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1. Introduction

In 1965, Zadeh [56] presented fuzzy set theory. Later, Atanasov [10] generalized the notion of a
fuzzy set and added the notion of an intuitionistic fuzzy set. One of the underlying issues of fuzzy
arithmetic and fuzzy decision-making is the ranking of fuzzy numbers. Before the decision-maker can
act, fuzzy numbers should be ranked. Real numbers can be ordered linearly by the connection ≤ or
≥, however, and fuzzy numbers do not have this type of disparity. Because a probable distribution
depicts fuzzy numbers, they could also overlap, making it challenging to determine whether one fuzzy
number is either larger or smaller than another. A ranking component, which outlines each fuzzy
number further into a real line in which a natural order persists, is an efficient method to order the
fuzzy numbers. Ramesh [49] compares the notion of ranking function for making comparisons of
normal fuzzy numbers.

Abbasbandy and Hajjari [1] developed an innovative method for classifying trapezoidal fuzzy
numbers. Wang and Kerre [52] proposed ordering features for fuzzy quantities. Angelov [8] adhered
the Bellman and Zadeh [12] fuzzy optimization approach to intuitionistic fuzzy optimization.
Numerous authors, including Jana and Roy [30], Mahapatra et al. [35], Dubey et al. [20], Mukherjee
and Basu [39] have investigated the issue of optimization in an intuitionistic fuzzy background. One
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initiative to model the decision-making challenge with ambiguous quantities is to treat such imprecise
quantities as intuitionistic fuzzy numbers. Consequently, the analogy of fuzzy numbers is required in
the intuitionistic fuzzy optimisation problem. To create ranking systems for intuitionistic fuzzy
numbers, comparisons of these erroneous numbers are necessary.

Between intuitionistic fuzzy sets, Atanassov identified four fundamental distances: “The Hamming,
normalised Hamming, Euclidean, and normalised Euclidean distances”. Szmidt and Kacprzyk [51]
added to this principle and suggested a new definition of distance between intuitionistic fuzzy sets.
Wang and Xin [53] also investigated the striking similarities and detachments between intuitionistic
fuzzy sets by presenting some new axioms. Besides this, Nayagam et al. [41] and Nehi [42] also
have investigated the ranking of intuitionistic fuzzy numbers. Li [34] defined and implemented a ratio
methodology for triangular intuitionistic fuzzy numbers to MADM. In literature, there are additional
ranking techniques that have been developed by authors like Kumar and Kaur [33], Zhang and Yu [57],
Esmailzadeh and Esmailzadeh [22] and Papakostas et al. [44]. By adding the valuation and ambiguity
indexes of a trapezoidal intuitionistic fuzzy number, De and Das [19] were capable of describing a
ranking function.

The centroid approach of ranking intuitionistic fuzzy numbers was introduced by Nishad et
al. [43]. Bharati and Singh [13, 14] have explored intuitionistic fuzzy multiple objective programming
and implemented it in agricultural planning and control. In a two-stage time-minimizing
transportation concern, Bharati and Malhotra [15] used intuitionistic fuzzy sets. A novel algorithm for
ranking intuitionistic fuzzy digits using the centroid method was put forth by Prakash et al. [45].
Mitchell [37] introduced some techniques for ranking intuitively fuzzy numbers. To use the
intuitionistic fuzzy number’s anticipated interval, Grzegorzewski [26] suggested a ranking and
having-to-order method for intuitionistic fuzzy numbers. This is entirely predicated on the possible
values for the fuzzy number first presented in Chiao [17]. An approach for ranking fuzzy numbers
using the circumcenter of centroids and an indicator of modality was presented by Rao and
Shankar [46]. Nasseri et al. [40] introduce an addition to using the circumcenter of centroids to rank
fuzzy numbers with the aid of an area method. Roseline and Amirtharaj [50] presented intinuistic
fuzzy numbers using distance methods that rely on the circumcenter of centroids.

Additionally, Yager [54,55] expanded upon the idea of PFS and introduced a new definition known
as a q-rung orthopair fuzzy set (q-ROFS). Chen [16] suggested m-polar FS, while Zhang [57]
established bipolar FS and its relationships. Akram [2] investigated the theory, procedures, and
applications of m-polar F graphs in DM. Riaz and Hashmi [47] proposed the cutting-edge idea of a
linear Diophantine fuzzy set (LDFS). The research on LDFSs has recently expanded significantly.
Iampan et al. [29] researched linear Diophantine fuzzy Einstein aggregation operators, spherical
linear Diophantine fuzzy, and linear Diophantine fuzzy relations concerning decision-making issues.
Developed a fresh method for the COVID-19 q-linear Diophantine fuzzy emergency decision support
system. Algebraic linear Diophantine fuzzy structures were researched by Kamac [31]. Khan et
al. [32] use triangular linear Diophantine fuzzy numbers to solve linear and quadratic equations.
There are several authors who studied different applications of generalized fuzzy set models, for
instance, Ali et al. [3–6], Ashraf et al. [9], Ayub et al. [11], Das and Granados [18], Farid et al. [23],
Gupta et al. [27], Hashmi et al. [28], Mahmood et al. [36], Mohammad et al. [38] and Riaz and
Farid [48].

