = 1 

Yes Satisfied 

These fuzzy sets affect the optimal choice and restricts the 𝑀𝐴𝐷𝑀. We provide the novel concept 
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of the 𝐹𝐿𝐷𝐹𝑆, which can handle these situations and resolve these contradictions. 

7. Conclusions 

In this work, we propose 𝑞-𝐹𝐿𝐷𝐹𝑆 to remove the restriction on section of values of parameters. 

Some basic operations on 𝑞 -𝐹𝐿𝐷𝐹𝑆  are discussed as well as characterize some properties. A new 

version of score and accuracy functions are presented with the support of classical definition and 

elaborated with nontrivial examples. Some new aggregation operators over 𝑞 -fractional linear 

Diophantine fuzzy information are introduced over average and geometric mean. Additionally, the 

order and hybrid concepts are also used between (𝑝, 𝑞) -fractional linear Diophantine fuzzy 

information to extended the applications of aggregation operators and to get more valuable results. We 

apply the proposed aggregation operators in 𝑀𝐴𝐷𝑀 problem to evaluate the problem of green supply 

chain management based on the invented operators for (𝑝, 𝑞) -fractional linear Diophantine fuzzy 

information. Finally, we use some numerical examples to show the supremacy and validity of the 

developed techniques by comparing their ranking results with the obtained ranking results of the 

techniques. In the future, we will extend this approach to aggregation operators and apply this idea in 

soft set theory. Moreover, we will attempt to modify the main concept to acquire more nontrivial results.  
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