The domain principle of intuitionistic fuzzy set (IFS), interval-valued intuitionistic fuzzy set
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(IVIFS), Pythagorean fuzzy set (PFS), interval-valued Pythagorean fuzzy set (IVPFS) and q-rung
orthopair fuzzy set (q-ROFS) have several actual applications in diverse fields. But researchers found
some limitations to apply these concepts in much uncertain problems due to some issues related to
membership and non-membership grades. For instance, in all these theories the researchers cannot
choose 1 for membership and 1 for no-membership, if someone choose 1 for membership and 1 for
no-membership the 1q + 1q > 1. In order to remedy the issues, firstly, Riaz and Hashmi introduce the
novel idea of linear Diophantine fuzzy set (LDFS). In LDFS concept, they use the reference
parameters similar to membership and non-membership grades makes it most accommodating in the
direction of modeling uncertainties in actual existence issues. This research proposes a novel
circumcenter-based algorithm for ranking LD fuzzy numbers. A trapezoid is initially divided into
three segments in a trapezoidal LD fuzzy number, with the first, second, and third parts consecutively
being a triangle, a rectangle, and a triangle. Next, the centroids of each of these three components are
computed and their circumcenters. To rank LD fuzzy numbers, a ranking algorithm is lastly specified
as the circumcenter position plus the original position. The centroid of the trapezoid, which serves as
the trapezoid’s balance point, is used as a point of reference in most ranking algorithms suggested in
the literature. But since all of the centroids’ vertices are fairly different from this point, the centroids’
circumcenter could be considered a significantly balanced location.

2. Preliminaries and basic definitions

This section is dedicated to reviewing some fundamental ideas essential for comprehending the
dominant model.

Definition 2.1. [56] Consider a non-empty set X as the universe of discourse. Then a fuzzy set ξ in X
is defined as follows:

ξ = {(θ, µξ(θ))|θ ∈ X}, (2.1)

where µξ(θ) : X −→ [0, 1] is the membership degree.

Definition 2.2. [24] A fuzzy set ξ defined on the universe set X is said to be normal iff µξ(θ) = 1.

Definition 2.3. [21] A fuzzy set ξ of universe set X is said to be convex iff

µξ(λx + (1 − λ)y) ≥ min(µξ(x), µξ(y)) ∀x, y ∈ X and λ ∈ [0, 1]. (2.2)

Definition 2.4. [21] A fuzzy set ξ of universe set X is a fuzzy number iff ξ is normal and convex on X.

A real fuzzy number ξ is described as any fuzzy subset of the real line R with membership function
µξ(θ) possessing the following properties:

• µξ is a continuous mapping from R to the closed interval [0, 1].
• ξ is normalized : there exist t ∈ R such that µξ(t) = 1.
• Convexity of ξ : i.e., u,w ∈ R, if t ≤ u ≤ w, then µξ(u) ≥ min{µξ(t), µξ(w)}.
• Boundness of support: i.e., ∃S ∈ R and ∀t ∈ R, if |t| ≥ S , then µξ(t) = 0.

Definition 2.5. [10] An intuitionistic fuzzy set $ in X defined by

$ = {(θ, 〈α$(θ), β$(θ)〉) : θ ∈ X}, (2.3)
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where α$ : X −→ [0, 1] and β$ : X −→ [0, 1] are the membership degree and non-membership degree,
respectively, with the condition:

0 ≤ α$(θ) + β$(θ) ≤ 1. (2.4)

The hesitation degree of IFS $ defined in X is denoted as π$(θ). It is determined by the following
expression:

π$(θ) = 1 − α$(θ) − β$(θ). (2.5)

Definition 2.6. [47] Let X be the universe. A linear Diophantine fuzzy set (LDFS) £R on X is defined
as follows:

£R = {(θ, 〈ζτR(θ), ηυR(θ)〉, 〈α(θ), β(θ)〉) : θ ∈ X}, (2.6)

where ζτR(θ), ηυR(θ), α(θ), β(θ) ∈ [0, 1] such that

0 ≤ α(θ)ζτR(θ) + β(θ)ηυR(θ) ≤ 1, ∀θ ∈ X,

0 ≤ α(θ) + β(θ) ≤ 1. (2.7)

The hesitation part can be written as

%πR = 1 − (α(θ)ζτR(θ) + β(θ)ηυR(θ)), (2.8)

where % is the reference parameter.

Definition 2.7. [47] An absolute LDFS on X can be written as

1£R = {(θ, 〈1, 0〉, 〈1, 0〉 : θ ∈ X}, (2.9)

and empty or null LDFS can be expressed as

0£R = {(θ, 〈0, 1〉, 〈0, 1〉 : θ ∈ X}. (2.10)

Definition 2.8. [47] Let £R = {(θ, 〈ζτR(θ), ηυR(θ)〉, 〈α(θ), β(θ)〉) : θ ∈ X} be an LDFS. For any constants
s, t, u, v ∈ [0, 1] such that 0 ≤ su + tv ≤ 1 with 0 ≤ u + v ≤ 1, define the (〈s, t〉, 〈u, v〉)-cut of £R as
follows:

£〈s,t〉R〈u,v〉
= {θ ∈ X : ζτR(θ) ≥ s, ηυR(θ) ≤ t, α(θ) ≥ u, β(θ) ≤ v}. (2.11)

Definition 2.9. [32] A LDF number £R is

• a LDF subset of the real line R,
• normal, i.e., there is any θ0 ∈ R such that ζτR(θ0) = 1, ηυR(θ0) = 0, α(θ0) = 1, β(θ0) = 0,
• convex for the membership functions ζτR and α, i.e.,

ζτR(λθ1 + (1 − λ)θ2) ≥ min{ζτR(θ1), ζτR(θ2)} ∀θ1, θ2 ∈ R, λ ∈ [0, 1],
α(λθ1 + (1 − λ)θ2) ≥ min{α(θ1), α(θ2)} ∀θ1, θ2 ∈ R, λ ∈ [0, 1], (2.12)

• concave for the nonmembership functions ηυR and β, i.e.,

ηυR(λθ1 + (1 − λ)θ2) ≤ max{ηυR(θ1), ηυR(θ2)} ∀θ1, θ2 ∈ R, λ ∈ [0, 1],
β(λθ1 + (1 − λ)θ2) ≤ max{β(θ1), β(θ2)} ∀θ1, θ2 ∈ R, λ ∈ [0, 1]. (2.13)
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Definition 2.10. Let £R be a trapezoidal LDFN (TrapLDFN) on R with the following membership
functions (ζτR and α) and non-membership functions (ηυR and β) :

ζτR(x) =



0 x < θ1
x−θ1
θ3−θ1

θ1 ≤ x ≤ θ3

1 θ3 ≤ x ≤ θ4
θ6−x
θ6−θ4

θ4 ≤ x ≤ θ6

0 θ6 < x,

(2.14)

ηυR(x) =



0 x < θ2
θ3−x
θ3−θ2

θ2 ≤ x ≤ θ3

0 θ3 ≤ x ≤ θ4
x−θ4
θ5−θ4

θ4 ≤ x ≤ θ5

0 θ5 < x,

(2.15)

where θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5 ≤ θ6 for all x ∈ R. The figure of (θ1, θ2, θ3, θ4, θ5, θ6) is shown in Figure 1.

Figure 1. The figure of (θ1, θ2, θ3, θ4, θ5, θ6).

α(x) =



0 x < θ
′

2
x−θ

′

2

θ3−θ
′

2
θ
′

2 ≤ x ≤ θ3

1 θ3 ≤ x ≤ θ4
θ
′

5−x

θ
′

5−θ4
θ4 ≤ x ≤ θ

′

5

0 θ
′

5 < x,

(2.16)

β(x) =



0 x < θ
′

1
θ3−x
θ3−θ

′

1
θ
′

1 ≤ x ≤ θ3

0 θ3 ≤ x ≤ θ4
x−θ4

θ
′

6−θ4
θ4 ≤ x ≤ θ

′

6

0 θ
′

6 < x,

(2.17)

where θ
′

1 ≤ θ
′

2 ≤ θ3 ≤ θ4 ≤ θ
′

5 ≤ θ
′
6 for all x ∈ R. The figure of (θ

′

1, θ
′

2, θ3, θ4, θ
′

5, θ
′
6) is shown in Figure 2.
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Figure 2. The figure of (θ
′

1, θ
′

2, θ3, θ4, θ
′

5, θ
′
6).

The figure of £RTrapLDFN is shown in Figure 3.

Figure 3. The figure of £RTrapLDFN .

Definition 2.11. Consider a TrapLDFN £RTrapLDFN =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)
. Then

(i) s-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

£s
RTrapLDFN

=
{
x ∈ X : ζτR(x) ≥ s

}
=

[
ζτR(s), ζτR(s)

]
= [θ1 + s(θ3 − θ1), θ6 − s(θ6 − θ4)] , (2.18)

(ii) t-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

£t
RTrapLDFN

=
{
x ∈ X : ην

R
(x) ≤ t

}
=

[
ην
R

(t), ην
R

(t)
]

= [θ3 − t(θ3 − θ2), θ4 + t(θ5 − θ4)] , (2.19)

(iii) u-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

£u
RTrapLDFN

= {x ∈ X : α(x) ≥ u}
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=
[
α(u), α(u)

]
=

[
θ
′

2 + u(θ3 − θ
′

2), θ
′

5 − u(θ
′

5 − θ4)
]
, (2.20)

(iv) v-cut set of £RTrapLDFN is a crisp subset of R, which is defined as follows

£v
RTrapLDFN

= {x ∈ X : β(x) ≤ v}

=
[
β(v), β(v)

]
=

[
θ3 − v(θ3 − θ

′
1), θ4 + v(θ′6 − θ4)

]
. (2.21)

We can denote the (〈s,t〉 , 〈u,v〉)-cut of £RTrapLDFN =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)

by

(£RTrapLDFN )〈s,t〉
〈u,v〉 =


([
ζτR(s),ζτR(s)

]
,
[
ην
R

(t),ην
R

(t)
])
,([

α(u),α(u)
]
,
[
β(v),β(v)

])
.

We denote the set of all TrapLDFN on R by £RTrapLDFN (R).

3. Centroid method for ranking of trapaziodal LDFNs

In this part, we determine the centroid location of the trapezoidal linear Diaphontine fuzzy number
(TrapLDFN). The geometric core of a trapezoidal Linear diophantine fuzzy number is used in the
process of ranking TrapLDFNs with a centroid index. Values on the horizontal and vertical axes
correlate to the geometric centre.

Consider a TrapLDFN £RTrapLDFN =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)
, whose membership function can be defined as

follows:

ζτR(x) =



0 x < θ1

f L
A (x) θ1 ≤ x ≤ θ3

1 θ3 ≤ x ≤ θ4

f R
A (x) θ4 ≤ x ≤ θ6

0 θ6 ≤ x,

(3.1)

ηυR(x) =



0 x < θ2

gL
A(x) θ2 ≤ x ≤ θ3

0 θ3 ≤ x ≤ θ4

gR
A(x) θ4 ≤ x ≤ θ5

0 θ5 ≤ x,

(3.2)

α(x) =



0 x < θ
′

2
f ′LA (x) θ

′

2 ≤ x ≤ θ3

1 θ3 ≤ x ≤ θ4

f ′RA (x) θ4 ≤ x ≤ θ
′

5
0 θ

′

5 ≤ x,

(3.3)
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β(x) =



0 x < θ′1
g
′L
A (x) θ′1 ≤ x ≤ θ3

0 θ3 ≤ x ≤ θ4

g′RA (x) θ4 ≤ x ≤ θ′6
0 θ′6 ≤ x.

(3.4)

Where
f L
A : R −→ [0, 1], f R

A : R −→ [0, 1],
gL

A : R −→ [0, 1], gR
A : R −→ [0, 1],

f
′L
A : R −→ [0, 1], f ′RA : R −→ [0, 1],

g′LA : R −→ [0, 1] and g′RA : R −→ [0, 1],

(3.5)

are called the sides of TrapLDFN, where f L
A , gR

A, f
′L
A and g′RA are non-decreasing and f R

A , gL
A, f ′RA and

g′LA are non-increasing functions. Therefore the inverse functions of f L
A , f R

A , gL
A, gR

A, f ′LA , f ′RA , g′LA and g′RA
exist which are also of the same nature. Let

hL
A : [0, 1] −→ R, hR

A : [0, 1] −→ R,
kL

A : [0, 1] −→ R, kR
A : [0, 1] −→ R,

h′LA : [0, 1] −→ R, h′RA : [0, 1] −→ R,
k′LA : [0, 1] −→ R and k′RA : [0, 1] −→ R,

(3.6)

be the inverse functions of f L
A , f R

A , g
L
A, g

R
A, f ′LA , f ′RA , g

′L
A and g′RA respectively. Then, hL

A, h
R
A, k

L
A, k

R
A, h

′L
A , h

′R
A ,

k′LA and k′RA should be integrable on R. In the case of the above defined TrapLDFN, the above inverse
functions can be analytically expressed as follows:

hL
A(y) = θ1 + (θ3 − θ1)y 0 ≤ y ≤ 1,

hR
A(y) = θ6 + (θ4 − θ6)y 0 ≤ y ≤ 1,

kL
A(y) = θ3 + (θ2 − θ3)y 0 ≤ y ≤ 1,

kR
A(y) = θ4 + (θ5 − θ4) y 0 ≤ y ≤ 1,

h′LA (y) = θ′2 + (θ3 − θ
′
2)y 0 ≤ y ≤ 1,

h′RA (y) = θ′5 + (θ4 − θ
′
5)y 0 ≤ y ≤ 1,

k′LA (y) = θ3 + (θ′1 − θ3)y 0 ≤ y ≤ 1,
k′RA (y) = θ4 + (θ′6 − θ4)y 0 ≤ y ≤ 1.

(3.7)

The centroid point of the TrapLDFN is determined as follows. First we find ζτR(x) and ηυR(x), also see
the Figure 4.

ζτR(x) =

∫ θ3

θ1
x f L

A (x)dx +
∫ θ4

θ3
xdx +

∫ θ6

θ4
x f R

A (x)dx∫ θ3

θ1
f L
A (x)dx +

∫ θ4

θ3
dx +

∫ θ6

θ4
f R
A (x)dx

,

=

∫ θ3

θ1

x2−xθ1
θ3−θ1

dx +
∫ θ4

θ3
xdx +

∫ θ6

θ4

θ6 x−x2

θ6−θ4
dx∫ θ3

θ1

x−θ1
θ3−θ1

dx +
∫ θ4

θ3
dx +

∫ θ6

θ4

θ6−x
θ6−θ4

dx
,

=

1
θ3−θ1

[
x3

3 −
x2

2 θ1

]θ3

θ1
+

[
x2

2

]θ4

θ3
+ 1

θ6−θ4

[
θ6

x2

2 −
x3

3

]θ6

θ4

1
θ3−θ1

[
x2

2 − θ1x
]θ3

θ1
+ [x]θ4

θ3
+ 1

θ6−θ4

[
θ6x − x2

2

]θ6

θ4

,
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ζτR(x) =
1
3

[
θ2

6 + θ2
4 − θ

2
3 − θ

2
1 − θ1θ3 + θ6θ4

θ6 + θ4 − θ3 − θ1

]
, (3.8)

ηυR(x) =

∫ θ3

θ2
xgL

A(x)dx +
∫ θ4

θ3
xdx +

∫ θ5

θ4
xgR

A(x)∫ θ3

θ2
gL

A(x)dx +
∫ θ4

θ3
dx +

∫ θ5

θ4
gR

A(x)
,

=

∫ θ3

θ2

θ3 x−x2

θ3−θ2
dx +

∫ θ4

θ3
xdx +

∫ θ5

θ4

x2−θ4 x
θ5−θ4

dx∫ θ3

θ2

θ3−x
θ3−θ2

+
∫ θ4

θ3
dx +

∫ θ5

θ4

x−θ4
θ5−θ4

dx
,

=

1
θ3−θ2

[
θ3

x2

2 −
x3

3

]θ3

θ2
+

[
x2

2

]θ4

θ3
+ 1

θ5−θ4

[
x3

3 − θ4
x2

2

]θ5

θ4

1
θ3−θ2

[
θ3x − x2

2

]θ3

θ2
+ [x]θ4

θ3
+ 1

θ5−θ4

[
x2

2 − θ4x
]θ5

θ4

,

ηυR(x) =
1
3

[
2θ2

5 + 2θ2
4 − 2θ2

3 − 2θ2
2 + θ3θ2 − θ5θ4

θ5 + θ4 − θ3 − θ2

]
. (3.9)

Figure 4. The figure of (θ1, θ2, θ3, θ4, θ5, θ6).

Similarly, we find α(x) and β(x), also see the Figure 5.

α(x) =

∫ θ3

θ′2
x f ′LA (x)dx +

∫ θ4

θ3
xdx +

∫ θ′5
θ4

x f ′RA (x)dx∫ θ3

θ′2
f ′LA (x)dx +

∫ θ4

θ3
dx +

∫ θ′5
θ4

f ′RA (x)dx
,

=

∫ θ3

θ′2

x2−θ′2 x
θ3−θ

′
2

dx +
∫ θ4

θ3
xdx +

∫ θ′5

θ4

θ′5 x−x2

θ′5−θ4
dx∫ θ3

θ′2

x−θ′2
θ3−θ

′
2
dx +

∫ θ4

θ3
dx +

∫ θ′5
θ4

θ′5−x
θ′5−θ4

dx
,

=

1
θ3−θ

′
2

[
x3

3 − θ
′
2

x2

2

]θ3

θ′2
+

[
x2

2

]θ4

θ3
+ 1

θ′5−θ4

[
θ′5

x2

2 −
x3

3

]θ′5
θ4

1
θ3−θ

′
2

[
x2

2 − θ
′
2x

]θ3

θ′2
+ [x]θ4

θ3
+ 1

θ′5−θ4

[
θ′5x − x2

3

]θ′5
θ4

,
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α(x) =
1
3

θ′25 + θ2
4 − θ

2
3 − θ

′2

2 − θ
′
2θ3 + θ4θ

′
5

θ′5 + θ4 − θ3 − θ
′
2

 , (3.10)

β(x) =

∫ θ3

θ′1
xg′LA (x)dx +

∫ θ4

θ3
xdx +

∫ θ′6
θ4

g′RA (x)dx∫ θ3

θ′1
g′LA (x)dx +

∫ θ4

θ3
dx +

∫ θ′6
θ4

g′RA (x)dx
,

=

∫ θ3

θ′1

θ3 x−x2

θ3−θ
′
1

dx +
∫ θ4

θ3
xdx +

∫ θ′6
θ4

x2−θ4 x
θ′6−θ4

dx∫ θ3

θ′1

θ3−x
θ3−θ

′
1
dx +

∫ θ4

θ3
dx +

∫ θ′6
θ4

x−θ4
θ′6−θ4

dx
,

=

1
θ3−θ

′
1

[
θ3

x2

2 −
x3

3

]θ3

θ′1
+

[
x2

2

]θ4

θ3
+ 1

θ′6−θ4

[
x3

3 − θ4
x2

2

]θ′6
θ4

1
θ3−θ

′
1

[
θ3x − x2

2

]θ3

θ′1
+ [x]θ4

θ3
+ + 1

θ′6−θ4

[
x2

2 − θ4x
]θ′6
θ4

,

β(x) =
1
3

2θ′
2

6 + 2θ2
4 − 2θ2

3 − 2θ′
2

1 + θ3θ
′
1 − θ

′
6θ4

θ′6 + θ4 − θ3 − θ
′
1

 . (3.11)

Figure 5. The figure of (θ
′

1, θ
′

2, θ3, θ4, θ
′

5, θ
′
6).

Next, we find ζτR(y) and ηυR(y), also see the Figure 6.

ζτR(y) =

∫ 1

0
yhR

A(y)dy −
∫ 1

0
yhL

A(y)dy∫ 1

0
hR

A(y)dy −
∫ 1

0
hL

A(y)dy

=

∫ 1

0
(θ6y + θ4y2 − θ6y2)dy −

∫ 1

0
(θ1y + θ3y2 − θ1y2)dy∫ 1

0
(θ6 + θ4y − θ6y)dy −

∫ 1

0
(θ1 + θ3y − θ1y)dy

=
1
3

[
θ6 + 2θ4 − θ1 − 2θ3

θ6 + θ4 − θ1 − θ3

]
. (3.12)
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ηυR(y) =

∫ 1

0
ykR

Ady −
∫ 1

0
ykL

A(y)dy∫ 1

0
kR

Ady −
∫ 1

0
kL

A(y)dy
,

=

∫ 1

0
(θ4y + θ5y2 − θ4y2)dy −

∫ 1

0
(θ3y + θ2y2 − θ3y2)dy∫ 1

0
(θ4 + θ5y − θ4y)dy −

∫ 1

0
(θ3 + θ2y − θ3y)dy

,

ηυR(y) =
1
3

[
2θ5 + θ4 − θ3 − 2θ2

θ5 + θ4 − θ3 − θ2

]
. (3.13)

Figure 6. The figure of inverse of (θ1, θ2, θ3, θ4, θ5, θ6).

Similarly, we find α(y) and β(y), also see the Figure 7.

α(y) =

∫ 1

0
yh′RA (y)dy −

∫ 1

0
yh′LA (y)dy∫ 1

0
h′RA (y)dy −

∫ 1

0
h′LA (y)dy

,

=

∫ 1

0
(θ′5y + θ4y2 − θ′5y2)dy −

∫ 1

0
(θ′2y + θ3y2 − θ′2y2)dy∫ 1

0
(θ′5 + θ4y − θ′5y)dy −

∫ 1

0
(θ′2 + θ3y − θ′2y)dy

,

α(y) =
1
3

[
θ′5 + 2θ4 − 2θ3 − θ

′
2

θ′5 + θ4 − θ3 − θ
′
2

]
. (3.14)
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β(y) =

∫ 1

0
yk′RA (y)dy −

∫ 1

0
yk′LA (y)dy∫ 1

0
k′RA (y)dy −

∫ 1

0
k′LA (y)dy

,

=

∫ 1

0
(θ4y + θ′6y2 − θ4y2)dy −

∫ 1

0
(θ3y + θ′1y2 − θ3y2)dy∫ 1

0
(θ4 + θ′6y − θ4y)dy −

∫ 1

0
(θ3 + θ′1y − θ3y)dy

,

=
1
3

[
2θ′6 + θ4 − θ3 − 2θ′1
θ′6 + θ4 − θ3 − θ

′
1

]
. (3.15)

Figure 7. The figure of inverse of (θ
′

1, θ
′

2, θ3, θ4, θ
′

5, θ
′
6).

Then ( 〈ζτR(x), ζτR(y)〉, 〈α(x), α(y)〉; 〈ηυR(x), ηυR(y)〉, 〈β(x), β(y)〉) gives the centroid of the TrapLDFN.

Definition 3.1. The ranking function of the TrapLDFN A is defined by

<(A) =

√[
ζτR(x) − ζτR(y)

]2
+

[
α(x) − α(y)

]2
+

[
ηυR(x) − ηυR(y)

]2
+

[
β(x) − β(y)

]2 (3.16)

which is the Eculidean distance.

As a special case, if in a TrapLDFN, we let θ3 = θ4, then we will get a triangular LDFN with
parameters θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5 ≤ θ6 and θ

′

1 ≤ θ
′

2 ≤ θ3 ≤ θ4 ≤ θ
′

5 ≤ θ′6. It is denoted by
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£RTriLDFN =

{
(θ1,θ2,θ3,θ5,θ6)
(θ′1,θ

′

2,θ3,θ
′

5,θ
′

6)
. The centroids of the membership functions and non-membership functions of

the triangular LDFN respectively are defined as

ζτR(x) = 1
3 [θ1 + θ3 + θ6] ,

ηυR(x) = 1
3 [2θ2 − θ3 + 2θ5] ,

α(x) = 1
3

[
θ′2 + θ3 + θ′5

]
,

β(x) = 1
3

[
2θ′1 − θ3 + 2θ′6

]
,

(3.17)

and
ζτR(y) = 1

3 ,

ηυR(y) = 2
3 ,

α(y) = 1
3 ,

β(y) = 2
3 .

(3.18)

Definition 3.2. The ranking function of the triangular LDFN A is defined by

<(A) =

√[
ζτR(x) − ζτR(y)

]2
+

[
α(x) − α(y)

]2
+

[
ηυR(x) − ηυR(y)

]2
+

[
β(x) − β(y)

]2 , (3.19)

which is the Eculidean distance.

Example 3.3. Consider two TriLDFNs A =
{

(3,5,7,8,13)
(1,4,7,10,14) and B =

{
(1,3,9,10,13)
(0,4,9,13,15) . Then using the proposed

method we find<(A),

ζτR(x) =
1
3

[θ1 + θ3 + θ6] =
1
3

[3 + 7 + 13] = 7.67 (3.20)

ηυR(x) =
1
3

[2θ2 − θ3 + 2θ5] =
1
3

[10 − 7 + 16] = 6.33 (3.21)

α(x) =
1
3

[
θ′2 + θ3 + θ′5

]
=

1
3

[4 + 7 + 10] = 7 (3.22)

β(x) =
1
3

[
2θ′1 − θ3 + 2θ′6

]
=

1
3

[2 − 7 + 28] = 7.67. (3.23)

Also
ζτR(y) = 0.33, ηυR(y) = 0.67, α(y) = 0.33, β(y) = 0.67. (3.24)

Now,

<(A) =

√[
ζτR(x) − ζτR(y)

]2
+

[
α(x) − α(y)

]2
+

[
ηυR(x) − ηυR(y)

]2
+

[
β(x) − β(y)

]2

= 13.394. (3.25)

Now, by using the proposed method we find<(B),

ζτR(x) =
1
3

[θ1 + θ3 + θ6] =
1
3

[1 + 9 + 13] = 7.67 (3.26)

ηυR(x) =
1
3

[2θ2 − θ3 + 2θ5] =
1
3

[6 − 9 + 20] = 5.67 (3.27)
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α(x) =
1
3

[
θ′2 + θ3 + θ′5

]
=

1
3

[4 + 9 + 13] = 8.67 (3.28)

β(x) =
1
3

[
2θ′1 − θ3 + 2θ′6

]
=

1
3

[0 − 9 + 30] = 7. (3.29)

Also
ζτR(y) = 0.33, ηυR(y) = 0.67, α(y) = 0.33, β(y) = 0.67. (3.30)

Now,

<(B) =

√[
ζτR(x) − ζτR(y)

]2
+

[
α(x) − α(y)

]2
+

[
ηυR(x) − ηυR(y)

]2
+

[
β(x) − β(y)

]2

= 13.729. (3.31)

As<(A) < <(B) =⇒ A < B.

4. Ranking of trapaziodal LDFNs using circumcenter of centroids

A trapezoid’s centroid is regarded as the shape’s equilibrium position. The linear Diophantine
fuzzy number’s membership function trapezoid is divided into three planar figures. These three plane
figures are in order, a triangle, a rectangle, and another triangle. The point of reference for defining the
ordering of linear Diophantine fuzzy numbers is the circumcenter of the centroids of these three plane
figures. Each centroid point (G1 of a triangle, G2 of a rectangle, and G3 of a triangle) is a balancing
point for each unique planar figure, and the circumcenter of these centroid points is equidistant from
each vertex, which is why this point was chosen as a point of reference (which are centroids). As a
result, this point would serve as a more accurate reference point than the trapezoid’s centroid.

Take into consideration the trapezoidal linear Diophantine fuzzy number

£RTrapLDFN =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)
. (4.1)

The centroids of the three plane figures that make up the ζτR(x) are G1 = ( θ1+2θ3
3 , 1

3 ),G2 = ( θ3+θ4
2 , 1

2 ) and
G3 = ( 2θ4+θ6

3 , 1
3 ) and membership function are G1 = ( θ1+2θ3

3 , 1
3 ),G2 = ( θ3+θ4

2 , 1
2 ) and G3 = ( 2θ4+θ6

3 , 1
3 )) are

non-collinear and form a triangle. Since the equation of line G1G3 is y = 1
3 and G2 does not lie on line

G1G3. Figure 8 displays the circumcenter of the centroids of ζτR(x) .
Likewise, the centroids of the three plane figures that make up the membership function of α(x) are,

in a similar manner, G′1 = ( θ
′
2+2θ3

3 , 1
3 ),G′2 = ( θ3+θ4

2 , 1
2 ) and G′3 = ( 2θ4+θ′5

3 , 1
3 ) . G′2 does not fall on the line

G′1G
′
3, and its equation is y = 1

3 . G′1,G
′
2and G′3 are therefore non-collinear and form a triangle. Figure 9

displays the circumcenter of the centroids of α(x).
Finding the triangle’s circumcenter is our next task. The general equation for a triangle’s

circumcentre with the coordinates (x1, y1), (x2, y2) and (x3, y3) is

x =
−(y1 − y2)u + (y1 − y3)v

2K
, (4.2)

y =
(x1 − x2)u − (x1 − x3)v

2K
, (4.3)
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where

v = x2
1 + y2

1 − x2
2 − y2

2, (4.4)
u = x2

1 + y2
1 − x2

3 − y2
3, (4.5)

K = (x1 − x2)(y1 − y3) − (x1 − x3)(y1 − y2). (4.6)

The circumcenter Ŝ A(ζτR(x))
(x0, y0) of the triangle with vertices G1, G2 and G3 (as shown in Figure 8) of

the membership function of the trapezoidal LDFN A =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)

is

Ŝ A(ζτR(x))
(x0, y0) =

(
θ1 + 2θ3 + 2θ4 + θ6

6
,

(2θ1 + θ3 − 3θ4) (2θ6 + θ4 − 3θ3) + 5
12

)
, (4.7)

Figure 8. Circumcenter of centroids of ζτR(x).

Also, the circumcenter Ŝ A(α(x))(x′0, y
′
0) of the triangle with vertices G′1, G′2and G′3 (as shown in

Figure 9) is

Ŝ A(α(x))(x′0, y
′
0) =

θ′2 + 2θ3 + 2θ4 + θ
′

5

6
,

(
2θ
′

2 + θ3 − 3θ4

) (
2θ
′

5 + θ4 − 3θ3

)
+ 5

12

 . (4.8)

Figure 9. Circumcenter of centroids of α(x).
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Separate the TrapLDFN trapezoid of non-membership functions into three plane figures as well.
Again, a triangle, a rectangle, and a triangle successively make up these three plane figures.
Additionally, the centroids of the three plane figures that make up the non-membership function ην

R
(x)

are G1
1 =

(
θ2+2θ3

3 , 2
3

)
, G1

2 =
(

(θ3+θ4)
2 , 1

2

)
and G1

3 =
(

(2θ4+θ5
3 , 2

3

)
correspondingly. The line G1

1G
1
3 is has the

equation y = 2
3 , and G1

2 does not fall on this line.
G1

1 ,G
1
2 and G1

3 are therefore not collinear and form a triangle. Figure 10 displays the circumcenter
of the centroids of ην

R
(x). And the circumcenter Ŝ A(ην

R
(x))

of the triangle formed by the vertices G1
1 ,G

1
2

and G1
3 of the non-membership function of the trapezoidal LDFN £RTrapLDFN =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)

is

Ŝ A(ην
R

(x))
(x1, y1) =

(
θ2 + 2θ3 + 2θ4 + θ5

6
,

(2θ2 + θ3 − 3θ4)(−2θ5 − θ4 + 3θ3) + 7
12

)
. (4.9)

Figure 10. Circumcenter of centroids of ην
R

(x).

Similarly, the centroids of the three plane figures of nonmembership function β(x) are

G1′
1 =

(
θ′1+2θ3

3 , 2
3

)
, G1′

2 =
(

(θ3+θ4)
2 , 1

2

)
and G1′

3 =

(
(2θ4+θ′6

3 , 2
3

)
respectively. Equation of the line G1′

1 G1′
3 is

y = 2
3 and G1′

2 does not lie on the line G1′
1 G1′

3 . Therefore G1′
1 ,G

1′
2 and G1′

3 (as shown in Figure 11) are
non-collinear and they form a triangle. The circumcenter of centroids of β(x) is

Ŝ A(β(x))(x′1, y
′
1) =

(
θ′1 + 2θ3 + 2θ4 + θ′6

6
,

(2θ′1 + θ3 − 3θ4)(−2θ′6 − θ4 + 3θ3) + 7
12

)
. (4.10)

Figure 11. Circumcenter of centroids of β(x).

Definition 4.1. The ranking function of the trapezoidal LDFN A =

{
(θ1,θ2,θ3,θ4,θ5,θ6)
(θ′1,θ

′

2,θ3,θ4,θ
′

5,θ
′
6)

for membership

function and non-membership function are defined as RA(ζτR(x))
=

√
x2

0 + y2
0 , RA(α(x)) =

√
x′20 + y′20 and
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RA(ην
R

(x))
=

√
x1

2
+ y1

2, RA(β(x)) =

√
x′21 +y′21 , then

RA =
1
4

(
RA(ζτR(x))

+ RA(α(x)) + RA(ην
R

(x))
+ RA(β(x))

)
. (4.11)

As an exception, if we allow θ3 = θ4 in a TrapLDFN, we will obtain a triangular LDFN with the
parameters θ1 ≤ θ2 ≤ θ3 ≤ θ4 ≤ θ5 ≤ θ6 and θ

′

1 ≤ θ
′

2 ≤ θ3 ≤ θ4 ≤ θ
′

5 ≤ θ′6. It is indicated by

£RTriLDFN =

{
(θ1,θ2,θ3,θ5,θ6)
(θ′1,θ

′

2,θ3,θ
′

5,θ
′

6)
. The circumcenters of the centroids for the triangular LDFN’s membership

function and nonmembership function are defined as follows.

Ŝ A(ζτR(x))
(x0, y0) =

(
θ1 + 4θ3 + θ6

6
,

4 (θ1 − θ3) (θ6 − θ3) + 5
12

)
, (4.12)

Ŝ A(α(x))(x′0, y
′
0) =

θ′2 + 4θ3 + θ
′

5

6
,

4
(
θ
′

2 − θ3

) (
θ
′

5 − θ3

)
+ 5

12

 , (4.13)

and

Ŝ A(ην
R

(x))
(x1, y1) =

(
θ2 + 4θ3 + θ5

6
,

4(θ2 − θ3)(−θ5 + θ3) + 7
12

)
, (4.14)

Ŝ A(β(x))(x′1, y
′
1) =

(
θ′1 + 4θ3 + θ′6

6
,

4(θ′1 − θ3)(−θ′6 + θ3) + 7
12

)
. (4.15)

Example 4.2. Consider two TriLDFN A =

{
(2, 4, 5, 7, 9)
(1, 3, 5, 8, 10)

and B =

{
(3, 5, 7, 8, 9)
(2, 4, 7, 9, 9)

. Then using the

proposed method we find<(A),

Ŝ A(ζτR(x))
(x0, y0) =

(
θ1 + 4θ3 + θ6

6
,

4 (θ1 − θ3) (θ6 − θ3) + 5
12

)
= (5.16,−3.58), (4.16)

Ŝ A(α(x))(x′0, y
′
0) =

θ′2 + 4θ3 + θ
′

5

6
,

4
(
θ
′

2 − θ3

) (
θ
′

5 − θ3

)
+ 5

12

 = (5.16,−1.58), (4.17)

Ŝ A(ην
R

(x))
(x1, y1) =

(
θ2 + 4θ3 + θ5

6
,

4(θ2 − θ3)(−θ5 + θ3) + 7
12

)
= (5.33, 1.25), (4.18)

Ŝ A(β(x))(x′1, y
′
1) =

θ′1 + 4θ3 + θ′6
6

,
4(θ

′

1 − θ3)(−θ′6 + θ3) + 7
12

 = (5.16, 7.25). (4.19)

Also,

<A(ζτR(x))
=

√
x2

0 + y2
0 = 6.28, <A(α(x)) =

√
x′20 + y′20 = 5.39,

<A(ην
R

(x))
=

√
x1

2
+ y1

2
= 5.47, <A(β(x)) =

√
x′21 +y′21 = 8.89.

(4.20)

Now,

<A =
1
4

(
RA(ζτR(x))

+ RA(α(x)) + RA(ην
R

(x))
+ RA(β(x))

)
= 6.50. (4.21)
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Now, using the proposed method we find<(B),

Ŝ B(ζτR(x))
(x0, y0) =

(
θ1 + 4θ3 + θ6

6
,

4 (θ1 − θ3) (θ6 − θ3) + 5
12

)
= (6.66,−2.25), (4.22)

Ŝ B(α(x))(x′0, y
′
0) =

θ′2 + 4θ3 + θ
′

5

6
,

4
(
θ
′

2 − θ3

) (
θ
′

5 − θ3

)
+ 5

12

 = (6.83,−1.58), (4.23)

Ŝ B(ην
R

(x))
(x1, y1) =

(
θ2 + 4θ3 + θ5

6
,

4(θ2 − θ3)(−θ5 + θ3) + 7
12

)
= (6.83, 1.25), (4.24)

Ŝ B(β(x))(x′1, y
′
1) =

θ′1 + 4θ3 + θ′6
6

,
4(θ

′

1 − θ3)(−θ′6 + θ3) + 7
12

 = (6.5, 3.91). (4.25)

Also,

<B(ζτR(x))
=

√
x2

0 + y2
0 = 6.97, <B(α(x)) =

√
x′20 + y′20 = 7.01,

<B(ην
R

(x))
=

√
x1

2
+ y1

2
= 6.94, <B(β(x)) =

√
x′21 +y′21 = 7.58.

(4.26)

Now,

<B =
1
4

(
RB(ζτR(x))

+ RB(α(x)) + RB(ην
R

(x))
+ RB(β(x))

)
= 7.12. (4.27)

As<(A) < <(B) =⇒ A < B.

5. Conclusions

The linear Diophantine fuzzy numbers have been identified in this research. In this study, we
discovered the circumcenter of centroids of the membership function and non-membership function
of a linear Diophantine fuzzy number. We also suggested a distance approach for ranking the linear
Diophantine fuzzy number depending on the circumcenter of centroids. The suggested method gives
the precise organization of linear Diophantine fuzzy numbers. It may be used to rank the linear
Diophantine fuzzy numbers in order to deal with various fuzzy optimization issues. This method can
be implemented to rank trapezoidal in addition to triangular fuzzy numbers and their counterparts.
The following areas may be covered by our future projects:

(i) Linear programming problems;
(ii) Differential equations;
(iii) Game theory;
(iv) Transportation problems;
(v) Differential games.
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